
Essential Linux Device Drivers
by Sreekrishnan Venkateswaran

Publisher: Prentice Hall
Pub Date: March 27, 2008
Print ISBN-10: 0-13-239655-6
Print ISBN-13: 978-0-13-239655-4
Pages: 744

Table of Contents
| Index

Overview

"Probably the most wide ranging and complete Linux device driver book I've read."

--Alan Cox, Linux Guru and Key Kernel Developer

"Very comprehensive and detailed, covering almost every single Linux device driver type."

--Theodore Ts'o, First Linux Kernel Developer in North America and Chief Platform Strategist of the Linux
Foundation

The Most Practical Guide to Writing Linux Device Drivers

Linux now offers an exceptionally robust environment for driver development: with today's kernels, what once
required years of development time can be accomplished in days. In this practical, example-driven book, one of
the world's most experienced Linux driver developers systematically demonstrates how to develop reliable Linux
drivers for virtually any device. Essential Linux Device Drivers is for any programmer with a working
knowledge of operating systems and C, including programmers who have never written drivers before.
Sreekrishnan Venkateswaran focuses on the essentials, bringing together all the concepts and techniques you
need, while avoiding topics that only matter in highly specialized situations. Venkateswaran begins by reviewing
the Linux 2.6 kernel capabilities that are most relevant to driver developers. He introduces simple device
classes; then turns to serial buses such as I2C and SPI; external buses such as PCMCIA, PCI, and USB; video,
audio, block, network, and wireless device drivers; user-space drivers; and drivers for embedded Linux–one of
today's fastest growing areas of Linux development. For each, Venkateswaran explains the technology, inspects
relevant kernel source files, and walks through developing a complete example.

• Addresses drivers discussed in no other book, including drivers for I2C, video, sound, PCMCIA, and different
types of flash memory

• Demystifies essential kernel services and facilities, including kernel threads and helper interfaces

• Teaches polling, asynchronous notification, and I/O control

• Introduces the Inter-Integrated Circuit Protocol for embedded Linux drivers

• Covers multimedia device drivers using the Linux-Video subsystem and Linux-Audio framework

• Shows how Linux implements support for wireless technologies such as Bluetooth, Infrared, WiFi, and cellular
networking

• Describes the entire driver development lifecycle, through debugging and maintenance

• Includes reference appendixes covering Linux assembly, BIOS calls, and Seq files

Essential Linux Device Drivers
by Sreekrishnan Venkateswaran

Publisher: Prentice Hall
Pub Date: March 27, 2008
Print ISBN-10: 0-13-239655-6
Print ISBN-13: 978-0-13-239655-4
Pages: 744

Table of Contents
| Index

Overview

"Probably the most wide ranging and complete Linux device driver book I've read."

--Alan Cox, Linux Guru and Key Kernel Developer

"Very comprehensive and detailed, covering almost every single Linux device driver type."

--Theodore Ts'o, First Linux Kernel Developer in North America and Chief Platform Strategist of the Linux
Foundation

The Most Practical Guide to Writing Linux Device Drivers

Linux now offers an exceptionally robust environment for driver development: with today's kernels, what once
required years of development time can be accomplished in days. In this practical, example-driven book, one of
the world's most experienced Linux driver developers systematically demonstrates how to develop reliable Linux
drivers for virtually any device. Essential Linux Device Drivers is for any programmer with a working
knowledge of operating systems and C, including programmers who have never written drivers before.
Sreekrishnan Venkateswaran focuses on the essentials, bringing together all the concepts and techniques you
need, while avoiding topics that only matter in highly specialized situations. Venkateswaran begins by reviewing
the Linux 2.6 kernel capabilities that are most relevant to driver developers. He introduces simple device
classes; then turns to serial buses such as I2C and SPI; external buses such as PCMCIA, PCI, and USB; video,
audio, block, network, and wireless device drivers; user-space drivers; and drivers for embedded Linux–one of
today's fastest growing areas of Linux development. For each, Venkateswaran explains the technology, inspects
relevant kernel source files, and walks through developing a complete example.

• Addresses drivers discussed in no other book, including drivers for I2C, video, sound, PCMCIA, and different
types of flash memory

• Demystifies essential kernel services and facilities, including kernel threads and helper interfaces

• Teaches polling, asynchronous notification, and I/O control

• Introduces the Inter-Integrated Circuit Protocol for embedded Linux drivers

• Covers multimedia device drivers using the Linux-Video subsystem and Linux-Audio framework

• Shows how Linux implements support for wireless technologies such as Bluetooth, Infrared, WiFi, and cellular
networking

• Describes the entire driver development lifecycle, through debugging and maintenance

• Includes reference appendixes covering Linux assembly, BIOS calls, and Seq files

Essential Linux Device Drivers
by Sreekrishnan Venkateswaran

Publisher: Prentice Hall
Pub Date: March 27, 2008
Print ISBN-10: 0-13-239655-6
Print ISBN-13: 978-0-13-239655-4
Pages: 744

Table of Contents
| Index

Copyright
Prentice Hall Open Source Software Development Series
Foreword
Preface
Acknowledgments
About the Author
Chapter 1. Introduction

Evolution
The GNU Copyleft
Kernel.org
Mailing Lists and Forums
Linux Distributions
Looking at the Sources
Building the Kernel
Loadable Modules
Before Starting

Chapter 2. A Peek Inside the Kernel
Booting Up
Kernel Mode and User Mode
Process Context and Interrupt Context
Kernel Timers
Concurrency in the Kernel
Process Filesystem
Allocating Memory
Looking at the Sources

Chapter 3. Kernel Facilities
Kernel Threads
Helper Interfaces
Looking at the Sources

Chapter 4. Laying the Groundwork
Introducing Devices and Drivers
Interrupt Handling
The Linux Device Model
Memory Barriers
Power Management
Looking at the Sources

Chapter 5. Character Drivers
Char Driver Basics
Device Example: System CMOS
Sensing Data Availability
Talking to the Parallel Port
RTC Subsystem
Pseudo Char Drivers
Misc Drivers
Character Caveats
Looking at the Sources

Chapter 6. Serial Drivers
Layered Architecture
UART Drivers
TTY Drivers
Line Disciplines

Looking at the Sources
Chapter 7. Input Drivers

Input Event Drivers
Input Device Drivers
Debugging
Looking at the Sources

Chapter 8. The Inter-Integrated Circuit Protocol
What's I2C/SMBus?
I2C Core
Bus Transactions
Device Example: EEPROM
Device Example: Real Time Clock
I2C-dev
Hardware Monitoring Using LM-Sensors
The Serial Peripheral Interface Bus
The 1-Wire Bus
Debugging
Looking at the Sources

Chapter 9. PCMCIA and Compact Flash
What's PCMCIA/CF?
Linux-PCMCIA Subsystem
Host Controller Drivers
PCMCIA Core
Driver Services
Client Drivers
Tying the Pieces Together
PCMCIA Storage
Serial PCMCIA
Debugging
Looking at the Sources

Chapter 10. Peripheral Component Interconnect
The PCI Family
Addressing and Identification
Accessing PCI Regions
Direct Memory Access
Device Example: Ethernet-Modem Card
Debugging
Looking at the Sources

Chapter 11. Universal Serial Bus
USB Architecture
Linux-USB Subsystem
Driver Data Structures
Enumeration
Device Example: Telemetry Card
Class Drivers
Gadget Drivers
Debugging
Looking at the Sources

Chapter 12. Video Drivers
Display Architecture
Linux-Video Subsystem
Display Parameters
The Frame Buffer API
Frame Buffer Drivers
Console Drivers
Debugging
Looking at the Sources

Chapter 13. Audio Drivers
Audio Architecture
Linux-Sound Subsystem
Device Example: MP3 Player
Debugging
Looking at the Sources

Chapter 14. Block Drivers

Storage Technologies
Linux Block I/O Layer
I/O Schedulers
Block Driver Data Structures and Methods
Device Example: Simple Storage Controller
Advanced Topics
Debugging
Looking at the Sources

Chapter 15. Network Interface Cards
Driver Data Structures
Talking with Protocol Layers
Buffer Management and Concurrency Control
Device Example: Ethernet NIC
ISA Network Drivers
Asynchronous Transfer Mode
Network Throughput
Looking at the Sources

Chapter 16. Linux Without Wires
Bluetooth
Infrared
WiFi
Cellular Networking
Current Trends

Chapter 17. Memory Technology Devices
What's Flash Memory?
Linux-MTD Subsystem
Map Drivers
NOR Chip Drivers
NAND Chip Drivers
User Modules
MTD-Utils
Configuring MTD
eXecute In Place
The Firmware Hub
Debugging
Looking at the Sources

Chapter 18. Embedding Linux
Challenges
Component Selection
Tool Chains
Embedded Bootloaders
Memory Layout
Kernel Porting
Embedded Drivers
The Root Filesystem
Test Infrastructure
Debugging

Chapter 19. Drivers in User Space
Process Scheduling and Response Times
Accessing I/O Regions
Accessing Memory Regions
User Mode SCSI
User Mode USB
User Mode I2C
UIO
Looking at the Sources

Chapter 20. More Devices and Drivers
ECC Reporting
Frequency Scaling
Embedded Controllers
ACPI
ISA and MCA
FireWire
Intelligent Input/Output

Amateur Radio
Voice over IP
High-Speed Interconnects

Chapter 21. Debugging Device Drivers
Kernel Debuggers
Kernel Probes
Kexec and Kdump
Profiling
Tracing
Linux Test Project
User Mode Linux
Diagnostic Tools
Kernel Hacking Config Options
Test Equipment

Chapter 22. Maintenance and Delivery
Coding Style
Change Markers
Version Control
Consistent Checksums
Build Scripts
Portable Code

Chapter 23. Shutting Down
Checklist
What Next?

Appendix A. Linux Assembly
Debugging

Appendix B. Linux and the BIOS
Real Mode Calls
Protected Mode Calls
BIOS and Legacy Drivers

Appendix C. Seq Files
The Seq File Advantage
Updating the NVRAM Driver
Looking at the Sources

Index

Copyright

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: www.informit.com/ph

Library of Congress Cataloging-in-Publication Data:

Venkateswaran, Sreekrishnan, 1972-
 Essential Linux device drivers / Sreekrishnan Venkateswaran.-- 1st ed.
 p. cm.
 ISBN 0-13-239655-6 (hardback : alk. paper) 1. Linux device drivers (Computer programs)
I. Title.
 QA76.76.D49V35 2008
 005.4'32--dc22
 2008000249

Copyright © 2008 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

This material may be distributed only subject to the terms and conditions set forth in the Open Publication
License, v1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/).

ISBN-13: 978-0-132-39655-4

http://www.opencontent.org/openpub/

Text printed in the United States on recycled paper at RR Donnelly in Crawfordsville, IN.

First printing March 2008

Editor-in-Chief
Mark Taub

Executive Editor
Debra Williams Cauley

Managing Editor
Gina Kanouse

Project Edito
Anne Goebel

Copy Editor
Keith Cline

Indexer
Erika Millen

Proofreader
San Dee Phillips

Technical Editors
Vamsi Krishna
Jim Lieb

Publishing Coordinator
Heather Fox

Interior Designer
Laura Robbins

Cover Designer
Alan Clements

Compositor
Molly Sharp

Dedication

This book is dedicated to the ten million visually challenged citizens of India. All author proceeds will go to
their cause.

Prentice Hall Open Source Software Development Series

Arnold Robbins, Series Editor

"Real world code from real world applications"

Open Source technology has revolutionized the computing world. Many large-scale projects are in production
use worldwide, such as Apache, MySQL, and Postgres, with programmers writing applications in a variety of
languages including Perl, Python, and PHP. These technologies are in use on many different systems, ranging
from proprietary systems, to Linux systems, to traditional UNIX systems, to mainframes.

The Prentice Hall Open Source Software Development Series is designed to bring you the best of these
Open Source technologies. Not only will you learn how to use them for your projects, but you will learn from
them. By seeing real code from real applications, you will learn the best practices of Open Source developers
the world over.

Titles currently in the series include:

Linux® Debugging and Performance Tuning
Steve Best
0131492470, Paper, ©2006

C++ GUI Programming with Qt 4
Jasmin Blanchette, Mark Summerfield
0132354160, Hard, ©2008

The Definitive Guide to the Xen Hypervisor
David Chisnall
013234971X, Hard, ©2008

Understanding AJAX
Joshua Eichorn
0132216353, Paper, ©2007

The Linux Programmer's Toolbox
John Fusco
0132198576, Paper, ©2007

Embedded Linux Primer
Christopher Hallinan
0131679848, Paper, ©2007

The Apache Modules Book
Nick Kew
0132409674, Paper, © 2007

SELinux by Example
Frank Mayer, David Caplan, Karl MacMillan
0131963694, Paper, ©2007

UNIX to Linux® Porting
Alfredo Mendoza, Chakarat Skawratananond,
Artis Walker
0131871099, Paper, ©2006

Rapid Web Applications with TurboGears
Mark Ramm, Kevin Dangoor, Gigi Sayfan
0132433885, Paper, © 2007

Linux Programming by Example
Arnold Robbins
0131429647, Paper, ©2004

The Linux® Kernel Primer
Claudia Salzberg, Gordon Fischer,
Steven Smolski
0131181637, Paper, ©2006

Rapid GUI Programming with Python and Qt
Mark Summerfield
0132354187, Hard, © 2008

Essential Linux Device Drivers
Sreekrishnan Venkateswaran
0132396556, Hard, ©2008

New to the series: Digital Short Cuts

Short Cuts are short, concise, PDF documents designed specifically for busy technical professionals like you.
Each Short Cut is tightly focused on a specific technology or technical problem. Written by industry experts and
best selling authors, Short Cuts are published with you in mind — getting you the technical information that you
need — now.

Understanding AJAX:
Consuming the Sent Data with XML and JSON
Joshua Eichorn
0132337932, Adobe Acrobat PDF, © 2007

Debugging Embedded Linux
Christopher Hallinan
0131580132, Adobe Acrobat PDF, © 2007

Using BusyBox
Christopher Hallinan
0132335921, Adobe Acrobat PDF, © 2007

Foreword

If you're holding this book, you may be asking yourself: Why "yet another" Linux device driver book? Aren't
there already a bunch of them?

The answer is: This book is a quantum leap ahead of the others.

First, it is up-to-date, covering recent 2.6 kernels. Second, and more important, this book is thorough. Most
device driver books just cover the topics described in standard Unix internals books or operating system books,
such as serial lines, disk drives, and filesystems, and, if you're lucky, the networking stack.

This book goes much further; it doesn't shy away from the hard stuff that you have to deal with on modern PC
and embedded hardware, such as PCMCIA, USB, I2C, video, audio, flash memory, wireless communications, and
so on. You name it, if the Linux kernel talks to it, then this book tells you about it.

No stone is left unturned; no dark corner is left unilluminated.

Furthermore, the author has earned his stripes: It's a thrill ride just to read his description of putting Linux on a
wristwatch in the late 1990s!

I'm pleased and excited to have this book as part of the Prentice Hall Open Source Software Development
Series. It is a shining example of the exciting things happening in the Open Source world. I hope that you will
find here what you need for your work on the kernel, and that you will enjoy the process, too!

Arnold Robbins
Series Editor

Preface

It was the late 1990s, and at IBM we were putting the Linux kernel on a wristwatch. The target device was tiny,
but the task was turning out to be tough. The Memory Technology Devices subsystem didn't exist in the kernel,
which meant that before a filesystem could start life on the watch's flash memory, we had to develop the
necessary storage driver from scratch. Interfacing the watch's touch screen with user applications was
complicated because the kernel's input event driver interface hadn't been conceived yet. Getting X Windows to
run on the watch's LCD wasn't easy because it didn't work well with frame buffer drivers. Of what use is a
waterproof Linux wristwatch if you can't stream stock quotes from your bathtub? Bluetooth integration with
Linux was several years away, and months were spent porting a proprietary Bluetooth stack to Internet-enable
the watch. Power management support was good enough only to squeeze a few hours of juice from the watch's
battery; hence we had work cut out on that front, too. Linux-Infrared was still unstable, so we had to coax the
stack before we could use an Infrared keyboard for data entry. And we had to compile the compiler and cross-
compile a compact application-set because there were no accepted distributions in the consumer electronics
space.

Fast forward to the present: The baby penguin has grown into a healthy teenager. What took thousands of lines
of code and a year in development back then can be accomplished in a few days with the current kernels. But to
become a versatile kernel engineer who can magically weave solutions, you need to understand the myriad
features and facilities that Linux offers today.

About the Book

Among the various subsystems residing in the kernel source tree, the drivers/ directory constitutes the single
largest chunk and is several times bigger than the others. With new and diverse technologies arriving in popular
form factors, the development of new device drivers in the kernel is accelerating steadily. The latest kernels
support more than 70 device driver families.

This book is about writing Linux device drivers. It covers the design and development of major device classes
supported by the kernel, including those I missed during my Linux-on-Watch days. The discussion of each driver
family starts by looking at the corresponding technology, moves on to develop a practical example, and ends by
looking at relevant kernel source files. Before foraying into the world of device drivers, however, this book
introduces you to the kernel and discusses the important features of 2.6 Linux, emphasizing those portions that
are of special interest to device driver writers.

Audience

This book is intended for the intermediate-level programmer eager to tweak the kernel to enable new devices.
You should have a working knowledge of operating system concepts. For example, you should know what a
system call is and why concurrency issues have to be factored in while writing kernel code. The book assumes
that you have downloaded Linux on your system, poked through the kernel sources, and at least skimmed
through some related documentation. And you should be pretty good in C.

Summary of Chapters

The first 4 chapters prepare you to digest the rest of the book. The next 16 chapters discuss drivers for different
device families. A chapter that describes device driver debugging techniques comes next. The penultimate
chapter provides perspective on maintenance and delivery. We shut down by walking through a checklist that
summarizes how to set forth on your way to Linux-enablement when you get hold of a new device.

Chapter 1, "Introduction," starts our tryst with Linux. It hurries you through downloading the kernel sources,
making trivial code changes, and building a bootable kernel image.

Chapter 2, "A Peek Inside the Kernel," takes a brisk look into the innards of the Linux kernel and teaches you
some must-know kernel concepts. It first takes you through the boot process and then describes kernel services
particularly relevant to driver development, such as kernel timers, concurrency management, and memory
allocation.

Chapter 3, "Kernel Facilities," examines several kernel services that are useful components in the toolbox of
driver developers. The chapter starts by looking at kernel threads, which is a way to implement background
tasks inside the kernel. It then moves on to helper interfaces such as linked lists, work queues, completion
functions, and notifier chains. These helper facilities simplify your code, weed out redundancies from the kernel,
and help long-term maintenance.

Chapter 4, "Laying the Groundwork," builds the foundation for mastering the art of writing Linux device drivers.
It introduces devices and drivers by giving you a bird's-eye view of the architecture of a typical PC-compatible
system and an embedded device. It then looks at basic driver concepts such as interrupt handling and the
kernel's device model.

Chapter 5, "Character Drivers," looks at the architecture of character device drivers. Several concepts
introduced in this chapter, such as polling, asynchronous notification, and I/O control, are relevant to
subsequent chapters, too, because many device classes discussed in the rest of the book are "super" character
devices.

Chapter 6, "Serial Drivers," explains the kernel layer that handles serial devices.

Chapter 7, "Input Drivers," discusses the kernel's input subsystem that is responsible for servicing devices such
as keyboards, mice, and touch-screen controllers.

Chapter 8, "The Inter-Integrated Circuit Protocol," dissects drivers for devices such as EEPROMs that are
connected to a system's I2C bus or SMBus. This chapter also looks at other serial interfaces such as SPI bus and
1-wire bus.

Chapter 9, "PCMCIA and Compact Flash," delves into the PCMCIA subsystem. It teaches you to write drivers for
devices having a PCMCIA or Compact Flash form factor.

Chapter 10, "Peripheral Component Interconnect," looks at kernel support for PCI and its derivatives.

Chapter 11, "Universal Serial Bus," explores USB architecture and explains how you can use the services of the
Linux-USB subsystem to write drivers for USB devices.

Chapter 12, "Video Drivers," examines the Linux-Video subsystem. It finds out the advantages offered by the
frame buffer abstraction and teaches you to write frame buffer drivers.

Chapter 13, "Audio Drivers," describes the Linux-Audio framework and explains how to implement audio drivers.

Chapter 14, "Block Drivers," focuses on drivers for storage devices such as hard disks. In this chapter, you also
learn about the different I/O schedulers supported by the Linux-Block subsystem.

Chapter 15, "Network Interface Cards," is devoted to network device drivers. You learn about kernel networking
data structures and how to interface network drivers with protocol layers.

Chapter 16, "Linux Without Wires," looks at driving different wireless technologies such as Bluetooth, Infrared,
WiFi, and cellular communication.

Chapter 17, "Memory Technology Devices," discusses flash memory enablement on embedded devices. The
chapter ends by examining drivers for the Firmware Hub found on PC systems.

Chapter 18, "Embedding Linux," steps into the world of embedded Linux. It takes you through the main
firmware components of an embedded solution such as bootloader, kernel, and device drivers. Given the soaring
popularity of Linux in the embedded space, it's more likely that you will use the device driver skills that you

acquire from this book to enable embedded systems.

Chapter 19, "Drivers in User Space," looks at driving different types of devices from user space. Some device
drivers, especially ones that are heavy on policy and light on performance requirements, are better off residing
in user land. This chapter also explains how the Linux process scheduler affects the response times of user
mode drivers.

Chapter 20, "More Devices and Drivers," takes a tour of a potpourri of driver families not covered thus far, such
as Error Detection And Correction (EDAC), FireWire, and ACPI.

Chapter 21, "Debugging Device Drivers," teaches about different types of debuggers that you can use to debug
kernel code. In this chapter, you also learn to use trace tools, kernel probes, crash-dump, and profilers. When
you develop a driver, be armed with the driver debugging skills that you learn in this chapter.

Chapter 22, "Maintenance and Delivery," provides perspective on the software development life cycle.

Chapter 23, "Shutting Down," takes you through a checklist of work items when you embark on Linux-enabling
a new device. The book ends by pondering What next?

Device drivers sometimes need to implement code snippets in assembly, so Appendix A, "Linux Assembly,"
takes a look at the different facets of assembly programming on Linux. Some device drivers on x86-based
systems depend directly or indirectly on the BIOS, so Appendix B, "Linux and the BIOS," teaches you how Linux
interacts with the BIOS. Appendix C, "Seq Files," describes seq files, a kernel helper interface introduced in the
2.6 kernel that device drivers can use to monitor and trend data points.

The book is generally organized according to device and bus complexity, coupled with practical reasons of
dependencies between chapters. So, we start off with basic device classes such as character, serial, and input.
Next, we look at simple serial buses such as I2C and SMBus. External I/O buses such as PCMCIA, PCI, and USB
follow. Video, audio, block, and network devices usually interface with the processor via these I/O buses, so we
look at them soon after. The next portions of the book are oriented toward embedded Linux and cover
technologies such as wireless networking and flash memory. User-space drivers are discussed toward the end of
the book.

Kernel Version

This book is generally up to date as of the 2.6.23/2.6.24 kernel versions. Most code listings in this book have
been tested on a 2.6.23 kernel. If you are using a later version, look at Linux websites such as lwn.net to learn
about the kernel changes since 2.6.23/24.

Book Website

I've set up a website at elinuxdd.com to provide updates, errata, and other information related to this book.

Conventions Used

Source code, function names, and shell commands are written like this. The shell prompt used is bash>.

Filename are written in italics, like this. Italics are also used to introduce new terms.

Some chapters modify original kernel source files while implementing code examples. To clearly point out the
changes, newly inserted code lines are prefixed with +, and any deleted code lines with -.

Sometimes, for simplicity, the book uses generic references. So if the text points you to the arch/your-arch/
directory, it should be translated, for example, to arch/x86/ if you are compiling the kernel for the x86
architecture. Similarly, any mention of the include/asm-your-arch/ directory should be read as include/asm-
arm/ if you are, for instance, building the kernel for the ARM architecture. The * symbol and X are occasionally
used as wildcard characters in filenames. So, if a chapter asks you to look at include/linux/time*.h, look at the

header files, time.h, timer.h, times.h, and timex.h residing in the include/linux/ directory. If a section talks
about /dev/input/eventX or /sys/devices/platform/i8042/serioX/, X is the interface number that the kernel
assigns to your device in the context of your system configuration.

The symbol is sometimes inserted between command or kernel output to attach explanations.

Simple regular expressions are occasionally used to compactly list function prototypes. For example, the section
"Direct Memory Access" in Chapter 10, "Peripheral Component Interconnect," refers to
pci_[map|unmap|dma_sync]_single() instead of explicitly citing pci_map_single(), pci_umap_single(), and
pci_dma_sync_single().

Several chapters refer you to user-space configuration files. For example, the section that describes the boot
process opens /etc/rc.sysinit, and the chapter that discusses Bluetooth refers to /etc/bluetooth/pin. The exact
names and locations of such files might, however, vary according to the Linux distribution you use.

Acknowledgments

First, I raise my hat to my editors at Prentice Hall: Debra Williams Cauley, Anne Goebel, and Keith Cline.
Without their supporting work, this book would not have materialized. I thank Mark Taub for his interest in this
project and for initiating it.

Several sources have contributed to my learning in the past decade: the many teammates with whom I worked
on Linux projects, the mighty kernel sources, mailing lists, and the Internet. All these have played a part in
helping me write this book.

Martin Streicher of Linux Magazine changed me from a full-time coder to a spare-time writer when he offered
me the magazine's "Gearheads" kernel column. I gratefully acknowledge the many lessons in technical writing
that I've learned from him.

I owe a special debt of gratitude to my technical reviewers. Vamsi Krishna patiently read through each chapter
of the manuscript. His numerous suggestions have made this a better book. Jim Lieb provided valuable
feedback on several chapters. Arnold Robbins reviewed the first few chapters and provided insightful comments.

Finally, I thank my parents and my wife for their love and support. And thanks to my baby daughter for
constantly reminding me to spend cycles on the book by her wobbly walk that bears an uncanny resemblance to
that of a penguin.

About the Author

Sreekrishnan Venkateswaran has a master's degree in computer science from the Indian Institute of
Technology, Kanpur, India. During the past 12 years that he has been working for IBM, he has ported Linux to
various embedded devices such as a wristwatch, handheld, music player, VoIP phone, pacemaker programmer,
and remote patient monitoring system. Sreekrishnan was a contributing editor and kernel columnist to the Linux
Magazine for more than 2 years. Currently, he manages the embedded solutions group at IBM India.

Chapter 1. Introduction

In This Chapter

Evolution

2

The GNU Copyleft

3

Kernel.org

4

Mailing Lists and
Forums

4

Linux Distributions
5

Looking at the Sources

6

Building the Kernel
10

Loadable Modules

12

Before Starting
14

Linux lures. It has the enticing aroma of an internationalist project where people of all
nationalities, creed, and gender collaborate. Free availability of source code and a well-understood
UNIX-like application programming environment have contributed to its runaway success. High-
quality support from experts available instantly over the Internet at no charge has also played a
major role in stitching together a huge Linux community.

Developers get incredibly excited about working on technologies where they have access to all the
sources because that lets them create innovative solutions. You can, for example, hack the
sources and customize Linux to boot in a few seconds on your device, a feat that is hard to achieve
with a proprietary operating system.

Evolution

Linux started as the hobby of a Finnish college student named Linus Torvalds in 1991, but quickly metamorphed
into an advanced operating system popular all over the planet. From its first release for the Intel 386 processor,
the kernel has gradually grown in complexity to support numerous architectures, multiprocessor hardware, and
high-performance clusters. The full list of supported CPUs is long, but some of the major supported
architectures are x86, IA64, ARM, PowerPC, Alpha, s390, MIPS, and SPARC. Linux has been ported to hundreds
of hardware platforms built around these processors. The kernel is continuously getting better, and the
evolution is progressing at a frantic pace.

Although it started life as a desktop-operating system, Linux has penetrated the embedded and enterprise
worlds and is touching our daily lives. When you push the buttons on your handheld, flip your remote to the
weather channel, or visit the hospital for a physical checkup, it's increasingly likely that some Linux code is
being set into motion to come to your service. Linux's free availability is helping its evolution as much as its
technical superiority. Whether it's an initiative to develop sub-$100 computers to enable the world's poor or
pricing pressure in the consumer electronics space, Linux is today's operating system of choice, because
proprietary operating systems sometimes cost more than the desired price of the computers themselves.

Chapter 1. Introduction

In This Chapter

Evolution

2

The GNU Copyleft

3

Kernel.org

4

Mailing Lists and
Forums

4

Linux Distributions
5

Looking at the Sources

6

Building the Kernel
10

Loadable Modules

12

Before Starting
14

Linux lures. It has the enticing aroma of an internationalist project where people of all
nationalities, creed, and gender collaborate. Free availability of source code and a well-understood
UNIX-like application programming environment have contributed to its runaway success. High-
quality support from experts available instantly over the Internet at no charge has also played a
major role in stitching together a huge Linux community.

Developers get incredibly excited about working on technologies where they have access to all the
sources because that lets them create innovative solutions. You can, for example, hack the
sources and customize Linux to boot in a few seconds on your device, a feat that is hard to achieve
with a proprietary operating system.

Evolution

Linux started as the hobby of a Finnish college student named Linus Torvalds in 1991, but quickly metamorphed
into an advanced operating system popular all over the planet. From its first release for the Intel 386 processor,
the kernel has gradually grown in complexity to support numerous architectures, multiprocessor hardware, and
high-performance clusters. The full list of supported CPUs is long, but some of the major supported
architectures are x86, IA64, ARM, PowerPC, Alpha, s390, MIPS, and SPARC. Linux has been ported to hundreds
of hardware platforms built around these processors. The kernel is continuously getting better, and the
evolution is progressing at a frantic pace.

Although it started life as a desktop-operating system, Linux has penetrated the embedded and enterprise
worlds and is touching our daily lives. When you push the buttons on your handheld, flip your remote to the
weather channel, or visit the hospital for a physical checkup, it's increasingly likely that some Linux code is
being set into motion to come to your service. Linux's free availability is helping its evolution as much as its
technical superiority. Whether it's an initiative to develop sub-$100 computers to enable the world's poor or
pricing pressure in the consumer electronics space, Linux is today's operating system of choice, because
proprietary operating systems sometimes cost more than the desired price of the computers themselves.

The GNU Copyleft

The GNU project (GNU is a recursive acronym for GNU's Not UNIX) predates Linux and was launched to develop
a free UNIX-like operating system. A complete GNU operating system is powered by the Linux kernel but also
contains components such as libraries, compilers, and utilities. A Linux-based computer is hence more
accurately a GNU/Linux system. All components of a GNU/Linux system are built using free software.

There are different flavors of free software. One such flavor is called public domain software. Software released
under the public domain is not copyrighted, and no restrictions are imposed on its usage. You can use it for
free, make changes to it, and even restrict the distribution of your modified sources. As you can see, the "no
restrictions" clause introduces the power to introduce restrictions downstream.

The Free Software Foundation, the primary sponsor of the GNU project, created the GNU Public License (GPL),
also called a copyleft, to prevent the possibility of middlemen transforming free software into proprietary
software. Those who modify copylefted software are required to also copyleft their derived work. The Linux
kernel and most components of a GNU system such as the GNU Compiler Collection (GCC) are released under
the GPL. So, if you make modifications to the kernel, you have to return your changes back to the community.
Essentially, you have to pass on the rights vested on you by the copyleft.

The Linux kernel is licensed under GPL version 2. There is an ongoing debate in the kernel community
about whether the kernel should move to GPLv3, the latest version of the GPL. The current tide seems to
be against relicensing the kernel to adopt GPLv3.

Linux applications that invoke system calls to access kernel services are not considered derived work, however,
and won't be restricted by the GPL. Similarly, libraries are covered by a less-stringent license called the GNU
Lesser General Public License (LGPL). Proprietary software is permitted to dynamically link with libraries
released under the LGPL.

Kernel.org

The primary repository of Linux kernel sources is www.kernel.org. The website contains all released kernel
versions. A number of websites around the world mirror the contents of kernel.org.

In addition to released kernels, kernel.org also hosts a set of patches maintained by front-line developers that
serve as a test bed for future stable releases. A patch is a text file containing source code differences between a
development tree and the original snapshot from which the developer started work. A popular patch-set
available at kernel.org is the -mm patch periodically released by Andrew Morton, the lead maintainer of the Linux
kernel. You will find experimental features in the -mm patch that have not yet made it to the mainline source

tree. Another patch-set periodically released on kernel.org is the –rt (real time) patch maintained by Ingo

Molnar. Several –rt features have been merged into the mainline kernel.

Mailing Lists and Forums

The Linux Kernel Mailing List (LKML) is the forum where developers debate on design issues and decide on
future features. You can find a real-time feed of the mailing list at www.lkml.org. The kernel now contains
several million lines of code contributed by thousands of developers all over the world. LKML acts as the thread
that ties all these developers together.

LKML is not for general Linux questions. The basic rule is to post only questions pertaining to kernel
development that have not been previously answered in the mailing list or in popularly available documentation.
If the C compiler crashed while compiling your Linux application, you should post that question elsewhere.

Discussions in some LKML threads are more interesting than a New York Times bestseller. Spend a few hours
browsing LKML archives to get an insight into the philosophy behind the Linux kernel.

Most subprojects in the kernel have their own specific mailing lists. So, subscribe to the linux-mtd mailing list if
you are developing a Linux flash memory driver or initiate a thread in the linux-usb-devel mailing list if you
think you have found a bug in the USB mass storage driver. We refer to relevant mailing lists at the end of
several chapters.

In various forums, kernel experts from around the globe gather under one roof. The Linux Symposium held
annually at Ottawa, Canada, is one such conference. Others include the Linux Kongress that takes place in
Germany and linux.conf.au organized in Australia. There are also numerous commercial Linux forums where
industry leaders meet and share their insights. An example is the LinuxWorld Conference and Expo held yearly
in North America.

For the latest news from the developer community, check out http://lwn.net/. If you want to glean the
highlights of the latest kernel release without many cryptic references to kernel internals, this might be a good
place to look. You can find another web community that discusses current kernel topics at
http://kerneltrap.org/.

With every major kernel release, you will see sweeping improvements, be it kernel preemption, lock-free
readers, new services to offload work from interrupt handlers, or support for new architectures. Stay in constant
touch with the mailing lists, websites, and forums, to keep yourself in the thick of things.

http://lwn.net/
http://kerneltrap.org/

Linux Distributions

Because a GNU/Linux system consists of numerous utilities, programs, libraries, and tools, in addition to the
kernel, it's a daunting task to acquire and correctly install all the pieces. Linux distributions come to the rescue
by classifying the components and bundling them into packages in an orderly fashion. A typical distribution
contains thousands of ready-made packages. You need not worry about downloading the right program versions
or fixing dependency issues.

Because packaging is a way to make a lot of money within the ambit of the GNU license, there are several Linux
distributions in the market today. Distributions such as Red Hat/Fedora, Debian, SuSE, Slackware, Gentoo,
Ubuntu, and Mandriva are primarily meant for the desktop user. MontaVista, TimeSys, and Wind River
distributions are geared toward embedded development. Embedded Linux distributions also include a
dynamically configurable compact application-set to tailor the system's footprint to suit resource constraints.

In addition to packaging, distributions offer value-adds for kernel development. Many projects start
development based on kernels supplied by a distribution rather than a kernel released officially at kernel.org.
Reasons for this include the following:

Linux distributions that comply with standards relevant to your device's industry domain are often better
starting points for development. Special Interest Groups (SIGs) have taken shape to promote Linux in
various domains. The Consumer Electronics Linux Forum (CELF), hosted at www.celinuxforum.org, focuses
on using Linux on consumer electronics devices. The CELF specification defines the support level of
features such as scalable footprint, fast boot, execute in place, and power management, desirable on
consumer electronics devices. The efforts of the Open Source Development Lab (OSDL), hosted at
www.osdl.org, centers on characteristics distinct to carrier-grade devices. OSDL's Carrier Grade Linux
(CGL) specification codifies value additions such as reliability, high availability, runtime patching, and
enhanced error recovery, important in the telecom space.

The mainline kernel might not include full support for the embedded controller of your choice even if the
controller is built around a kernel-supported CPU core. A Linux distribution might offer device drivers for
all the peripheral modules inside the controller, however.

Debugging tools that you plan to use during kernel development may not be part of the mainline kernel.
For example, the kernel has no built-in debugger support. If you want to use a kernel debugger during
development, you have to separately download and apply the corresponding patches. You have to endure
more hassles if tested patches are not readily available for your kernel version. Distributions prepackage
many useful debugging features, so you can start using them right away.

Some distributions provide legal indemnification so that your company won't be liable for lawsuits arising
out of kernel bugs.

Distributions tend to do a lot of testing on the kernels they release.[1]

[1] Because this necessitates freezing the kernel to a version that is not the latest, distribution-supplied kernels often contain back-

ports of some features released in later official kernels.

You can purchase service and support packages from distribution vendors for kernels that they supply.

Looking at the Sources

Before we start wetting our toes in the kernel, let's download the sources, learn to apply a patch, and look at
the layout of the code tree.

First, go to www.kernel.org and get the latest stable tree. The sources are archived as tar files compressed in
both gzip (.gz) and bzip2 (.bz2) formats. Obtain the source files by uncompressing and untarring the zipped tar
ball. In the following commands, replace X.Y.Z with the latest kernel version, such as 2.6.23:

bash> cd /usr/src

bash> wget www.kernel.org/pub/linux/kernel/vX.Y/linux-X.Y.Z.tar.bz2

...

bash> tar xvfj linux-X.Y.Z.tar.bz2

Now that you have the unpacked source tree in /usr/src/linux-X.Y.Z/ on your system, let's enable some
experimental test features into the tree by getting a corresponding -mm (Andrew Morton) patch:

Code View:
bash> cd /usr/src

bash> wget www.kernel.org/pub/linux/kernel/people/akpm/patches/X.Y/X.Y.Z/X.Y.Z-

mm2/X.Y.Z-mm2.bz2

Apply the patch:

bash> cd /usr/src/linux-X.Y.Z/

bash> bzip2 -dc ../X.Y.Z-mm2.bz2 | patch -p1

The -dc option asks bzip2 to uncompress the specified files to standard output. This is piped to the patch utility,
which applies changes to each modified file in the code tree.

If you need to apply multiple patches, do so in the right sequence. To generate a kernel enabled with the
X.Y.Z-aa-bb patch, first download the full X.Y.Z kernel sources, apply the X.Y.Z-aa patch, and then apply the
X.Y.Z-aa-bb patch.

Patch Submission

To generate a kernel patch out of your changes, use the diff command:

Code View:
bash> diff –Nur /path/to/original/kernel /path/to/your/kernel > changes.patch

Note that the original kernel precedes the changed version in the diff-ing order. As per 2.6 kernel

patch submission conventions, you also need to add a line at the end of the patch that says this:

Signed-off-by: Name <Email>

With this, you certify that you wrote the code yourself and that you have the right to contribute it.

You are now all set to post your patch to the relevant mailing list, such as LKML.

Look at Documentation/SubmittingPatches for a guide on creating patches for submission and at
Documentation/applying-patches.txt for a tutorial on applying patches.

Now that your patched /usr/src/linux-X.Y.Z/ tree is ready for use, let's take a moment to observe how the
source layout is organized. Go to the root of the source tree and list its contents. The directories branching out
from the root of the code tree are as follows:

arch. This directory contains architecture-specific files. You will see separate subdirectories under arch/
for processors such as ARM, Motorola 68K, s390, MIPS, Alpha, SPARC, and IA64.

1.

block. This primarily contains the implementation of I/O scheduling algorithms for block storage devices.2.

crypto. This directory implements cipher operations and the cryptographic API, used, for example, by
some WiFi device drivers for implementing encryption algorithms.

3.

Documentation. This directory has brief descriptions of various kernel subsystems. This can be your first
stop to dig for answers to kernel-related queries.

4.

drivers. Device drivers for numerous device classes and peripheral controllers reside in this directory. The
device classes include character, serial, Inter-Integrated Circuit (I2C), Personal Computer Memory Card
International Association (PCMCIA), Peripheral Component Interconnect (PCI), Universal Serial Bus (USB),
video, audio, block, Integrated Drive Electronics (IDE), Small Computer System Interface (SCSI), CD-
ROM, network adapters, Asynchronous Transfer Mode (ATM), Bluetooth, and Memory Technology Devices
(MTD). Each of these classes live in a separate subdirectory under drivers/. You will, for instance, find
PCMCIA driver sources inside the drivers/pcmcia/ directory and MTD drivers inside the drivers/mtd/
directory. The subdirectories present under drivers/ constitute the primary subjects for this book.

5.

6.

fs. This directory contains the implementation of filesystems such as EXT3, EXT4, reiserfs, FAT, VFAT,
sysfs, procfs, isofs, JFFS2, XFS, NTFS, and NFS.

6.

include. Kernel header files live here. Subdirectories prefixed with asm contain headers specific to the
particular architecture. So the directory include/asm-x86/ contains header files pertaining to the x86
architecture, whereas include/asm-arm/ holds headers for the ARM architecture.

7.

init. This directory contains high-level initialization and startup code.8.

ipc. This contains support for Inter-Process Communication (IPC) mechanisms such as message queues,
semaphores, and shared memory.

9.

kernel. The architecture-independent portions of the base kernel can be found here.10.

lib. Library routines such as generic kernel object (kobject) handlers and Cyclic Redundancy Code (CRC)
computation functions stay here.

11.

mm. The memory management implementation lives here.12.

net. Networking protocols reside under this directory. Protocols implemented include Internet Protocol
version 4 (IPv4), IPv6, Internetwork Protocol eXchange (IPX), Bluetooth, ATM, Infrared, Link Access
Procedure Balanced (LAPB), and Logical Link Control (LLC).

13.

scripts. Scripts used during kernel build reside here.14.

security. This directory contains the framework for security.15.

sound. The Linux audio subsystem is based in this directory.16.

usr. This currently contains the initramfs implementation.17.

Unified x86 Architecture Tree

Starting with the 2.6.24 kernel release, the i386 and the x86_64 (the 64-bit cousin of the 32-bit
i386) architecture-specific trees have been unified into a common arch/x86/ directory. If you are
using a pre-2.6.24 kernel, replace references to arch/x86/ in this book with arch/i386/. Similarly,
change any occurrence of include/asm-x86/ to include/asm-i386/. Some filenames within these
directories have also changed.

Wading through these large directories in search of symbols and other code elements can be a tough task. The
tools in Table 1.1 are worthy aids as you navigate the kernel source tree.

Table 1.1. Tools That Aid Source Tree Navigation

Tool Description

lxr The Linux cross-referencer, lxr, downloadable from
http://lxr.sourceforge.net/, lets you traverse the kernel tree using
a web browser by providing hyperlinks to connect kernel symbols
with their definitions and uses.

cscope cscope, hosted at http://cscope.sourceforge.net/, builds a symbolic
database from all files in a source tree, so you can quickly locate
declarations, definitions, regular expressions, and more. Cscope
might not be as versatile as lxr, but it gives you the flexibility of
using the search features of your favorite text editor rather than a
browser. From the root of your kernel tree, issue the cscope -qkRv

command to build the cross-reference database. The -q option

generates more indexing information, so searches become
noticeably faster at the expense of extra initial startup time. The –k

option requests cscope to tune its behavior to suit kernel sources,
-R asks for recursive subdirectory traversal, and –v appeals for
verbose messages. You can obtain the detailed invocation syntax
from the man page.

ctags/etags The ctags utility, downloadable from http://ctags.sourceforge.net/,
generates cross-reference tags for many languages, so you can
locate symbol and function definitions in a source tree from within
an editor such as vi. Do make tags from the root of your kernel

tree to ctag all source files. The etags utility generates similar
indexing information understood by the emacs editor. Issue make

TAGS to etag your kernel source files.

Utilities Tools such as grep, find, sdiff, strace, od, dd, make, tar, file, and
objdump.

GCC options You may ask GCC to generate preprocessed source code using the
-E option. Preprocessed code contains header file expansions and
reduces the need to hop-skip through nested include files to
expand multiple levels of macros. Here is a usage example to
preprocess drivers/char/mydrv.c and produce expanded output in
mydrv.i:
bash> gcc -E drivers/char/mydrv.c -D__KERNEL__ -Iinclude

-Iinclude/asm-x86/mach-default > mydrv.i

The include paths specified using the -I option depend on the

header files included by your code.

GCC generates assembly listings if you use the -S option. To
generate an assembly listing in mydrv.s for drivers/char/mydrv.c,
do this:
bash> gcc -S drivers/char/mydrv.c -D__KERNEL__ -Iinclude

-Ianother/include/path

http://lxr.sourceforge.net/
http://cscope.sourceforge.net/
http://ctags.sourceforge.net/

Building the Kernel

Now that you have an idea of the source tree layout, let's make a trivial code change, compile, and get it
running. Go to the top-level init/ directory and venture to make a small code change to the initialization file
main.c. Add a print statement to the beginning of the function, start_kernel(), declaring your love for polar

bears:

asmlinkage void __init start_kernel(void)
{

 char *command_line;

 extern struct kernel_param __start___param[],
 __stop___param[];

+ printk("Penguins are cute, but so are polar bears\n");

 /* ... */

 rest_init();
}

You're now ready to kick off the build process. Go to the root of the source tree and start with a clean slate:

bash> cd /usr/src/linux-X.Y.Z/

bash> make clean

Configure the kernel. This is when you pick and choose the pieces that form part of the operating system. You
may specify whether each desired component is to be statically or dynamically linked to the kernel:

bash> make menuconfig

menuconfig is a text interface to the kernel configuration menu. Use make xconfig to get a graphical interface.
The configuration information that you choose is saved in a file named .config in the root of your source tree. If
you don't want to weave the configuration from scratch, use the file arch/your-arch/defconfig (or arch/your-
arch/configs/your-machine_defconfig if there are several supported platforms for your architecture) as the
starting point. So, if you are compiling the kernel for the 32-bit x86 architecture, do this:

bash> cp arch/x86/configs/i386_defconfig .config

Compile the kernel and generate a compressed boot image:

bash> make bzImage

The kernel image is produced in arch/x86/boot/bzImage. Update your boot partition:

bash> cp arch/x86/boot/bzImage /boot/vmlinuz

You might need to alert your bootloader about the arrival of the new boot image. If you are using the GRUB
bootloader, it figures this out automatically; but if you are using LILO, raise a flag:

bash> /sbin/lilo

Added linux *

Finally, restart the machine and boot in to your new kernel:

bash> reboot

The first message in the boot sequence launches your campaign for polar bears.

Loadable Modules

Because Linux runs on a variety of architectures and supports zillions of I/O devices, it's not feasible to
permanently compile support for all possible devices into the base kernel. Distributions generally package a
minimal kernel image and supply the rest of the functionalities in the form of kernel modules. During runtime,
the necessary modules are dynamically loaded on demand.

To generate modules, go to the root of your kernel source tree and build:

bash> cd /usr/src/linux-X.Y.Z/

bash> make modules

To install the produced modules, do this:

bash> make modules_install

This creates a kernel source directory structure under /lib/modules/X.Y.Z/kernel/ and populates it with loadable
module objects. This also invokes the depmod utility that generates module dependencies in the file
/lib/modules/X.Y.Z/modules.dep.

The following utilities are available to manipulate modules: insmod, rmmod, lsmod, modprobe, modinfo, and
depmod. The first two are utilities to insert and remove modules, whereas lsmod lists the modules that are
currently loaded. modprobe is a cleverer version of insmod that also inserts dependent modules after examining
the contents of /lib/modules/X.Y.Z/modules.dep. For example, assume that you need to mount a Virtual File
Allocation Table (VFAT) partition present on a USB pen drive. Use modprobe to load the VFAT filesystem
driver:[2]

[2] This example assumes that the module is not autoloaded by the kernel. If you enable Automatic Kernel Module Loading (CONFIG_KMOD)

during configuration, the kernel automatically runs modprobe with the appropriate arguments when it detects missing subsystems. You'll learn

about module autoloading in Chapter 4, "Laying the Groundwork."

bash> modprobe vfat

bash> lsmod

Module Size Used by
vfat 14208 0
fat 49052 1 vfat

nls_base 9728 2 vfat, fat

As you see in the lsmod output, modprobe inserts three modules rather than one. modprobe first figures out
that it has to insert /lib/modules/X.Y.Z/kernel/fs/vfat/vfat.ko. But when it peeks into the dependency file
/lib/modules/X.Y.Z/modules.dep, it finds the following line and realizes that it has to load two other dependent
modules first:

/lib/modules/X.Y.Z/kernel/fs/vfat/vfat.ko:

/lib/modules/X.Y.Z/kernel/fs/fat/fat.ko

/lib/modules/X.Y.Z/kernel/fs/nls/nls_base.ko

It then proceeds to load fat.ko and nls_base.ko before attempting to insert vfat.ko, thus automatically loading
all the modules you need to mount your VFAT partition.

Use the modinfo utility to extract verbose information about the modules you just loaded:

bash> modinfo vfat

filename: /lib/modules/X.Y.Z/kernel/fs/vfat/vfat.ko

license: GPL

description: VFAT filesystem support
...

depends: fat, nls_base

To compile a kernel driver as a module, toggle the corresponding menu choice button to <M> while configuring

the kernel. Most of the device driver examples in this book are implemented as kernel modules. To build a
module mymodule.ko from its source file mymodule.c, create a one-line Makefile and execute it as follows:

bash> cd /path/to/module-source/

bash> echo "obj-m += mymodule.ko" > Makefile

bash> make –C /path/to/kernel-sources/ M=`pwd` modules

make: Entering directory '/path/to/kernel-sources'
 Building modules, stage 2.

 MODPOST
 CC /path/to/module-sources/mymodule.mod.o

 LD [M] /path/to/module-sources/mymodule.ko
make: Leaving directory '/path/to/kernel-sources'

bash> insmod ./mymodule.ko

Kernel modules render the kernel footprint smaller and the develop-build-test cycle shorter. You only need to
recompile the particular module and reinsert it to effect a change. We look at module debugging techniques in
Chapter 21, "Debugging Device Drivers."

There are also some downsides if you choose to design your driver as a kernel module. Unlike built-in drivers,
modules cannot reserve resources during boot time, when success is more or less guaranteed.

Before Starting

Linux has trekked many a terrain and is now state of the art, so you can use it as a vehicle to understand
operating system concepts, processor architectures, and even industry domains. When you learn a technique
used by a device driver subsystem, look one level deeper and probe the underlying reasons behind that design
choice.

Wherever not explicitly stated, the text assumes the 32-bit x86 architecture. The book is, however, mindful of
the fact that you are more likely to write device drivers for embedded devices than for conventional PC-
compatible systems. The chapter on serial drivers, for example, examines two devices: a touch controller on a
PC derivative and a UART on a cell phone. Or the chapter on I2C device drivers looks at an EEPROM on a PC
system and a Real Time Clock on an embedded device. The book also teaches you about the core infrastructure
that the kernel provides for most driver classes, which hides architecture dependencies from device drivers.

Device driver debugging techniques are discussed near the end of the book in Chapter 21, so you might find it
worthwhile to forward to that chapter as you develop drivers while reading the book.

This book is based on the 2.6 kernel, which has substantial changes across the board from 2.4, touching all
major subsystems. Hopefully, you have installed a 2.6-based Linux on your system by now and started
experimenting with the kernel sources. Each chapter takes the liberty of profusely pointing you to relevant
kernel source files for two main reasons:

Because each driver subsystem in the kernel is tens of thousands of lines long, it's only possible to take a
relatively simplistic view in a book. Looking at real drivers in the sources along with the example code in
this book will give you the bigger picture.

1.

Before developing a driver, it's a good idea to zero in on an existing driver in the drivers/ directory that is
similar to your requirement and make that your starting point.

2.

So, to derive maximum benefit from this book, familiarize yourself with the kernel by frequently browsing the
source tree and staring hard at the code. And in tandem with your code explorations, follow the goings-on in the
kernel mailing list.

Chapter 2. A Peek Inside the Kernel

In This Chapter

Booting Up

18

Kernel Mode and User Mode

30

Process Context and Interrupt
Context

30

Kernel Timers
31

Concurrency in the Kernel
39

Process Filesystem

49

Allocating Memory
49

Looking at the Sources

52

Before we start our journey into the mystical world of Linux device drivers, let's familiarize
ourselves with some basic kernel concepts by looking at several kernel regions through the lens of
a driver developer. We learn about kernel timers, synchronization mechanisms, and memory
allocation. But let's start our expedition by getting a view from the top; let's skim through boot
messages emitted by the kernel and hit the breaks whenever something looks interesting.

Booting Up

Figure 2.1 shows the Linux boot sequence on an x86-based computer. Linux boot on x86-based hardware is set
into motion when the BIOS loads the Master Boot Record (MBR) from the boot device. Code resident in the MBR
looks at the partition table and reads a Linux bootloader such as GRUB, LILO, or SYSLINUX from the active

partition. The final stage of the bootloader loads the compressed kernel image and passes control to it. The
kernel uncompresses itself and turns on the ignition.

Figure 2.1. Linux boot sequence on x86-based hardware.

x86-based processors have two modes of operation, real mode and protected mode. In real mode, you can
access only the first 1MB of memory, that too without any protection. Protected mode is sophisticated and lets
you tap into many advanced features of the processor such as paging. The CPU has to pass through real mode
en route to protected mode. This road is a one-way street, however. You can't switch back to real mode from
protected mode.

The first-level kernel initializations are done in real mode assembly. Subsequent startup is performed in
protected mode by the function start_kernel() defined in init/main.c, the source file you modified in the

previous chapter. start_kernel() begins by initializing the CPU subsystem. Memory and process management

are put in place soon after. Peripheral buses and I/O devices are started next. As the last step in the boot
sequence, the init program, the parent of all Linux processes, is invoked. Init executes user-space scripts that
start necessary kernel services. It finally spawns terminals on consoles and displays the login prompt.

Each following section header is a message from Figure 2.2 generated during boot progression on an x86-based

laptop. The semantics and the messages may change if you are booting the kernel on other architectures. If
some explanations in this section sound rather cryptic, don't worry; the intent here is only to give you a picture
from 100 feet above and to let you savor a first taste of the kernel's flavor. Many concepts mentioned here in
passing are covered in depth later on.

Figure 2.2. Kernel boot messages.

Code View:
Linux version 2.6.23.1y (root@localhost.localdomain) (gcc version 4.1.1 20061011 (Red

Hat 4.1.1-30)) #7 SMP PREEMPT Thu Nov 1 11:39:30 IST 2007

BIOS-provided physical RAM map:

 BIOS-e820: 0000000000000000 - 000000000009f000 (usable)

 BIOS-e820: 000000000009f000 - 00000000000a0000 (reserved)

 ...

758MB LOWMEM available.

...

Kernel command line: ro root=/dev/hda1

...

Console: colour VGA+ 80x25

...

Calibrating delay using timer specific routine.. 1197.46 BogoMIPS (lpj=2394935)

...

CPU: L1 I cache: 32K, L1 D cache: 32K

CPU: L2 cache: 1024K

...

Checking 'hlt' instruction... OK.

...

Setting up standard PCI resources

...

NET: Registered protocol family 2

IP route cache hash table entries: 32768 (order: 5, 131072 bytes)

TCP established hash table entries: 131072 (order: 9, 2097152 bytes)

...

checking if image is initramfs... it is

Freeing initrd memory: 387k freed

...

io scheduler noop registered

io scheduler anticipatory registered (default)

...

00:0a: ttyS0 at I/O 0x3f8 (irq = 4) is a NS16550A

...

Uniform Multi-Platform E-IDE driver Revision: 7.00alpha2

ide: Assuming 33MHz system bus speed for PIO modes; override with idebus=xx

ICH4: IDE controller at PCI slot 0000:00:1f.1

Probing IDE interface ide0...

hda: HTS541010G9AT00, ATA DISK drive

hdc: HL-DT-STCD-RW/DVD DRIVE GCC-4241N, ATAPI CD/DVD-ROM drive

...

serio: i8042 KBD port at 0x60,0x64 irq 1

mice: PS/2 mouse device common for all mice

...

Synaptics Touchpad, model: 1, fw: 5.9, id: 0x2c6ab1, caps: 0x884793/0x0

...

agpgart: Detected an Intel 855GM Chipset.

...

Intel(R) PRO/1000 Network Driver - version 7.3.20-k2

...

ehci_hcd 0000:00:1d.7: EHCI Host Controller

...

Yenta: CardBus bridge found at 0000:02:00.0 [1014:0560]

...

Non-volatile memory driver v1.2

...

kjournald starting. Commit interval 5 seconds

EXT3 FS on hda2, internal journal

EXT3-fs: mounted filesystem with ordered data mode.

...

INIT: version 2.85 booting

...

BIOS-Provided Physical RAM Map

The kernel assembles the system memory map from the BIOS, and this is one of the first boot messages you
will see:

BIOS-provided physical RAM map:

BIOS-e820: 0000000000000000 - 000000000009f000 (usable)
...

BIOS-e820: 00000000ff800000 - 0000000100000000 (reserved)

Real mode initialization code uses the BIOS int 0x15 service with function number 0xe820(hence the string

BIOS-e820 in the preceding message) to obtain the system memory map. The memory map indicates reserved
and usable memory ranges, which is subsequently used by the kernel to create its free memory pool. We
discuss more on the BIOS-supplied memory map in the section "Real Mode Calls" in Appendix B, "Linux and the
BIOS."

758MB LOWMEM Available

The normally addressable kernel memory region (< 896MB) is called low memory. The kernel memory allocator,
kmalloc(), returns memory from this region. Memory beyond 896MB (called high memory) can be accessed
only using special mappings.

During boot, the kernel calculates and displays the total pages present in these memory zones. We take a
deeper look at memory zones later in this chapter.

Kernel Command Line: ro root=/dev/hda1

Linux bootloaders usually pass a command line to the kernel. Arguments in the command line are similar to the
argv[] list passed to the main() function in C programs, except that they are passed to the kernel instead. You
may add command-line arguments to the bootloader configuration file or supply them from the bootloader
prompt at runtime.[1] If you are using the GRUB bootloader, the configuration file is either /boot/grub/grub.conf
or /boot/grub/menu.lst depending on your distribution. If you are a LILO user, the configuration file is
/etc/lilo.conf. An example grub.conf file (with comments added) is listed here. You can figure out the genesis of
the preceding boot message if you look at the line following title kernel 2.6.23:

[1] Bootloaders on embedded devices are usually "slim" and do not support configuration files or equivalent mechanisms. Because of this,
many non-x86 architectures support a kernel configuration option called CONFIG_CMDLINE that you can use to supply the kernel command line

at build time.

default 0 #Boot the 2.6.23 kernel by default

timeout 5 #5 second to alter boot order or parameters

title kernel 2.6.23 #Boot Option 1
 #The boot image resides in the first partition of the first disk

 #under the /boot/ directory and is named vmlinuz-2.6.23. 'ro'

 #indicates that the root partition should be mounted read-only.
 kernel (hd0,0)/boot/vmlinuz-2.6.23 ro root=/dev/hda1

 #Look under section "Freeing initrd memory:387k freed"

 initrd (hd0,0)/boot/initrd

#...

Command-line arguments affect the code path traversed during boot. As a simple example, assume that the
command-line argument of interest is called bootmode. If this parameter is set to 1, you would like to print

some debug messages during boot and switch to a runlevel of 3 at the end of the boot. (Wait until the boot

messages are printed out by the init process to learn the semantics of runlevels.) If bootmode is instead set to
0, you would prefer the boot to be relatively laconic, and the runlevel set to 2. Because you are already familiar

with init/main.c, let's add the following modification to it:

Code View:
static unsigned int bootmode = 1;

static int __init
is_bootmode_setup(char *str)

{
 get_option(&str, &bootmode);

 return 1;
}

/* Handle parameter "bootmode=" */
__setup("bootmode=", is_bootmode_setup);

if (bootmode) {

 /* Print verbose output */
 /* ... */

}

/* ... */

/* If bootmode is 1, choose an init runlevel of 3, else

 switch to a run level of 2 */

if (bootmode) {
 argv_init[++args] = "3";

} else {

 argv_init[++args] = "2";

}

/* ... */

Rebuild the kernel as you did earlier and try out the change. We discuss more about kernel command-line
arguments in the section "Memory Layout" in Chapter 18, "Embedding Linux."

Calibrating Delay...1197.46 BogoMIPS (lpj=2394935)

During boot, the kernel calculates the number of times the processor can execute an internal delay loop in one
jiffy, which is the time interval between two consecutive ticks of the system timer. As you would expect, the
calculation has to be calibrated to the processing speed of your CPU. The result of this calibration is stored in a
kernel variable called loops_per_jiffy. One place where the kernel makes use of loops_per_jiffy is when a
device driver desires to delay execution for small durations in the order of microseconds.

To understand the delay-loop calibration code, let's take a peek inside calibrate_delay(), defined in
init/calibrate.c. This function cleverly derives floating-point precision using the integer kernel. The following
snippet (with some comments added) shows the initial portion of the function that carves out a coarse value for
loops_per_jiffy:

loops_per_jiffy = (1 << 12); /* Initial approximation = 4096 */

printk(KERN_DEBUG "Calibrating delay loop... ");

while ((loops_per_jiffy <<= 1) != 0) {
ticks = jiffies; /* As you will find out in the section, "Kernel

 Timers," the jiffies variable contains the

 number of timer ticks since the kernel
 started, and is incremented in the timer

 interrupt handler */

 while (ticks == jiffies); /* Wait until the start

 of the next jiffy */
 ticks = jiffies;

 /* Delay */
 __delay(loops_per_jiffy);

 /* Did the wait outlast the current jiffy? Continue if
 it didn't */

 ticks = jiffies - ticks;
 if (ticks) break;

}

loops_per_jiffy >>= 1; /* This fixes the most significant bit and is
 the lower-bound of loops_per_jiffy */

The preceding code begins by assuming that loops_per_jiffy is greater than 4096, which translates to a
processor speed of roughly one million instructions per second (MIPS). It then waits for a fresh jiffy to start and
executes the delay loop, __delay(loops_per_jiffy). If the delay loop outlasts the jiffy, the previous value of

loops_per_jiffy (obtained by bitwise right-shifting it by one) fixes its most significant bit (MSB). Otherwise,

the function continues by checking whether it will obtain the MSB by bitwise left-shifting loops_per_jiffy.
When the kernel thus figures out the MSB of loops_per_jiffy, it works on the lower-order bits and fine-tunes

its precision as follows:

loopbit = loops_per_jiffy;

/* Gradually work on the lower-order bits */
while (lps_precision-- && (loopbit >>= 1)) {

 loops_per_jiffy |= loopbit;

 ticks = jiffies;

 while (ticks == jiffies); /* Wait until the start
 of the next jiffy */

ticks = jiffies;

 /* Delay */

 __delay(loops_per_jiffy);

 if (jiffies != ticks) /* longer than 1 tick */

 loops_per_jiffy &= ~loopbit;

}

The preceding snippet figures out the exact combination of the lower bits of loops_per_jiffy when the delay

loop crosses a jiffy boundary. This calibrated value is used to derive an unscientific measure of the processor
speed, known as BogoMIPS. You can use the BogoMIPS rating as a relative measurement of how fast a CPU can
run. On a 1.6GHz Pentium M-based laptop, the delay-loop calibration yielded a value of 2394935 for

loops_per_jiffy as announced by the preceding boot message. The BogoMIPS value is obtained as follows:

BogoMIPS = loops_per_jiffy * Number of jiffies in 1 second * Number of
instructions consumed by the internal delay loop in units of 1 million

 = (2394935 * HZ * 2) / (1 million)

 = (2394935 * 250 * 2) / (1000000)

 = 1197.46 (as displayed in the preceding boot message)

We further discuss jiffies, HZ, and loops_per_jiffy in the section "Kernel Timers" later in this chapter.

Checking HLT Instruction

Because the Linux kernel is supported on a variety of hardware platforms, the boot code checks for
architecture-dependent bugs. Verifying the sanity of the halt (HLT) instruction is one such check.

The HLT instruction supported by x86 processors puts the CPU into a low-power sleep mode that continues until
the next hardware interrupt occurs. The kernel uses the HLT instruction when it wants to put the CPU in the idle
state (see function cpu_idle() defined in arch/x86/kernel/process_32.c).

For problematic CPUs, the no-hlt kernel command-line argument can be used to disable the HLT instruction. If
no-hlt is turned on, the kernel busy-waits while it's idle, rather than keep the CPU cool by putting it in the HLT

state.

The preceding boot message is generated when the startup code in init/main.c calls check_bugs() defined in

include/asm-your-arch/bugs.h.

NET: Registered Protocol Family 2

The Linux socket layer is a uniform interface through which user applications access various networking
protocols. Each protocol registers itself with the socket layer using a unique family number (defined in
include/linux/socket.h) assigned to it. Family 2 in the preceding message stands for AF_INET (Internet Protocol).

Another registered protocol family often found in boot messages is AF_NETLINK (Family 16). Netlink sockets
offer a method to communicate between user processes and the kernel. Functionalities accomplished via netlink
sockets include accessing the routing table and the Address Resolution Protocol (ARP) table (see
include/linux/netlink.h for the full usage list). Netlink sockets are more suitable than system calls to accomplish
such tasks because they are asynchronous, simpler to implement, and dynamically linkable.

Another protocol family commonly enabled in the kernel is AF_UNIX or UNIX-domain sockets. Programs such as

X Windows use them for interprocess communication on the same system.

Freeing Initrd Memory: 387k Freed

Initrd is a memory-resident virtual disk image loaded by the bootloader. It's mounted as the initial root
filesystem after the kernel boots, to hold additional dynamically loadable modules required to mount the disk
partition that holds the actual root filesystem. Because the kernel runs on different hardware platforms that use
diverse storage controllers, it's not feasible for distributions to enable device drivers for all possible disk drives
in the base kernel image. Drivers specific to your system's storage device are packed inside initrd and loaded
after the kernel boots, but before the root filesystem is mounted. To create an initrd image, use the mkinitrd

command.

The 2.6 kernel includes a feature called initramfs that bring several benefits over initrd. Whereas the latter
emulates a disk (hence called initramdisk or initrd) and suffers the overheads associated with the Linux block
I/O subsystem such as caching, the former essentially gets the cache itself mounted like a filesystem (hence
called initramfs).

Initramfs, like the page cache over which it's built, grows and shrinks dynamically unlike initrd and, hence,
reduces memory wastage. Also, unlike initrd, which requires you to include the associated filesystem driver
(e.g., EXT2 drivers if you have an EXT2 filesystem on your initrd), initramfs needs no filesystem support. The
initramfs code is tiny because it's just a small layer on top of the page cache.

You can pack your initial root filesystem into a compressed cpio archive[2] and pass it to the kernel command
line using the initrd= argument or build it as part of the kernel image using the INITRAMFS_SOURCE menu
option during kernel configuration. With the latter, you may either provide the filename of a cpio archive or the
path name to a directory tree containing your initramfs layout. During boot, the kernel extracts the files into an
initramfs root filesystem (also called rootfs) and executes a top-level /init program if it finds one. This method
of obtaining an initial rootfs is especially useful for embedded platforms, where all system resources are at a
premium. To create an initramfs image, use mkinitramfs. Look at Documentation/filesystems/ramfs-rootfs-

initramfs.txt for more documentation.

[2] cpio is a UNIX file archival format. You can download it from www.gnu.org/software/cpio.

In this case, we are using initramfs by supplying a compressed cpio archive of the initial root filesystem to the
kernel using the initrd= command-line argument. After unpacking the contents of the archive into rootfs, the

kernel frees the memory where the archive resides (387K in this case) and announces the above boot message.
The freed pages are then doled out to other parts of the kernel that request memory.

As discussed in Chapter 18, initrd and initramfs are sometimes used to hold the actual root filesystem on
embedded devices during development.

IO Scheduler Anticipatory Registered (Default)

The main goal of an I/O scheduler is to increase system throughput by minimizing disk seek times, which is the
latency to move the disk head from its existing position to the disk sector of interest. The 2.6 kernel provides
four different I/O schedulers: Deadline, Anticipatory, Complete Fair Queuing, and Noop. As the preceding kernel
message indicates, the kernel sets Anticipatory as the default I/O scheduler. We look at I/O scheduling in
Chapter 14, "Block Drivers."

Setting Up Standard PCI Resources

The next phase of the boot process probes and initializes I/O buses and peripheral controllers. The kernel
probes PCI hardware by walking the PCI bus, and then initializes other I/O subsystems. Take a look at the boot
messages in Figure 2.3 to see announcements regarding the initialization of the SCSI subsystem, the USB
controller, the video chip (part of the 855 North Bridge chipset in the messages below), the serial port (8250
UART in this case), PS/2 keyboard and mouse, floppy drives, ramdisk, the loopback device, the IDE controller

(part of the ICH4 South Bridge chipset in this example), the touchpad, the Ethernet controller (e1000 in this

case), and the PCMCIA controller. The identity of the corresponding I/O device is labeled against .

Figure 2.3. Initializing buses and peripheral controllers during boot.

Code View:
SCSI subsystem initialized SCSI

usbcore: registered new driver hub USB

agpgart: Detected an Intel 855 Chipset. Video

[drm] Initialized drm 1.0.0 20040925

PS/2 Controller [PNP0303:KBD,PNP0f13:MOU]

at 0x60,0x64 irq 1,12 serio: i8042 KBD port Keyboard

serial8250: ttyS0 at I/O 0x3f8 (irq = 4)

is a NS16550A Serial Port

Floppy drive(s): fd0 is 1.44M Floppy

RAMDISK driver initialized: 16 RAM disks

of 4096K size 1024 blocksize Ramdisk

loop: loaded (max 8 devices) Loop back

ICH4: IDE controller at PCI slot

0000:00:1f.1 Hard Disk

...

input: SynPS/2 Synaptics TouchPad as

/class/input/input1 Touchpad

e1000: eth0: e1000_probe: Intel® PRO/1000

Network Connection Ethernet

Yenta: CardBus bridge found at

0000:02:00.0 [1014:0560] PCMCIA/CardBus

...

This book discusses many of these driver subsystems in separate chapters. Note that some of these messages
might manifest only later on in the boot process if the drivers are dynamically linked to the kernel as loadable
modules.

EXT3-fs: Mounted Filesystem

The EXT3 filesystem has become the de facto filesystem on Linux. It adds a journaling layer on top of the
veteran EXT2 filesystem to facilitate quick recovery after a crash. The aim is to regain a consistent filesystem
state without having to go through a time-consuming filesystem check (fsck) operation. EXT2 remains the work

engine, while the EXT3 layer additionally logs file transactions on a memory area called journal before
committing the actual changes to disk. EXT3 is backward-compatible with EXT2, so you can add an EXT3 coating
to your existing EXT2 filesystem or peel off the EXT3 to get back your original EXT2 filesystem.

EXT4

The latest version in the EXT filesystem series is EXT4, which has been included in the mainline
kernel starting with the 2.6.19 release, with a tag of "experimental" and a name of ext4dev. EXT4
is largely backward-compatible with EXT3. The home page of the EXT4 project is at
www.bullopensource.org/ext4.

EXT3 starts a kernel helper thread (we will have an in-depth discussion on kernel threads in the next chapter)

called kjournald to assist in journaling. When EXT3 is operational, the kernel mounts the root filesystem and
gets ready for business:

EXT3-fs: mounted filesystem with ordered data mode

kjournald starting. Commit interval 5 seconds

VFS: Mounted root (ext3 filesystem).

INIT: Version 2.85 Booting

Init, the parent of all Linux processes, is the first program to run after the kernel finishes its boot sequence. In
the last few lines of init/main.c, the kernel searches different locations in its attempt to locate init:

if (ramdisk_execute_command) { /* Look for /init in initramfs */

 run_init_process(ramdisk_execute_command);

}

if (execute_command) { /* You may override init and ask the kernel

 to execute a custom program using the
 "init=" kernel command-line argument. If

 you do that, execute_command points to the

 specified program */
 run_init_process(execute_command);

}

/* Else search for init or sh in the usual places .. */

run_init_process("/sbin/init");
run_init_process("/etc/init");

run_init_process("/bin/init");
run_init_process("/bin/sh");

panic("No init found. Try passing init= option to kernel.");

Init receives directions from /etc/inittab. It first executes system initialization scripts present in /etc/rc.sysinit.
One of the important responsibilities of this script is to activate the swap partition, which triggers a boot
message such as this:

Adding 1552384k swap on /dev/hda6

Let's take a closer look at what this means. Linux user processes own a virtual address space of 3GB (see the
section "Allocating Memory"). Out of this, the pages constituting the "working set" are kept in RAM. However,
when there are too many programs demanding memory resources, the kernel frees up some used RAM pages
by storing them in a disk partition called swap space. According to a rule of thumb, the size of the swap
partition should be twice the amount of RAM. In this case, the swap space lives in the disk partition /dev/hda6
and has a size of 1552384K bytes.

Init then goes on to run scripts present in the /etc/rc.d/rcX.d/ directory, where X is the runlevel specified in
inittab. A runlevel is an execution state corresponding to the desired boot mode. For example, multiuser text
mode corresponds to a runlevel of 3, while X Windows associates with a runlevel of 5. So, if you see the
message, INIT: Entering runlevel 3, init has started executing scripts in the /etc/rc.d/rc3.d/ directory.
These scripts start the dynamic device-naming subsystem udev (which we discuss in Chapter 4, "Laying the
Groundwork") and load kernel modules responsible for driving networking, audio, storage, and so on:

Starting udev: [OK]
Initializing hardware... network audio storage [Done]

...

Init finally spawns terminals on virtual consoles. You can now log in.

Chapter 2. A Peek Inside the Kernel

In This Chapter

Booting Up

18

Kernel Mode and User Mode

30

Process Context and Interrupt
Context

30

Kernel Timers
31

Concurrency in the Kernel
39

Process Filesystem

49

Allocating Memory
49

Looking at the Sources

52

Before we start our journey into the mystical world of Linux device drivers, let's familiarize
ourselves with some basic kernel concepts by looking at several kernel regions through the lens of
a driver developer. We learn about kernel timers, synchronization mechanisms, and memory
allocation. But let's start our expedition by getting a view from the top; let's skim through boot
messages emitted by the kernel and hit the breaks whenever something looks interesting.

Booting Up

Figure 2.1 shows the Linux boot sequence on an x86-based computer. Linux boot on x86-based hardware is set
into motion when the BIOS loads the Master Boot Record (MBR) from the boot device. Code resident in the MBR
looks at the partition table and reads a Linux bootloader such as GRUB, LILO, or SYSLINUX from the active

partition. The final stage of the bootloader loads the compressed kernel image and passes control to it. The
kernel uncompresses itself and turns on the ignition.

Figure 2.1. Linux boot sequence on x86-based hardware.

x86-based processors have two modes of operation, real mode and protected mode. In real mode, you can
access only the first 1MB of memory, that too without any protection. Protected mode is sophisticated and lets
you tap into many advanced features of the processor such as paging. The CPU has to pass through real mode
en route to protected mode. This road is a one-way street, however. You can't switch back to real mode from
protected mode.

The first-level kernel initializations are done in real mode assembly. Subsequent startup is performed in
protected mode by the function start_kernel() defined in init/main.c, the source file you modified in the

previous chapter. start_kernel() begins by initializing the CPU subsystem. Memory and process management

are put in place soon after. Peripheral buses and I/O devices are started next. As the last step in the boot
sequence, the init program, the parent of all Linux processes, is invoked. Init executes user-space scripts that
start necessary kernel services. It finally spawns terminals on consoles and displays the login prompt.

Each following section header is a message from Figure 2.2 generated during boot progression on an x86-based

laptop. The semantics and the messages may change if you are booting the kernel on other architectures. If
some explanations in this section sound rather cryptic, don't worry; the intent here is only to give you a picture
from 100 feet above and to let you savor a first taste of the kernel's flavor. Many concepts mentioned here in
passing are covered in depth later on.

Figure 2.2. Kernel boot messages.

Code View:
Linux version 2.6.23.1y (root@localhost.localdomain) (gcc version 4.1.1 20061011 (Red

Hat 4.1.1-30)) #7 SMP PREEMPT Thu Nov 1 11:39:30 IST 2007

BIOS-provided physical RAM map:

 BIOS-e820: 0000000000000000 - 000000000009f000 (usable)

 BIOS-e820: 000000000009f000 - 00000000000a0000 (reserved)

 ...

758MB LOWMEM available.

...

Kernel command line: ro root=/dev/hda1

...

Console: colour VGA+ 80x25

...

Calibrating delay using timer specific routine.. 1197.46 BogoMIPS (lpj=2394935)

...

CPU: L1 I cache: 32K, L1 D cache: 32K

CPU: L2 cache: 1024K

...

Checking 'hlt' instruction... OK.

...

Setting up standard PCI resources

...

NET: Registered protocol family 2

IP route cache hash table entries: 32768 (order: 5, 131072 bytes)

TCP established hash table entries: 131072 (order: 9, 2097152 bytes)

...

checking if image is initramfs... it is

Freeing initrd memory: 387k freed

...

io scheduler noop registered

io scheduler anticipatory registered (default)

...

00:0a: ttyS0 at I/O 0x3f8 (irq = 4) is a NS16550A

...

Uniform Multi-Platform E-IDE driver Revision: 7.00alpha2

ide: Assuming 33MHz system bus speed for PIO modes; override with idebus=xx

ICH4: IDE controller at PCI slot 0000:00:1f.1

Probing IDE interface ide0...

hda: HTS541010G9AT00, ATA DISK drive

hdc: HL-DT-STCD-RW/DVD DRIVE GCC-4241N, ATAPI CD/DVD-ROM drive

...

serio: i8042 KBD port at 0x60,0x64 irq 1

mice: PS/2 mouse device common for all mice

...

Synaptics Touchpad, model: 1, fw: 5.9, id: 0x2c6ab1, caps: 0x884793/0x0

...

agpgart: Detected an Intel 855GM Chipset.

...

Intel(R) PRO/1000 Network Driver - version 7.3.20-k2

...

ehci_hcd 0000:00:1d.7: EHCI Host Controller

...

Yenta: CardBus bridge found at 0000:02:00.0 [1014:0560]

...

Non-volatile memory driver v1.2

...

kjournald starting. Commit interval 5 seconds

EXT3 FS on hda2, internal journal

EXT3-fs: mounted filesystem with ordered data mode.

...

INIT: version 2.85 booting

...

BIOS-Provided Physical RAM Map

The kernel assembles the system memory map from the BIOS, and this is one of the first boot messages you
will see:

BIOS-provided physical RAM map:

BIOS-e820: 0000000000000000 - 000000000009f000 (usable)
...

BIOS-e820: 00000000ff800000 - 0000000100000000 (reserved)

Real mode initialization code uses the BIOS int 0x15 service with function number 0xe820(hence the string

BIOS-e820 in the preceding message) to obtain the system memory map. The memory map indicates reserved
and usable memory ranges, which is subsequently used by the kernel to create its free memory pool. We
discuss more on the BIOS-supplied memory map in the section "Real Mode Calls" in Appendix B, "Linux and the
BIOS."

758MB LOWMEM Available

The normally addressable kernel memory region (< 896MB) is called low memory. The kernel memory allocator,
kmalloc(), returns memory from this region. Memory beyond 896MB (called high memory) can be accessed
only using special mappings.

During boot, the kernel calculates and displays the total pages present in these memory zones. We take a
deeper look at memory zones later in this chapter.

Kernel Command Line: ro root=/dev/hda1

Linux bootloaders usually pass a command line to the kernel. Arguments in the command line are similar to the
argv[] list passed to the main() function in C programs, except that they are passed to the kernel instead. You
may add command-line arguments to the bootloader configuration file or supply them from the bootloader
prompt at runtime.[1] If you are using the GRUB bootloader, the configuration file is either /boot/grub/grub.conf
or /boot/grub/menu.lst depending on your distribution. If you are a LILO user, the configuration file is
/etc/lilo.conf. An example grub.conf file (with comments added) is listed here. You can figure out the genesis of
the preceding boot message if you look at the line following title kernel 2.6.23:

[1] Bootloaders on embedded devices are usually "slim" and do not support configuration files or equivalent mechanisms. Because of this,
many non-x86 architectures support a kernel configuration option called CONFIG_CMDLINE that you can use to supply the kernel command line

at build time.

default 0 #Boot the 2.6.23 kernel by default

timeout 5 #5 second to alter boot order or parameters

title kernel 2.6.23 #Boot Option 1
 #The boot image resides in the first partition of the first disk

 #under the /boot/ directory and is named vmlinuz-2.6.23. 'ro'

 #indicates that the root partition should be mounted read-only.
 kernel (hd0,0)/boot/vmlinuz-2.6.23 ro root=/dev/hda1

 #Look under section "Freeing initrd memory:387k freed"

 initrd (hd0,0)/boot/initrd

#...

Command-line arguments affect the code path traversed during boot. As a simple example, assume that the
command-line argument of interest is called bootmode. If this parameter is set to 1, you would like to print

some debug messages during boot and switch to a runlevel of 3 at the end of the boot. (Wait until the boot

messages are printed out by the init process to learn the semantics of runlevels.) If bootmode is instead set to
0, you would prefer the boot to be relatively laconic, and the runlevel set to 2. Because you are already familiar

with init/main.c, let's add the following modification to it:

Code View:
static unsigned int bootmode = 1;

static int __init
is_bootmode_setup(char *str)

{
 get_option(&str, &bootmode);

 return 1;
}

/* Handle parameter "bootmode=" */
__setup("bootmode=", is_bootmode_setup);

if (bootmode) {

 /* Print verbose output */
 /* ... */

}

/* ... */

/* If bootmode is 1, choose an init runlevel of 3, else

 switch to a run level of 2 */

if (bootmode) {
 argv_init[++args] = "3";

} else {

 argv_init[++args] = "2";

}

/* ... */

Rebuild the kernel as you did earlier and try out the change. We discuss more about kernel command-line
arguments in the section "Memory Layout" in Chapter 18, "Embedding Linux."

Calibrating Delay...1197.46 BogoMIPS (lpj=2394935)

During boot, the kernel calculates the number of times the processor can execute an internal delay loop in one
jiffy, which is the time interval between two consecutive ticks of the system timer. As you would expect, the
calculation has to be calibrated to the processing speed of your CPU. The result of this calibration is stored in a
kernel variable called loops_per_jiffy. One place where the kernel makes use of loops_per_jiffy is when a
device driver desires to delay execution for small durations in the order of microseconds.

To understand the delay-loop calibration code, let's take a peek inside calibrate_delay(), defined in
init/calibrate.c. This function cleverly derives floating-point precision using the integer kernel. The following
snippet (with some comments added) shows the initial portion of the function that carves out a coarse value for
loops_per_jiffy:

loops_per_jiffy = (1 << 12); /* Initial approximation = 4096 */

printk(KERN_DEBUG "Calibrating delay loop... ");

while ((loops_per_jiffy <<= 1) != 0) {
ticks = jiffies; /* As you will find out in the section, "Kernel

 Timers," the jiffies variable contains the

 number of timer ticks since the kernel
 started, and is incremented in the timer

 interrupt handler */

 while (ticks == jiffies); /* Wait until the start

 of the next jiffy */
 ticks = jiffies;

 /* Delay */
 __delay(loops_per_jiffy);

 /* Did the wait outlast the current jiffy? Continue if
 it didn't */

 ticks = jiffies - ticks;
 if (ticks) break;

}

loops_per_jiffy >>= 1; /* This fixes the most significant bit and is
 the lower-bound of loops_per_jiffy */

The preceding code begins by assuming that loops_per_jiffy is greater than 4096, which translates to a
processor speed of roughly one million instructions per second (MIPS). It then waits for a fresh jiffy to start and
executes the delay loop, __delay(loops_per_jiffy). If the delay loop outlasts the jiffy, the previous value of

loops_per_jiffy (obtained by bitwise right-shifting it by one) fixes its most significant bit (MSB). Otherwise,

the function continues by checking whether it will obtain the MSB by bitwise left-shifting loops_per_jiffy.
When the kernel thus figures out the MSB of loops_per_jiffy, it works on the lower-order bits and fine-tunes

its precision as follows:

loopbit = loops_per_jiffy;

/* Gradually work on the lower-order bits */
while (lps_precision-- && (loopbit >>= 1)) {

 loops_per_jiffy |= loopbit;

 ticks = jiffies;

 while (ticks == jiffies); /* Wait until the start
 of the next jiffy */

ticks = jiffies;

 /* Delay */

 __delay(loops_per_jiffy);

 if (jiffies != ticks) /* longer than 1 tick */

 loops_per_jiffy &= ~loopbit;

}

The preceding snippet figures out the exact combination of the lower bits of loops_per_jiffy when the delay

loop crosses a jiffy boundary. This calibrated value is used to derive an unscientific measure of the processor
speed, known as BogoMIPS. You can use the BogoMIPS rating as a relative measurement of how fast a CPU can
run. On a 1.6GHz Pentium M-based laptop, the delay-loop calibration yielded a value of 2394935 for

loops_per_jiffy as announced by the preceding boot message. The BogoMIPS value is obtained as follows:

BogoMIPS = loops_per_jiffy * Number of jiffies in 1 second * Number of
instructions consumed by the internal delay loop in units of 1 million

 = (2394935 * HZ * 2) / (1 million)

 = (2394935 * 250 * 2) / (1000000)

 = 1197.46 (as displayed in the preceding boot message)

We further discuss jiffies, HZ, and loops_per_jiffy in the section "Kernel Timers" later in this chapter.

Checking HLT Instruction

Because the Linux kernel is supported on a variety of hardware platforms, the boot code checks for
architecture-dependent bugs. Verifying the sanity of the halt (HLT) instruction is one such check.

The HLT instruction supported by x86 processors puts the CPU into a low-power sleep mode that continues until
the next hardware interrupt occurs. The kernel uses the HLT instruction when it wants to put the CPU in the idle
state (see function cpu_idle() defined in arch/x86/kernel/process_32.c).

For problematic CPUs, the no-hlt kernel command-line argument can be used to disable the HLT instruction. If
no-hlt is turned on, the kernel busy-waits while it's idle, rather than keep the CPU cool by putting it in the HLT

state.

The preceding boot message is generated when the startup code in init/main.c calls check_bugs() defined in

include/asm-your-arch/bugs.h.

NET: Registered Protocol Family 2

The Linux socket layer is a uniform interface through which user applications access various networking
protocols. Each protocol registers itself with the socket layer using a unique family number (defined in
include/linux/socket.h) assigned to it. Family 2 in the preceding message stands for AF_INET (Internet Protocol).

Another registered protocol family often found in boot messages is AF_NETLINK (Family 16). Netlink sockets
offer a method to communicate between user processes and the kernel. Functionalities accomplished via netlink
sockets include accessing the routing table and the Address Resolution Protocol (ARP) table (see
include/linux/netlink.h for the full usage list). Netlink sockets are more suitable than system calls to accomplish
such tasks because they are asynchronous, simpler to implement, and dynamically linkable.

Another protocol family commonly enabled in the kernel is AF_UNIX or UNIX-domain sockets. Programs such as

X Windows use them for interprocess communication on the same system.

Freeing Initrd Memory: 387k Freed

Initrd is a memory-resident virtual disk image loaded by the bootloader. It's mounted as the initial root
filesystem after the kernel boots, to hold additional dynamically loadable modules required to mount the disk
partition that holds the actual root filesystem. Because the kernel runs on different hardware platforms that use
diverse storage controllers, it's not feasible for distributions to enable device drivers for all possible disk drives
in the base kernel image. Drivers specific to your system's storage device are packed inside initrd and loaded
after the kernel boots, but before the root filesystem is mounted. To create an initrd image, use the mkinitrd

command.

The 2.6 kernel includes a feature called initramfs that bring several benefits over initrd. Whereas the latter
emulates a disk (hence called initramdisk or initrd) and suffers the overheads associated with the Linux block
I/O subsystem such as caching, the former essentially gets the cache itself mounted like a filesystem (hence
called initramfs).

Initramfs, like the page cache over which it's built, grows and shrinks dynamically unlike initrd and, hence,
reduces memory wastage. Also, unlike initrd, which requires you to include the associated filesystem driver
(e.g., EXT2 drivers if you have an EXT2 filesystem on your initrd), initramfs needs no filesystem support. The
initramfs code is tiny because it's just a small layer on top of the page cache.

You can pack your initial root filesystem into a compressed cpio archive[2] and pass it to the kernel command
line using the initrd= argument or build it as part of the kernel image using the INITRAMFS_SOURCE menu
option during kernel configuration. With the latter, you may either provide the filename of a cpio archive or the
path name to a directory tree containing your initramfs layout. During boot, the kernel extracts the files into an
initramfs root filesystem (also called rootfs) and executes a top-level /init program if it finds one. This method
of obtaining an initial rootfs is especially useful for embedded platforms, where all system resources are at a
premium. To create an initramfs image, use mkinitramfs. Look at Documentation/filesystems/ramfs-rootfs-

initramfs.txt for more documentation.

[2] cpio is a UNIX file archival format. You can download it from www.gnu.org/software/cpio.

In this case, we are using initramfs by supplying a compressed cpio archive of the initial root filesystem to the
kernel using the initrd= command-line argument. After unpacking the contents of the archive into rootfs, the

kernel frees the memory where the archive resides (387K in this case) and announces the above boot message.
The freed pages are then doled out to other parts of the kernel that request memory.

As discussed in Chapter 18, initrd and initramfs are sometimes used to hold the actual root filesystem on
embedded devices during development.

IO Scheduler Anticipatory Registered (Default)

The main goal of an I/O scheduler is to increase system throughput by minimizing disk seek times, which is the
latency to move the disk head from its existing position to the disk sector of interest. The 2.6 kernel provides
four different I/O schedulers: Deadline, Anticipatory, Complete Fair Queuing, and Noop. As the preceding kernel
message indicates, the kernel sets Anticipatory as the default I/O scheduler. We look at I/O scheduling in
Chapter 14, "Block Drivers."

Setting Up Standard PCI Resources

The next phase of the boot process probes and initializes I/O buses and peripheral controllers. The kernel
probes PCI hardware by walking the PCI bus, and then initializes other I/O subsystems. Take a look at the boot
messages in Figure 2.3 to see announcements regarding the initialization of the SCSI subsystem, the USB
controller, the video chip (part of the 855 North Bridge chipset in the messages below), the serial port (8250
UART in this case), PS/2 keyboard and mouse, floppy drives, ramdisk, the loopback device, the IDE controller

(part of the ICH4 South Bridge chipset in this example), the touchpad, the Ethernet controller (e1000 in this

case), and the PCMCIA controller. The identity of the corresponding I/O device is labeled against .

Figure 2.3. Initializing buses and peripheral controllers during boot.

Code View:
SCSI subsystem initialized SCSI

usbcore: registered new driver hub USB

agpgart: Detected an Intel 855 Chipset. Video

[drm] Initialized drm 1.0.0 20040925

PS/2 Controller [PNP0303:KBD,PNP0f13:MOU]

at 0x60,0x64 irq 1,12 serio: i8042 KBD port Keyboard

serial8250: ttyS0 at I/O 0x3f8 (irq = 4)

is a NS16550A Serial Port

Floppy drive(s): fd0 is 1.44M Floppy

RAMDISK driver initialized: 16 RAM disks

of 4096K size 1024 blocksize Ramdisk

loop: loaded (max 8 devices) Loop back

ICH4: IDE controller at PCI slot

0000:00:1f.1 Hard Disk

...

input: SynPS/2 Synaptics TouchPad as

/class/input/input1 Touchpad

e1000: eth0: e1000_probe: Intel® PRO/1000

Network Connection Ethernet

Yenta: CardBus bridge found at

0000:02:00.0 [1014:0560] PCMCIA/CardBus

...

This book discusses many of these driver subsystems in separate chapters. Note that some of these messages
might manifest only later on in the boot process if the drivers are dynamically linked to the kernel as loadable
modules.

EXT3-fs: Mounted Filesystem

The EXT3 filesystem has become the de facto filesystem on Linux. It adds a journaling layer on top of the
veteran EXT2 filesystem to facilitate quick recovery after a crash. The aim is to regain a consistent filesystem
state without having to go through a time-consuming filesystem check (fsck) operation. EXT2 remains the work

engine, while the EXT3 layer additionally logs file transactions on a memory area called journal before
committing the actual changes to disk. EXT3 is backward-compatible with EXT2, so you can add an EXT3 coating
to your existing EXT2 filesystem or peel off the EXT3 to get back your original EXT2 filesystem.

EXT4

The latest version in the EXT filesystem series is EXT4, which has been included in the mainline
kernel starting with the 2.6.19 release, with a tag of "experimental" and a name of ext4dev. EXT4
is largely backward-compatible with EXT3. The home page of the EXT4 project is at
www.bullopensource.org/ext4.

EXT3 starts a kernel helper thread (we will have an in-depth discussion on kernel threads in the next chapter)

called kjournald to assist in journaling. When EXT3 is operational, the kernel mounts the root filesystem and
gets ready for business:

EXT3-fs: mounted filesystem with ordered data mode

kjournald starting. Commit interval 5 seconds

VFS: Mounted root (ext3 filesystem).

INIT: Version 2.85 Booting

Init, the parent of all Linux processes, is the first program to run after the kernel finishes its boot sequence. In
the last few lines of init/main.c, the kernel searches different locations in its attempt to locate init:

if (ramdisk_execute_command) { /* Look for /init in initramfs */

 run_init_process(ramdisk_execute_command);

}

if (execute_command) { /* You may override init and ask the kernel

 to execute a custom program using the
 "init=" kernel command-line argument. If

 you do that, execute_command points to the

 specified program */
 run_init_process(execute_command);

}

/* Else search for init or sh in the usual places .. */

run_init_process("/sbin/init");
run_init_process("/etc/init");

run_init_process("/bin/init");
run_init_process("/bin/sh");

panic("No init found. Try passing init= option to kernel.");

Init receives directions from /etc/inittab. It first executes system initialization scripts present in /etc/rc.sysinit.
One of the important responsibilities of this script is to activate the swap partition, which triggers a boot
message such as this:

Adding 1552384k swap on /dev/hda6

Let's take a closer look at what this means. Linux user processes own a virtual address space of 3GB (see the
section "Allocating Memory"). Out of this, the pages constituting the "working set" are kept in RAM. However,
when there are too many programs demanding memory resources, the kernel frees up some used RAM pages
by storing them in a disk partition called swap space. According to a rule of thumb, the size of the swap
partition should be twice the amount of RAM. In this case, the swap space lives in the disk partition /dev/hda6
and has a size of 1552384K bytes.

Init then goes on to run scripts present in the /etc/rc.d/rcX.d/ directory, where X is the runlevel specified in
inittab. A runlevel is an execution state corresponding to the desired boot mode. For example, multiuser text
mode corresponds to a runlevel of 3, while X Windows associates with a runlevel of 5. So, if you see the
message, INIT: Entering runlevel 3, init has started executing scripts in the /etc/rc.d/rc3.d/ directory.
These scripts start the dynamic device-naming subsystem udev (which we discuss in Chapter 4, "Laying the
Groundwork") and load kernel modules responsible for driving networking, audio, storage, and so on:

Starting udev: [OK]
Initializing hardware... network audio storage [Done]

...

Init finally spawns terminals on virtual consoles. You can now log in.

Kernel Mode and User Mode

Some operating systems, such as MS-DOS, always execute in a single CPU mode, but UNIX-like operating
systems use dual modes to effectively implement time-sharing. On a Linux machine, the CPU is either in a
trusted kernel mode or in a restricted user mode. All user processes execute in user mode, whereas the kernel
itself executes in kernel mode.

Kernel mode code has unrestricted access to the entire processor instruction set and to the full memory and I/O
space. If a user mode process needs these privileges, it has to channel requests through device drivers or other
kernel mode code via system calls. User mode code is allowed to page fault, however, whereas kernel mode
code isn't.

In 2.4 and earlier kernels, only user mode processes could be context switched out and replaced by other
processes. Kernel mode code could monopolize the processor until either

It voluntarily relinquished the CPU.

or

An interrupt or an exception occurred.

With the introduction of kernel preemption in the 2.6 release, most kernel mode code can also be context
switched.

Process Context and Interrupt Context

The kernel accomplishes useful work using a combination of process contexts and interrupt contexts. Kernel
code that services system calls issued by user applications runs on behalf of the corresponding application
processes and is said to execute in process context. Interrupt handlers, on the other hand, run asynchronously
in interrupt context. Processes contexts are not tied to any interrupt context and vice versa.

Kernel code running in process context is preemptible. An interrupt context, however, always runs to completion
and is not preemptible. Because of this, there are restrictions on what can be done from interrupt context. Code
executing from interrupt context cannot do the following:

Go to sleep or relinquish the processor

Acquire a mutex

Perform time-consuming tasks

Access user space virtual memory

Look at section "Interrupt Handing" in Chapter 4 for a full discussion of the interrupt context.

Kernel Timers

The working of many parts of the kernel is critically dependent on the passage of time. The Linux kernel makes
use of different timers provided by the hardware to provide time-dependent services such as busy-waiting and
sleep-waiting. The processor wastes cycles while it busy-waits but relinquishes the CPU when it sleep-waits.
Naturally, the former is done only when the latter is not feasible. The kernel also facilitates scheduling of
functions that desire to run after a specified time duration has elapsed.

Let's first discuss the semantics of some important kernel timer variables such as jiffies, HZ, and xtime. Next,
let's measure execution times on a Pentium-based system using the Pentium Time Stamp Counter (TSC). Let's
also see how Linux uses the Real Time Clock (RTC).

HZ and Jiffies

System timers interrupt the processor (or "pop") at programmable frequencies. This frequency, or the number
of timer ticks per second, is contained in the kernel variable HZ. Choosing a value for HZ is a trade-off. A large

HZ results in finer timer granularity, and hence better scheduling resolution. However, bigger values of HZ also
result in larger overhead and higher power consumption, because more cycles are burnt in the timer interrupt
context.

The value of HZ is architecture-dependent. On x86 systems, HZ used to be set to 100 in 2.4 kernels by

default. With 2.6, this value changed to 1000, but with 2.6.13, it was lowered to 250. On ARM-based
platforms, 2.6 kernels set HZ to 100. With current kernels, you can choose a value for HZ at build time

through the configuration menu. The default setting for this option depends on your distribution.

The 2.6.21 kernel introduced support for a tickless kernel (CONFIG_NO_HZ), which dynamically triggers
timer interrupts depending on system load. The tickless system implementation is outside the scope of
this chapter.

jiffies holds the number of times the system timer has popped since the system booted. The kernel
increments the jiffies variable, HZ times every second. Thus, on a kernel with a HZ value of 100, a jiffy is a
10-millisecond duration, whereas on a kernel with HZ set to 1000, a jiffy is only 1-millisecond long.

To better understand HZ and jiffies, consider the following code snippet from the IDE driver

(drivers/ide/ide.c) that polls disk drives for busy status:

unsigned long timeout = jiffies + (3*HZ);

while (hwgroup->busy) {
 /* ... */

 if (time_after(jiffies, timeout)) {

 return -EBUSY;

 }
 /* ... */

}

return SUCCESS;

The preceding code returns SUCCESS if the busy condition gets cleared in less than 3 seconds, and -EBUSY

otherwise. 3*HZ is the number of jiffies present in 3 seconds. The calculated timeout, (jiffies + 3*HZ), is

thus the new value of jiffies after the 3-second timeout elapses. The time_after() macro compares the
current value of jiffies with the requested timeout, taking care to account for wraparound due to overflows.

Related functions available for doing similar comparisons are time_before(), time_before_eq(), and

time_after_eq().

jiffies is defined as volatile, which asks the compiler not to optimize access to the variable. This ensures that

jiffies, which is updated by the timer interrupt handler during each tick, is reread during each pass through
the loop.

For the reverse conversion from jiffies to seconds, take a look at this snippet from the USB host controller
driver, drivers/usb/host/ehci-sched.c:

if (stream->rescheduled) {

 ehci_info(ehci, "ep%ds-iso rescheduled " "%lu times in %lu

 seconds\n", stream->bEndpointAddress, is_in? "in":

 "out", stream->rescheduled,
 ((jiffies – stream->start)/HZ));

}

The preceding debug statement calculates the amount of time in seconds within which this USB endpoint stream
(we discuss USB in Chapter 11, "Universal Serial Bus") was rescheduled stream->rescheduled times.
(jiffies-stream->start) is the number of jiffies that elapsed since the rescheduling started. The division by

HZ converts that value into seconds.

The 32-bit jiffies variable overflows in approximately 50 days, assuming a HZ value of 1000. Because system
uptimes can be many times that duration, the kernel provides a variable called jiffies_64 to hold 64-bit (u64)

jiffies. The linker positions jiffies_64 such that its bottom 32 bits collocate with jiffies. On 32-bit
machines, the compiler needs two instructions to assign one u64 variable to another, so reading jiffies_64 is
not atomic. To get around this problem, the kernel provides a function, get_jiffies_64(). Look at

cpufreq_stats_update() defined in drivers/cpufreq/cpufreq_stats.c for a usage example.

Long Delays

In kernel terms, delays in the order of jiffies are considered long durations. A possible, but nonoptimal, way
to accomplish long delays is by busy-looping. A function that busy-waits has a dog-in-the-manger attitude. It
neither uses the processor for doing useful work nor lets others use it. The following code hogs the processor for
1 second:

unsigned long timeout = jiffies + HZ;

while (time_before(jiffies, timeout)) continue;

A better approach is to sleep-wait, instead of busy-wait. Your code yields the processor to others, while waiting
for the time delay to elapse. This is done using schedule_timeout():

unsigned long timeout = jiffies + HZ;

schedule_timeout(timeout); /* Allow other parts of the
 kernel to run */

The delay guarantee is only on the lower bound of the timeout. Whether from kernel space or from user space,
it's difficult to get more precise control over timeouts than the granularity of HZ because process time slices are

updated by the kernel scheduler only during timer ticks. Also, even if your process is scheduled to run after the

specified timeout, the scheduler can decide to pick another process from the run queue based on priorities.[3]

[3] These scheduler properties have changed with the advent of the CFS scheduler in the 2.6.23 kernel. Linux process schedulers are discussed

in Chapter 19, "Drivers in User Space."

Two other functions that facilitate sleep-waiting are wait_event_timeout() and msleep(). Both of them are

implemented with the help of schedule_timeout(). wait_event_timeout() is used when your code desires to

resume execution if a specified condition becomes true or if a timeout occurs. msleep() sleeps for the specified
number of milliseconds.

Such long-delay techniques are suitable for use only from process context. Sleep-waiting cannot be done from
interrupt context because interrupt handlers are not allowed to schedule() or sleep. (See "Interrupt Handling"
in Chapter 4 for a list of do's and don'ts for code executing in interrupt context.) Busy-waiting for a short
duration is possible from interrupt context, but long busy-waiting in that context is considered a mortal sin.
Equally taboo is long busy-waiting with interrupts disabled.

The kernel also provides timer APIs to execute a function at a point of time in the future. You can dynamically
define a timer using init_timer() or statically create one with DEFINE_TIMER(). After this is done, populate a
timer_list with the address and parameters of your handler function, and register it using add_timer():

#include <linux/timer.h>

struct timer_list my_timer;

init_timer(&my_timer); /* Also see setup_timer() */

my_timer.expire = jiffies + n*HZ; /* n is the timeout in number
 of seconds */
my_timer.function = timer_func; /* Function to execute

 after n seconds */
my_timer.data = func_parameter; /* Parameter to be passed

 to timer_func */
add_timer(&my_timer); /* Start the timer */

Note that this is a one-shot timer. If you want to run timer_func() periodically, you also need to add the
preceding code inside timer_func() to schedule itself after the next timeout:

static void timer_func(unsigned long func_parameter)

{
 /* Do work to be done periodically */

 /* ... */

 init_timer(&my_timer);

 my_timer.expire = jiffies + n*HZ;

 my_timer.data = func_parameter;
 my_timer.function = timer_func;

 add_timer(&my_timer);

}

You may use mod_timer() to change the expiration of my_timer, del_timer() to cancel my_timer, and

timer_pending() to see whether my_timer is pending at the moment. If you look at kernel/timer.c, you will

find that schedule_timeout() internally uses these same APIs.

User-space functions such as clock_settime() and clock_gettime() are used to access kernel timer services

from user space. A user application may use setitimer() and getitimer() to control the delivery of an alarm

signal when a specified timeout expires.

Short Delays

In kernel terms, sub-jiffy delays qualify as short durations. Such delays are commonly requested from both
process and interrupt contexts. Because it is not possible to use jiffy-based methods to implement sub-jiffy
delays, the methods discussed in the previous section to sleep-wait cannot be used for small timeouts. The only
solution is to busy-wait.

Kernel APIs that implement short delays are mdelay(), udelay(), and ndelay(), which support millisecond,

microsecond, and nanosecond delays, respectively. The actual implementations of these functions are
architecture-specific and may not be available on all platforms.

Busy-waiting for short durations is accomplished by measuring the time the processor takes to execute an
instruction and looping for the necessary number of iterations. As discussed earlier in this chapter, the kernel
performs this measurement during boot and stores the value in a variable called loops_per_jiffy. The short-
delay APIs use loops_per_jiffy to decide the number of times they need to busy-loop. To achieve a 1-

microsecond delay during a handshake process, the USB host controller driver, drivers/usb/host/ehci-hcd.c,
calls udelay(), which internally uses loops_per_jiffy:

do {

 result = ehci_readl(ehci, ptr);
 /* ... */

 if (result == done) return 0;
 udelay(1); /* Internally uses loops_per_jiffy */

 usec--;

} while (usec > 0);

Pentium Time Stamp Counter

The Time Stamp Counter (TSC) is a 64-bit register present in Pentium-compatible processors that counts the
number of clock cycles consumed by the processor since startup. Because the TSC gets incremented at the rate
of the processor cycle speed, it provides a high-resolution timer. The TSC is commonly used for profiling and
instrumenting code. It is accessed using the rdtsc instruction to measure execution time of intervening code
with microsecond precision. TSC ticks can be converted to seconds by dividing by the CPU clock speed, which
can be read from the kernel variable, cpu_khz.

In the following snippet, low_tsc_ticks contains the lower 32 bits of the TSC, while high_tsc_ticks contains
the higher 32 bits. The lower 32 bits overflow in a few seconds depending on your processor speed but is
sufficient for many code instrumentation purposes as shown here:

unsigned long low_tsc_ticks0, high_tsc_ticks0;
unsigned long low_tsc_ticks1, high_tsc_ticks1;

unsigned long exec_time;

rdtsc(low_tsc_ticks0, high_tsc_ticks0); /* Timestamp

 before */
printk("Hello World\n"); /* Code to be

 profiled */

rdtsc(low_tsc_ticks1, high_tsc_ticks1); /* Timestamp after */

exec_time = low_tsc_ticks1 - low_tsc_ticks0;

exec_time measured 871 (or half a microsecond) on a 1.8GHz Pentium box.

Support for high-resolution timers (CONFIG_HIGH_RES_TIMERS) has been merged with the 2.6.21 kernel.
It makes use of hardware-specific high-speed timers to provide high-precision capabilities to APIs such
as nanosleep(). On Pentium-class machines, the kernel leverages the TSC to offer this capability.

Real Time Clock

The RTC tracks absolute time in nonvolatile memory. On x86 PCs, RTC registers constitute the top few locations
of a small chunk of battery-powered[4] complementary metal oxide semiconductor (CMOS) memory. Look at
Figure 5.1 in Chapter 5, "Character Drivers," for the location of the CMOS in the legacy PC architecture. On
embedded systems, the RTC might be internal to the processor, or externally connected via the I2C or SPI
buses discussed in Chapter 8, "The Inter-Integrated Circuit Protocol."

[4] RTC batteries last for many years and usually outlive the life span of computers, so you should never have to replace them.

You may use the RTC to do the following:

Read and set the absolute clock, and generate interrupts during clock updates.

Generate periodic interrupts with frequencies ranging from 2HZ to 8192HZ.

Set alarms

Many applications need the concept of absolute time or wall time. Because jiffies is relative to the time when

the system booted, it does not contain wall time. The kernel maintains wall time in a variable called xtime.
During boot, xtime is initialized to the current wall time by reading the RTC. When the system halts, the wall

time is written back to the RTC. You can use do_gettimeofday() to read wall time with the highest resolution
supported by the hardware:

#include <linux/time.h>
static struct timeval curr_time;

do_gettimeofday(&curr_time);
my_timestamp = cpu_to_le32(curr_time.tv_sec); /* Record timestamp */

There are also a bunch of functions available to user-space code to access wall time. They include the following:

time(), which returns the calendar time, or the number of seconds since Epoch (00:00:00 on January 1,

1970)

localtime(), which returns the calendar time in broken-down format

mktime(), which does the reverse of localtime()

gettimeofday(), which returns the calendar time with microsecond precision if your platform supports it

Another way to use the RTC from user space is via the character device, /dev/rtc. Only one process is allowed to
access this device at a time.

We discuss more about RTC drivers in Chapter 5 and Chapter 8. In Chapter 19, we develop an example user
application that uses /dev/rtc to perform periodic work with microsecond precision.

Concurrency in the Kernel

With the arrival of multicore laptops, Symmetric Multi Processing (SMP) is no longer confined to the realm of hi-
tech users. SMP and kernel preemption are scenarios that generate multiple threads of execution. These threads
can simultaneously operate on shared kernel data structures. Because of this, accesses to such data structures
have to be serialized.

Let's discuss the basics of protecting shared kernel resources from concurrent access. We start with a simple
example and gradually introduce complexities such as interrupts, kernel preemption, and SMP.

Spinlocks and Mutexes

A code area that accesses shared resources is called a critical section. Spinlocks and mutexes (short for mutual
exclusion) are the two basic mechanisms used to protect critical sections in the kernel. Let's look at each in
turn.

A spinlock ensures that only a single thread enters a critical section at a time. Any other thread that desires to
enter the critical section has to remain spinning at the door until the first thread exits. Note that we use the
term thread to refer to a thread of execution, rather than a kernel thread.

The basic usage of spinlocks is as follows:

#include <linux/spinlock.h>

spinlock_t mylock = SPIN_LOCK_UNLOCKED; /* Initialize */

/* Acquire the spinlock. This is inexpensive if there
 * is no one inside the critical section. In the face of

 * contention, spinlock() has to busy-wait.
 */
spin_lock(&mylock);

/* ... Critical Section code ... */

spin_unlock(&mylock); /* Release the lock */

In contrast to spinlocks that put threads into a spin if they attempt to enter a busy critical section, mutexes put
contending threads to sleep until it's their turn to occupy the critical section. Because it's a bad thing to
consume processor cycles to spin, mutexes are more suitable than spinlocks to protect critical sections when the
estimated wait time is long. In mutex terms, anything more than two context switches is considered long,
because a mutex has to switch out the contending thread to sleep, and switch it back in when it's time to wake
it up.

In many cases, therefore, it's easy to decide whether to use a spinlock or a mutex:

If the critical section needs to sleep, you have no choice but to use a mutex. It's illegal to schedule,
preempt, or sleep on a wait queue after acquiring a spinlock.

Because mutexes put the calling thread to sleep in the face of contention, you have no choice but to use
spinlocks inside interrupt handlers. (You will learn more about the constraints of the interrupt context in
Chapter 4.)

Basic mutex usage is as follows:

#include <linux/mutex.h>

/* Statically declare a mutex. To dynamically

 create a mutex, use mutex_init() */

static DEFINE_MUTEX(mymutex);

/* Acquire the mutex. This is inexpensive if there
 * is no one inside the critical section. In the face of

 * contention, mutex_lock() puts the calling thread to sleep.

 */
mutex_lock(&mymutex);

/* ... Critical Section code ... */

mutex_unlock(&mymutex); /* Release the mutex */

To illustrate the use of concurrency protection, let's start with a critical section that is present only in process
context and gradually introduce complexities in the following order:

Critical section present only in process context on a Uniprocessor (UP) box running a nonpreemptible
kernel.

1.

Critical section present in process and interrupt contexts on a UP machine running a nonpreemptible
kernel.

2.

Critical section present in process and interrupt contexts on a UP machine running a preemptible kernel.3.

Critical section present in process and interrupt contexts on an SMP machine running a preemptible
kernel.

4.

The Old Semaphore Interface

The mutex interface, which replaces the older semaphore interface, originated in the –rt tree and

was merged into the mainline with the 2.6.16 kernel release. The semaphore interface is still
around, however. Basic usage of the semaphore interface is as follows:

#include <asm/semaphore.h> /* Architecture dependent

 header */

/* Statically declare a semaphore. To dynamically

 create a semaphore, use init_MUTEX() */

static DECLARE_MUTEX(mysem);

down(&mysem); /* Acquire the semaphore */

/* ... Critical Section code ... */

up(&mysem); /* Release the semaphore */

Semaphores can be configured to allow a predetermined number of threads into the critical section
simultaneously. However, semaphores that permit more than a single holder at a time are rarely
used.

Case 1: Process Context, UP Machine, No Preemption

This is the simplest case and needs no locking, so we won't discuss this further.

Case 2: Process and Interrupt Contexts, UP Machine, No Preemption

In this case, you need to disable only interrupts to protect the critical region. To see why, assume that A and B
are process context threads, and C is an interrupt context thread, all vying to enter the same critical section, as
shown in Figure 2.4.

Figure 2.4. Process and interrupt context threads inside a critical section.

Because Thread C is executing in interrupt context and always runs to completion before yielding to Thread A or
Thread B, it need not worry about protection. Thread A, for its part, need not be concerned about Thread B (and
vice versa) because the kernel is not preemptible. Thus, Thread A and Thread B need to guard against only the
possibility of Thread C stomping through the critical section while they are inside the same section. They
achieve this by disabling interrupts prior to entering the critical section:

Point A:

 local_irq_disable(); /* Disable Interrupts in local CPU */
 /* ... Critical Section ... */
 local_irq_enable(); /* Enable Interrupts in local CPU */

However, if interrupts were already disabled when execution reached Point A, local_irq_enable() creates the
unpleasant side effect of reenabling interrupts, rather than restoring interrupt state. This can be fixed as
follows:

unsigned long flags;

Point A:

 local_irq_save(flags); /* Disable Interrupts */

 /* ... Critical Section ... */

 local_irq_restore(flags); /* Restore state to what
 it was at Point A */

This works correctly irrespective of the interrupt state at Point A.

Case 3: Process and Interrupt Contexts, UP Machine, Preemption

If preemption is enabled, mere disabling of interrupts won't protect your critical region from being trampled
over. There is the possibility of multiple threads simultaneously entering the critical section in process context.
Referring back to Figure 2.4 in this scenario, Thread A and Thread B now need to protect themselves against
each other in addition to guarding against Thread C. The solution apparently, is to disable kernel preemption
before the start of the critical section and reenable it at the end, in addition to disabling/reenabling interrupts.

For this, Thread A and Thread B use the irq variant of spinlocks:

unsigned long flags;

Point A:

 /* Save interrupt state.

 * Disable interrupts - this implicitly disables preemption */

 spin_lock_irqsave(&mylock, flags);

 /* ... Critical Section ... */

 /* Restore interrupt state to what it was at Point A */
 spin_unlock_irqrestore(&mylock, flags);

Preemption state need not be explicitly restored to what it was at Point A because the kernel internally does
that for you via a variable called the preemption counter. The counter gets incremented whenever preemption is
disabled (using preempt_disable()) and gets decremented whenever preemption is enabled (using

preempt_enable()). Preemption kicks in only if the counter value is zero.

Case 4: Process and Interrupt Contexts, SMP Machine, Preemption

Let's now assume that the critical section executes on an SMP machine. Your kernel has been configured with
CONFIG_SMP and CONFIG_PREEMPT turned on.

In the scenarios discussed this far, spinlock primitives have done little more than enable/disable preemption and
interrupts. The actual locking functionality has been compiled away. In the presence of SMP, the locking logic
gets compiled in, and the spinlock primitives are rendered SMP-safe. The SMP-enabled semantics is as follows:

unsigned long flags;

Point A:

 /*
 - Save interrupt state on the local CPU

 - Disable interrupts on the local CPU. This implicitly disables
 preemption.

 - Lock the section to regulate access by other CPUs
 */
 spin_lock_irqsave(&mylock, flags);

 /* ... Critical Section ... */

 /*

 - Restore interrupt state and preemption to what it

 was at Point A for the local CPU
 - Release the lock

 */

 spin_unlock_irqrestore(&mylock, flags);

On SMP systems, only interrupts on the local CPU are disabled when a spinlock is acquired. So, a process
context thread (say Thread A in Figure 2.4) might be running on one CPU, while an interrupt handler (say
Thread C in Figure 2.4) is executing on another CPU. An interrupt handler on a nonlocal processor thus needs to
spin-wait until the process context code on the local processor exits the critical section. The interrupt context
code calls spin_lock()/spin_unlock() to do this:

spin_lock(&mylock);

/* ... Critical Section ... */

spin_unlock(&mylock);

Similar to the irq variants, spinlocks also have bottom half (BH) flavors. spin_lock_bh() disables bottom halves

when the lock is acquired, whereas spin_unlock_bh() reenables bottom halves when the lock is released. We

discuss bottom halves in Chapter 4.

The –rt tree

The real time (-rt) tree, also called the CONFIG_PREEMPT_RT patch-set, implements low-latency

modifications to the kernel. The patch-set, downloadable from
www.kernel.org/pub/linux/kernel/projects/rt, allows most of the kernel to be preempted, partly by
replacing many spinlocks with mutexes. It also incorporates high-resolution timers. Several -rt
features have been integrated into the mainline kernel. You will find detailed documentation at the
project's wiki hosted at http://rt.wiki.kernel.org/.

The kernel has specialized locking primitives in its repertoire that help improve performance under specific
conditions. Using a mutual-exclusion scheme tailored to your needs makes your code more powerful. Let's take
a look at some of the specialized exclusion mechanisms.

Atomic Operators

Atomic operators are used to perform lightweight one-shot operations such as bumping counters, conditional
increments, and setting bit positions. Atomic operations are guaranteed to be serialized and do not need locks
for protection against concurrent access. The implementation of atomic operators is architecture-dependent.

To check whether there are any remaining data references before freeing a kernel network buffer (called an
skbuff), the skb_release_data() routine defined in net/core/skbuff.c does the following:

if (!skb->cloned ||
 /* Atomically decrement and check if the returned value is zero */
 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 :
 1,&skb_shinfo(skb)->dataref)) {

 /* ... */

 kfree(skb->head);

}

While skb_release_data() is thus executing, another thread using skbuff_clone() (defined in the same file)

might be simultaneously incrementing the data reference counter:

/* ... */
/* Atomically bump up the data reference count */

atomic_inc(&(skb_shinfo(skb)->dataref));

/* ... */

The use of atomic operators protects the data reference counter from being trampled by these two threads. It

http://rt.wiki.kernel.org/

also eliminates the hassle of using locks to protect a single integer variable from concurrent access.

The kernel also supports operators such as set_bit(), clear_bit(), and test_and_set_bit() to atomically

engage in bit manipulations. Look at include/asm-your-arch/atomic.h for the atomic operators supported on
your architecture.

Reader-Writer Locks

Another specialized concurrency regulation mechanism is a reader-writer variant of spinlocks. If the usage of a
critical section is such that separate threads either read from or write to a shared data structure, but don't do
both, these locks are a natural fit. Multiple reader threads are allowed inside a critical region simultaneously.
Reader spinlocks are defined as follows:

rwlock_t myrwlock = RW_LOCK_UNLOCKED;

read_lock(&myrwlock); /* Acquire reader lock */

/* ... Critical Region ... */

read_unlock(&myrwlock); /* Release lock */

However, if a writer thread enters a critical section, other reader or writer threads are not allowed inside. To use
writer spinlocks, you would write this:

rwlock_t myrwlock = RW_LOCK_UNLOCKED;

write_lock(&myrwlock); /* Acquire writer lock */
/* ... Critical Region ... */

write_unlock(&myrwlock); /* Release lock */

Look at the IPX routing code present in net/ipx/ipx_route.c for a real-life example of a reader-writer spinlock. A
reader-writer lock called ipx_routes_lock protects the IPX routing table from simultaneous access. Threads
that need to look up the routing table to forward packets request reader locks. Threads that need to add or
delete entries from the routing table acquire writer locks. This improves performance because there are usually
far more instances of routing table lookups than routing table updates.

Like regular spinlocks, reader-writer locks also have corresponding irq variants—namely, read_lock_irqsave(),

read_lock_irqrestore(), write_lock_irqsave(), and write_lock_irqrestore(). The semantics of these
functions are similar to those of regular spinlocks.

Sequence locks or seqlocks, introduced in the 2.6 kernel, are reader-writer locks where writers are favored over
readers. This is useful if write operations on a variable far outnumber read accesses. An example is the
jiffies_64 variable discussed earlier in this chapter. Writer threads do not wait for readers who may be inside

a critical section. Because of this, reader threads may discover that their entry inside a critical section has failed
and may need to retry:

u64 get_jiffies_64(void) /* Defined in kernel/time.c */

{

 unsigned long seq;

 u64 ret;
 do {

 seq = read_seqbegin(&xtime_lock);

 ret = jiffies_64;

 } while (read_seqretry(&xtime_lock, seq));
 return ret;

}

Writers protect critical regions using write_seqlock() and write_sequnlock().

The 2.6 kernel introduced another mechanism called Read-Copy Update (RCU), which yields improved
performance when readers far outnumber writers. The basic idea is that reader threads can execute without
locking. Writer threads are more complex. They perform update operations on a copy of the data structure and
replace the pointer that readers see. The original copy is maintained until the next context switch on all CPUs to
ensure completion of all ongoing read operations. Be aware that using RCU is more involved than using the
primitives discussed thus far and should be used only if you are sure that it's the right tool for the job. RCU data
structures and interface functions are defined in include/linux/rcupdate.h. There is ample documentation in
Documentation/RCU/*.

For an RCU usage example, look at fs/dcache.c. On Linux, each file is associated with directory entry
information (stored in a structure called dentry), metadata information (stored in an inode), and actual data
(stored in data blocks). Each time you operate on a file, the components in the file path are parsed, and the
corresponding dentries are obtained. The dentries are kept cached in a data structure called the dcache, to
speed up future operations. At any time, the number of dcache lookups is much more than dcache updates, so
references to the dcache are protected using RCU primitives.

Debugging

Concurrency-related problems are generally hard to debug because they are usually difficult to reproduce. It's a
good idea to enable SMP (CONFIG_SMP) and preemption (CONFIG_PREEMPT) while compiling and testing your

code, even if your production kernel is going to run on a UP machine with preemption disabled. There is a kernel
configuration option under Kernel hacking called Spinlock and rw-lock debugging (CONFIG_DEBUG_SPINLOCK)

that can help you catch some common spinlock errors. Also available are tools such as lockmeter
(http://oss.sgi.com/projects/lockmeter/) that collect lock-related statistics.

A common concurrency problem occurs when you forget to lock an access to a shared resource. This results in
different threads "racing" through that access in an unregulated manner. The problem, called a race condition,
might manifest in the form of occasional strange code behavior.

Another potential problem arises when you miss releasing held locks in certain code paths, resulting in
deadlocks. To understand this, consider the following example:

spin_lock(&mylock); /* Acquire lock */

/* ... Critical Section ... */

if (error) { /* This error condition occurs rarely */
 return -EIO; /* Forgot to release the lock! */

}

spin_unlock(&mylock); /* Release lock */

After the occurrence of the error condition, any thread trying to acquire mylock gets deadlocked, and the kernel
might freeze.

If the problem first manifests months or years after you write the code, it'll be all the more tough to go back
and debug it. (There is a related debugging example in the section "Kdump" in Chapter 21, "Debugging Device
Drivers.") To avoid such unpleasant encounters, concurrency logic should be designed when you architect your
software.

http://oss.sgi.com/projects/lockmeter/

Process Filesystem

The process filesystem (procfs) is a virtual filesystem that creates windows into the innards of the kernel. The
data you see when you browse procfs is generated by the kernel on-the-fly. Files in procfs are used to configure
kernel parameters, look at kernel structures, glean statistics from device drivers, and get general system
information.

Procfs is a pseudo filesystem. This means that files resident in procfs are not associated with physical storage
devices such as hard disks. Instead, data in those files is dynamically created on demand by the corresponding
entry points in the kernel. Because of this, file sizes in procfs get shown as zero. Procfs is usually mounted
under the /proc directory during kernel boot; you can see this by invoking the mount command.

To get a first feel of the capabilities of procfs, examine the contents of /proc/cpuinfo, /proc/meminfo,
/proc/interrupts, /proc/tty/driver/serial, /proc/bus/usb/devices, and /proc/stat. Certain kernel parameters can
be changed at runtime by writing to files under /proc/sys/. For example, you can change kernel printk log

levels by echoing a new set of values to /proc/sys/kernel/printk. Many utilities (such as ps) and system
performance monitoring tools (such as sysstat) internally derive information from files residing under /proc.

Seq files, introduced in the 2.6 kernel, simplify large procfs operations. They are described in Appendix C, "Seq
Files."

Allocating Memory

Some device drivers have to be aware of the existence of memory zones. In addition, many drivers need the
services of memory-allocation functions. In this section, let's briefly discuss both.

The kernel organizes physical memory into pages. The page size depends on the architecture. On x86-based
machines, it's 4096 bytes. Each page in physical memory has a struct page (defined in

include/linux/mm_types.h) associated with it:

struct page {

 unsigned long flags; /* Page status */
 atomic_t _count; /* Reference count */

 /* ... */

 void * virtual; /* Explained later on */
};

On 32-bit x86 systems, the default kernel configuration splits the available 4GB address space into a 3GB virtual
memory space for user processes and a 1GB space for the kernel, as shown in Figure 2.5. This imposes a 1GB
limit on the amount of physical memory that the kernel can handle. In reality, the limit is 896MB because
128MB of the address space is occupied by kernel data structures. You may increase this limit by changing the
3GB/1GB split during kernel configuration, but you will incur the displeasure of memory-intensive applications if
you reduce the virtual address space of user processes.

Figure 2.5. Default address space split on a 32-bit PC system.

Kernel addresses that map the low 896MB differ from physical addresses by a constant offset and are called
logical addresses. With "high memory" support, the kernel can access memory beyond 896MB by generating
virtual addresses for those regions using special mappings. All logical addresses are kernel virtual addresses,
but not vice versa.

This leads us to the following kernel memory zones:

ZONE_DMA (<16MB), the zone used for Direct Memory Access (DMA). Because legacy ISA devices have 24

address lines and can access only the first 16MB, the kernel tries to dedicate this area for such devices.

1.

ZONE_NORMAL (16MB to 896MB), the normally addressable region, also called low memory. The "virtual"
field in struct page for low memory pages contains the corresponding logical addresses.

2.

ZONE_HIGH (>896MB), the space that the kernel can access only after mapping resident pages to regions

in ZONE_NORMAL (using kmap() and kunmap()). The corresponding kernel addresses are virtual and not

logical. The "virtual" field in struct page for high memory pages points to NULL if the page is not

kmapped.

3.

kmalloc() is a memory-allocation function that returns contiguous memory from ZONE_NORMAL. The prototype is

as follows:

void *kmalloc(int count, int flags);

Where count is the number of bytes to allocate, and flags is a mode specifier. All supported flags are listed in
include/linux./gfp.h (gfp stands for get free pages), but these are the commonly used ones:

GFP_KERNEL Used by process context code to allocate memory. If this flag is specified, kmalloc() is

allowed to go to sleep and wait for pages to get freed up.

1.

GFP_ATOMIC Used by interrupt context code to get hold of memory. In this mode, kmalloc() is not

allowed to sleep-wait for free pages, so the probability of successful allocation with GFP_ATOMIC is lower
than with GFP_KERNEL.

2.

Because memory returned by kmalloc() retains the contents from its previous incarnation, there could be a

security risk if it's exposed to user space. To get zeroed kmalloced memory, use kzalloc().

If you need to allocate large memory buffers, and you don't require the memory to be physically contiguous,
use vmalloc() rather than kmalloc():

void *vmalloc(unsigned long count);

Here count is the requested allocation size. The function returns kernel virtual addresses.

vmalloc() enjoys bigger allocation size limits than kmalloc() but is slower and can't be called from interrupt

context. Moreover, you cannot use the physically discontiguous memory returned by vmalloc() to perform
Direct Memory Access (DMA). High-performance network drivers commonly use vmalloc() to allocate large

descriptor rings when the device is opened.

The kernel offers more sophisticated memory allocation techniques. These include look aside buffers, slabs, and
mempools, which are beyond the scope of this chapter.

Looking at the Sources

Kernel boot starts with the execution of real mode assembly code living in the arch/x86/boot/ directory. Look at
arch/x86/kernel/setup_32.c to see how the protected mode kernel obtains information gleaned by the real
mode kernel.

The first boot message is printed by code residing in init/main.c. Dig inside init/calibrate.c to learn more about
BogoMIPS calibration and include/asm-your-arch/bugs.h for an insight into architecture-dependent checks.

Timer services in the kernel consist of architecture-dependent portions that live in arch/your-arch/kernel/ and
generic portions implemented in kernel/timer.c. For related definitions, look at the header files,
include/linux/time*.h.

jiffies is defined in linux/jiffies.h. The value for HZ is processor-dependent and can be found in include/asm-
your-arch/param.h.

Memory management sources reside in the top-level mm/ directory.

Table 2.1 contains a summary of the main data structures used in this chapter and the location of their
definitions in the source tree. Table 2.2 lists the main kernel programming interfaces that you used in this
chapter along with the location of their definitions.

Table 2.1. Summary of Data Structures

Data Structure Location Description

HZ include/asm-your-arch/param.h Number of times the system timer ticks
in 1 second

loops_per_jiffy init/main.c Number of times the processor executes
an internal delay-loop in 1 jiffy

timer_list include/linux/timer.h Used to hold the address of a routine
that you want to execute at some point
in the future

timeval include/linux/time.h Timestamp

spinlock_t include/linux/spinlock_types.h A busy-locking mechanism to ensure that
only a single thread enters a critical
section

semaphore include/asm-your-
arch/semaphore.h

A sleep-locking mechanism that allows a
predetermined number of users to enter
a critical section

mutex include/linux/mutex.h The new interface that replaces
semaphore

rwlock_t include/linux/spinlock_types.h Reader-writer spinlock

page include/linux/mm_types.h Kernel's representation of a physical
memory page

Table 2.2. Summary of Kernel Programming Interfaces

Kernel Interface Location Description

time_after()
time_after_eq()

time_before()

ime_before_eq()

include/linux/jiffies.h Compares the current value of jiffies with a
specified future value

schedule_timeout() kernel/timer.c Schedules a process to run after a specified
timeout has elapsed

wait_event_timeout() include/linux/wait.h Resumes execution if a specified condition
becomes true or if a timeout occurs

DEFINE_TIMER() include/linux/timer.h Statically defines a timer

init_timer() kernel/timer.c Dynamically defines a timer

add_timer() include/linux/timer.h Schedules the timer for execution after the
timeout has elapsed

mod_timer() kernel/timer.c Changes timer expiration

timer_pending() include/linux/timer.h Checks if a timer is pending at the moment

udelay() include/asm-your-
arch/delay.h arch/your-
arch/lib/delay.c

Busy-waits for the specified number of
microseconds

rdtsc() include/asm-x86/msr.h Gets the value of the TSC on Pentium-compatible
processors

do_gettimeofday() kernel/time.c Obtains wall time

local_irq_disable() include/asm-your-
arch/system.h

Disables interrupts on the local CPU

local_irq_enable() include/asm-your-
arch/system.h

Enables interrupts on the local CPU

local_irq_save() include/asm-your-
arch/system.h

Saves interrupt state and disables interrupts

local_irq_restore() include/asm-your-
arch/system.h

Restores interrupt state to what it was when the
matching local_irq_save() was called

spin_lock() include/linux/spinlock.h
kernel/spinlock.c

Acquires a spinlock.

spin_unlock() include/linux/spinlock.h Releases a spinlock

spin_lock_irqsave() include/linux/spinlock.h
kernel/spinlock.c

Saves interrupt state, disables interrupts and
preemption on local CPU, and locks their critical
section to regulate access by other CPUs

spin_unlock_irqrestore() include/linux/spinlock.h
kernel/spinlock.c

Restores interrupt state and preemption and
releases the lock

DEFINE_MUTEX() include/linux/mutex.h Statically declares a mutex

mutex_init() include/linux/mutex.h Dynamically declares a mutex

mutex_lock() kernel/mutex.c Acquires a mutex

Kernel Interface Location Description

mutex_unlock() kernel/mutex.c Releases a mutex

DECLARE_MUTEX() include/asm-your-
arch/semaphore.h

Statically declares a semaphore

init_MUTEX() include/asm-your-
arch/semaphore.h

Dynamically declares a semaphore

up() arch/your-
arch/kernel/semaphore.c

Acquires a semaphore

down() arch/your-
arch/kernel/semaphore.c

Releases a semaphore

atomic_inc()

atomic_inc_and_test()
atomic_dec()

atomic_dec_and_test()

clear_bit()
set_bit()

test_bit()

test_and_set_bit()

include/asm-your-
arch/atomic.h

Atomic operators to perform lightweight
operations

read_lock()
read_unlock()

read_lock_irqsave()
read_lock_irqrestore()

write_lock()
write_unlock()
write_lock_irqsave()

write_lock_irqrestore()

include/linux/spinlock.h
kernel/spinlock.c

Reader-writer variant of spinlocks

down_read()
up_read()

down_write()
up_write()

kernel/rwsem.c Reader-writer variant of semaphores

read_seqbegin()
read_seqretry()

write_seqlock()

write_sequnlock()

include/linux/seqlock.h Seqlock operations

kmalloc() include/linux/slab.h
mm/slab.c

Allocates physically contiguous memory from
ZONE_NORMAL

kzalloc() include/linux/slab.h
mm/util.c

Obtains zeroed kmalloced memory

kfree() mm/slab.c Releases kmalloced memory

vmalloc() mm/vmalloc.c Allocates virtually contiguous memory that is not
guaranteed to be physically contiguous.

mutex_unlock() kernel/mutex.c Releases a mutex

DECLARE_MUTEX() include/asm-your-
arch/semaphore.h

Statically declares a semaphore

init_MUTEX() include/asm-your-
arch/semaphore.h

Dynamically declares a semaphore

up() arch/your-
arch/kernel/semaphore.c

Acquires a semaphore

down() arch/your-
arch/kernel/semaphore.c

Releases a semaphore

atomic_inc()

atomic_inc_and_test()
atomic_dec()

atomic_dec_and_test()

clear_bit()
set_bit()

test_bit()

test_and_set_bit()

include/asm-your-
arch/atomic.h

Atomic operators to perform lightweight
operations

read_lock()
read_unlock()

read_lock_irqsave()
read_lock_irqrestore()

write_lock()
write_unlock()
write_lock_irqsave()

write_lock_irqrestore()

include/linux/spinlock.h
kernel/spinlock.c

Reader-writer variant of spinlocks

down_read()
up_read()

down_write()
up_write()

kernel/rwsem.c Reader-writer variant of semaphores

read_seqbegin()
read_seqretry()

write_seqlock()

write_sequnlock()

include/linux/seqlock.h Seqlock operations

kmalloc() include/linux/slab.h
mm/slab.c

Allocates physically contiguous memory from
ZONE_NORMAL

kzalloc() include/linux/slab.h
mm/util.c

Obtains zeroed kmalloced memory

kfree() mm/slab.c Releases kmalloced memory

vmalloc() mm/vmalloc.c Allocates virtually contiguous memory that is not
guaranteed to be physically contiguous.

Chapter 3. Kernel Facilities

In This Chapter

Kernel Threads

56

Helper Interfaces

65

Looking at the
Sources

85

In this chapter, let's look at some kernel facilities that are useful components in a driver
developer's toolbox. We start this chapter by looking at a kernel facility that is similar to user
processes; kernel threads are programming abstractions oriented toward concurrent processing.

The kernel offers several helper interfaces that simplify your code, eliminate redundancies,
increase code readability, and help in long-term maintenance. We will look at linked lists, hash
lists, work queues, notifier chains, completion functions, and error-handling aids. These helpers
are bug free and optimized, so your driver also inherits those benefits for free.

Kernel Threads

A kernel thread is a way to implement background tasks inside the kernel. The task can be busy handling
asynchronous events or sleep-waiting for an event to occur. Kernel threads are similar to user processes, except
that they live in kernel space and have access to kernel functions and data structures. Like user processes,
kernel threads have the illusion of monopolizing the processor because of preemptive scheduling. Many device
drivers utilize the services of kernel threads to implement assistant or helper tasks. For example, the khubd
kernel thread, which is part of the Linux USB driver core (covered in Chapter 11, "Universal Serial Bus")
monitors USB hubs and configures USB devices when they are hot-plugged into the system.

Creating a Kernel Thread

Let's learn about kernel threads with the help of an example. While developing the example thread, you will also
learn about kernel concepts such as process states, wait queues, and user mode helpers. When you are
comfortable with kernel threads, you can use them as a test vehicle for carrying out various experiments within
the kernel.

Assume that you would like the kernel to asynchronously invoke a user mode program to send you an email or
pager alert, whenever it senses that the health of certain key kernel data structures is deteriorating. (For
instance, free space in network receive buffers has dipped below a low watermark.)

This is a candidate for being implemented as a kernel thread for the following reasons:

It's a background task because it has to wait for asynchronous events.

It needs access to kernel data structures because the actual detection of events is done by other parts of
the kernel.

It has to invoke a user mode helper program, which is a time-consuming operation.

Built-In Kernel Threads

To see the kernel threads (also called kernel processes) running on your system, run the ps

command. Names of kernel threads are surrounded by square brackets:

bash> ps -ef

UID PID PPID C STIME TTY TIME CMD
root 1 0 0 22:36 ? 00:00:00 init [3]

root 2 0 0 22:36 ? 00:00:00 [kthreadd]
root 3 2 0 22:36 ? 00:00:00 [ksoftirqd/0]

root 4 2 0 22:36 ? 00:00:00 [events/0]
root 38 2 0 22:36 ? 00:00:00 [pdflush]

root 39 2 0 22:36 ? 00:00:00 [pdflush]
root 29 2 0 22:36 ? 00:00:00 [khubd]
root 695 2 0 22:36 ? 00:00:00 [kjournald]

...
root 3914 2 0 22:37 ? 00:00:00 [nfsd]

root 3915 2 0 22:37 ? 00:00:00 [nfsd]
...

root 4015 3364 0 22:55 tty3 00:00:00 -bash
root 4066 4015 0 22:59 tty3 00:00:00 ps -ef

The [ksoftirqd/0] kernel thread is an aid to implement softirqs. Softirqs are raised by interrupt
handlers to request "bottom half" processing of portions of the handler whose execution can be
deferred. We take a detailed look at bottom halves and softirqs in Chapter 4, "Laying the
Groundwork," but the basic idea here is to allow as little code as possible to be present inside
interrupt handlers. Having small interrupt handlers reduces interrupt-off times in the system,
resulting in lower latencies. Ksoftirqd's job is to ensure that a high load of softirqs neither starves
the softirqs nor overwhelms the system. On Symmetric Multi Processing (SMP) machines where
multiple thread instances can run on different processors in parallel, one instance of ksoftirqd is
created per CPU to improve throughput (ksoftirqd/n, where n is the CPU number).

The events/n threads (where n is the CPU number) help implement work queues, which are
another way of deferring work in the kernel. Parts of the kernel that desire deferred execution of
work can either create their own work queue or make use of the default events/n worker thread.
Work queues are also dissected in Chapter 4.

The task of the pdflush kernel thread is to flush out dirty pages from the page cache. The page
cache buffers accesses to the disk. To improve performance, actual writes to the disk are delayed
until the pdflush daemon writes out dirtied data to disk. This is done if the available free memory
dips below a threshold, or if the page has remained dirty for a sufficiently long time. In 2.4
kernels, these two tasks were respectively performed by separate kernel threads, bdflush and

kupdated. You might have noticed two instances of pdflush in the ps output. A new instance is
created if the kernel senses that existing instances have their hands full, servicing disk queues.
This improves throughput, especially if your system has multiple disks and many of them are busy.

As you saw in the preceding chapter, kjournald is the generic kernel journaling thread, which is
used by filesystems such as EXT3.

The Linux Network File System (NFS) server is implemented using a set of kernel threads named
nfsd.

Our example kernel thread relinquishes the processor until it gets woken up by parts of the kernel responsible
for monitoring the data structures of interest. When awake, it invokes a user mode helper program and passes
appropriate identity codes in its environment.

To create a kernel thread, use kernel_thread():

ret = kernel_thread(mykthread, NULL,

 CLONE_FS | CLONE_FILES | CLONE_SIGHAND | SIGCHLD);

The flags specify the resources to be shared between the parent and child threads. CLONE_FILES specifies that
open files are to be shared, and CLONE_SIGHAND requests that signal handlers be shared.

Listing 3.1 shows the example implementation. Because kernel threads usually act as helpers to device drivers,
they are created when the driver is initialized. In this case, however, the example thread can be created from
any suitable place, for instance, init/main.c.

The thread starts by invoking daemonize(), which performs initial housekeeping and changes the parent of the

calling thread to a kernel thread called kthreadd. Each Linux thread has a single parent. If a parent process dies
without waiting for its child to exit, the child becomes a zombie process and wastes resources. Reparenting the
child to kthreadd, avoids this and ensures proper cleanup when the thread exits.[1]

[1] In 2.6.21 and earlier kernels, daemonize() reparents the calling thread to the init task by calling reparent_to_init().

Because daemonize() blocks all signals by default, use allow_signal() to enable delivery if your thread
desires to handle a particular signal. There are no signal handlers inside the kernel, so use signal_pending()

to check for signals and take appropriate action. For debugging purposes, the code in Listing 3.1 requests
delivery of SIGKILL and dies if it's received.

kernel_thread() is depreciated in favor of the higher-level kthread API, which is built over the former. We will
look at kthreads later on.

Listing 3.1. Implementing a Kernel Thread

Code View:
static DECLARE_WAIT_QUEUE_HEAD(myevent_waitqueue);

rwlock_t myevent_lock;

extern unsigned int myevent_id; /* Holds the identity of the

 troubled data structure.

 Populated later on */

static int mykthread(void *unused)

{

 unsigned int event_id = 0;

 DECLARE_WAITQUEUE(wait, current);

 /* Become a kernel thread without attached user resources */

 daemonize("mykthread");

 /* Request delivery of SIGKILL */

 allow_signal(SIGKILL);

 /* The thread sleeps on this wait queue until it's

 woken up by parts of the kernel in charge of sensing

 the health of data structures of interest */

 add_wait_queue(&myevent_waitqueue, &wait);

 for (;;) {

 /* Relinquish the processor until the event occurs */

 set_current_state(TASK_INTERRUPTIBLE);

 schedule(); /* Allow other parts of the kernel to run */

 /* Die if I receive SIGKILL */

 if (signal_pending(current)) break;

 /* Control gets here when the thread is woken up */

 read_lock(&myevent_lock); /* Critical section starts */

 if (myevent_id) { /* Guard against spurious wakeups */

 event_id = myevent_id;

 read_unlock(&myevent_lock); /* Critical section ends */

 /* Invoke the registered user mode helper and

 pass the identity code in its environment */

 run_umode_handler(event_id); /* Expanded later on */

 } else {

 read_unlock(&myevent_lock);

 }

 }

 set_current_state(TASK_RUNNING);

 remove_wait_queue(&myevent_waitqueue, &wait);

 return 0;

}

If you compile and run this as part of the kernel, you can see the newly created thread, mykthread, in the ps
output:

bash> ps -ef

 UID PID PPID C STIME TTY TIME CMD
 root 1 0 0 21:56 ? 00:00:00 init [3]

 root 2 1 0 22:36 ? 00:00:00 [ksoftirqd/0]

 ...
 root 111 1 0 21:56 ? 00:00:00 [mykthread]

 ...

Before we delve further into the thread implementation, let's write a code snippet that monitors the health of a
data structure of interest and awakens mykthread if a problem condition is detected:

/* Executed by parts of the kernel that own the

 data structures whose health you want to monitor */
/* ... */

if (my_key_datastructure looks troubled) {

 write_lock(&myevent_lock); /* Serialize */
 /* Fill in the identity of the data structure */

 myevent_id = datastructure_id;

 write_unlock(&myevent_lock);

 /* Wake up mykthread */
 wake_up_interruptible(&myevent_waitqueue);

}

/* ... */

Listing 3.1 executes in process context, whereas the preceding snippet runs from either process or interrupt
context. Process and interrupt contexts communicate via kernel data structures. Our example uses myevent_id
and myevent_waitqueue for this communication. myevent_id contains the identity of the data structure in
trouble. Access to myevent_id is serialized using locks.

Note that kernel threads are preemptible only if CONFIG_PREEMPT is turned on at compile time. If

CONFIG_PREEMPT is off, or if you are still running a 2.4 kernel without the preemption patch, your thread will
freeze the system if it does not go to sleep. If you comment out schedule() in Listing 3.1 and disable

CONFIG_PREEMPT in your kernel configuration, your system will lock up.

You will learn how to obtain soft real-time responses from kernel threads when we discuss scheduling policies in
Chapter 19, "Drivers in User Space."

Process States and Wait Queues

Here's the code region from Listing 3.1 that puts mykthread to sleep while waiting for events:

add_wait_queue(&myevent_waitqueue, &wait);

for (;;) {

 /* ... */

 set_current_state(TASK_INTERRUPTIBLE);

 schedule(); /* Relinquish the processor */
 /* Point A */

 /* ... */

}
set_current_state(TASK_RUNNING);

remove_wait_queue(&myevent_waitqueue, &wait);

The operation of the preceding snippet is based on two concepts: wait queues and process states.

Wait queues hold threads that need to wait for an event or a system resource. Threads in a wait queue go to
sleep until they are woken up by another thread or an interrupt handler that is responsible for detecting the
event. Queuing and dequeuing are respectively done using add_wait_queue() and remove_wait_queue(), and
waking up queued tasks is accomplished via wake_up_interruptible().

A kernel thread (or a normal process) can be in any of the following process states: running, interruptible,
uninterruptible, zombie, stopped, traced, or dead. These states are defined in include/linux/sched.h:

A process in the running state (TASK_RUNNING) is in the scheduler run queue and is a candidate for

getting CPU time allotted by the scheduler.

A task in the interruptible state (TASK_INTERRUPTIBLE) is waiting for an event to occur and is not in the

scheduler run queue. When the task gets woken up, or if a signal is delivered to it, it re-enters the run
queue.

The uninterruptible state (TASK_UNINTERRUPTIBLE) is similar to the interruptible state except that
receipt of a signal will not put the task back into the run queue.

A stopped task (TASK_STOPPED) has stopped execution due to receipt of certain signals.

If an application such as strace is using the ptrace support in the kernel to intercept a task, it'll be in the
traced state (TASK_TRACED).

A task in the zombie state (EXIT_ZOMBIE) has terminated, but its parent did not wait for the task to
complete. An exiting task is either in the EXIT_ZOMBIE state or the dead (EXIT_DEAD) state.

You can use set_current_state() to set the run state of your kernel thread.

Let's now turn back to the preceding code snippet. mykthread sleeps on a wait queue (myevent_waitqueue) and
changes its state to TASK_INTERRUPTIBLE, signaling its desire to opt out of the scheduler run queue. The call to

schedule() asks the scheduler to choose and run a new task from its run queue. When code responsible for
health monitoring wakes up mykthread using wake_up_interruptible(&myevent_waitqueue), the thread is put

back into the scheduler run queue. The process state also gets simultaneously changed to TASK_RUNNING, so
there is no race condition even if the wake up occurs between the time the task state is set to
TASK_INTERRUPTIBLE and the time schedule() is called. The thread also gets back into the run queue if a

SIGKILL signal is delivered to it. When the scheduler subsequently picks mykthread from the run queue,

execution resumes from Point A.

User Mode Helpers

Mykthread invokes run_umode_handler() in Listing 3.1 to notify user space about detected events:

Code View:
/* Called from Listing 3.1 */

static void

run_umode_handler(int event_id)

{
 int i = 0;

 char *argv[2], *envp[4], *buffer = NULL;

 int value;

 argv[i++] = myevent_handler; /* Defined in
 kernel/sysctl.c */

 /* Fill in the id corresponding to the data structure

 in trouble */

 if (!(buffer = kmalloc(32, GFP_KERNEL))) return;
 sprintf(buffer, "TROUBLED_DS=%d", event_id);

 /* If no user mode handlers are found, return */
 if (!argv[0]) return; argv[i] = 0;

 /* Prepare the environment for /path/to/helper */

 i = 0;

 envp[i++] = "HOME=/";
 envp[i++] = "PATH=/sbin:/usr/sbin:/bin:/usr/bin";

 envp[i++] = buffer; envp[i] = 0;

 /* Execute the user mode program, /path/to/helper */

 value = call_usermodehelper(argv[0], argv, envp, 0);

 /* Check return values */
 kfree(buffer);

}

The kernel supports a mechanism for requesting user mode programs to help perform certain functions.
run_umode_handler() uses this facility by invoking call_usermodehelper().

You have to register the user mode program invoked by run_umode_handler() via a node in the /proc/sys/

directory. To do so, make sure that CONFIG_SYSCTL (files that are part of the /proc/sys/ directory are
collectively known as the sysctl interface) is enabled in your kernel configuration and add an entry to the
kern_table array in kernel/sysctl.c:

{
 .ctl_name = KERN_MYEVENT_HANDLER, /* Define in

 include/linux/sysctl.h */

 .procname = "myevent_handler",

 .data = &myevent_handler,
 .maxlen = 256,

 .mode = 0644,

 .proc_handler = &proc_dostring,

 .strategy = &sysctl_string,
},

This creates the node /proc/sys/kernel/myevent_handler in the process filesystem. To register your user mode
helper, do the following:

bash> echo /path/to/helper > /proc/sys/kernel/myevent_handler

This results in /path/to/helper getting executed when mykthread invokes run_umode_handler().

Mykthread passes the identity of the troubled kernel data structure to the user mode helper through the
environment variable TROUBLED_DS. The helper can be a simple script like the following that sends you an email

alert containing the information it gleaned from its environment:

bash> cat /path/to/helper

#!/bin/bash

echo Kernel datastructure $TROUBLED_DS is in trouble | mail -s Alert root

call_usermodehelper() has to be executed from process context and runs with root privileges. It's

implemented using a work queue, which we will soon discuss.

Chapter 3. Kernel Facilities

In This Chapter

Kernel Threads

56

Helper Interfaces

65

Looking at the
Sources

85

In this chapter, let's look at some kernel facilities that are useful components in a driver
developer's toolbox. We start this chapter by looking at a kernel facility that is similar to user
processes; kernel threads are programming abstractions oriented toward concurrent processing.

The kernel offers several helper interfaces that simplify your code, eliminate redundancies,
increase code readability, and help in long-term maintenance. We will look at linked lists, hash
lists, work queues, notifier chains, completion functions, and error-handling aids. These helpers
are bug free and optimized, so your driver also inherits those benefits for free.

Kernel Threads

A kernel thread is a way to implement background tasks inside the kernel. The task can be busy handling
asynchronous events or sleep-waiting for an event to occur. Kernel threads are similar to user processes, except
that they live in kernel space and have access to kernel functions and data structures. Like user processes,
kernel threads have the illusion of monopolizing the processor because of preemptive scheduling. Many device
drivers utilize the services of kernel threads to implement assistant or helper tasks. For example, the khubd
kernel thread, which is part of the Linux USB driver core (covered in Chapter 11, "Universal Serial Bus")
monitors USB hubs and configures USB devices when they are hot-plugged into the system.

Creating a Kernel Thread

Let's learn about kernel threads with the help of an example. While developing the example thread, you will also
learn about kernel concepts such as process states, wait queues, and user mode helpers. When you are
comfortable with kernel threads, you can use them as a test vehicle for carrying out various experiments within
the kernel.

Assume that you would like the kernel to asynchronously invoke a user mode program to send you an email or
pager alert, whenever it senses that the health of certain key kernel data structures is deteriorating. (For
instance, free space in network receive buffers has dipped below a low watermark.)

This is a candidate for being implemented as a kernel thread for the following reasons:

It's a background task because it has to wait for asynchronous events.

It needs access to kernel data structures because the actual detection of events is done by other parts of
the kernel.

It has to invoke a user mode helper program, which is a time-consuming operation.

Built-In Kernel Threads

To see the kernel threads (also called kernel processes) running on your system, run the ps

command. Names of kernel threads are surrounded by square brackets:

bash> ps -ef

UID PID PPID C STIME TTY TIME CMD
root 1 0 0 22:36 ? 00:00:00 init [3]

root 2 0 0 22:36 ? 00:00:00 [kthreadd]
root 3 2 0 22:36 ? 00:00:00 [ksoftirqd/0]

root 4 2 0 22:36 ? 00:00:00 [events/0]
root 38 2 0 22:36 ? 00:00:00 [pdflush]

root 39 2 0 22:36 ? 00:00:00 [pdflush]
root 29 2 0 22:36 ? 00:00:00 [khubd]
root 695 2 0 22:36 ? 00:00:00 [kjournald]

...
root 3914 2 0 22:37 ? 00:00:00 [nfsd]

root 3915 2 0 22:37 ? 00:00:00 [nfsd]
...

root 4015 3364 0 22:55 tty3 00:00:00 -bash
root 4066 4015 0 22:59 tty3 00:00:00 ps -ef

The [ksoftirqd/0] kernel thread is an aid to implement softirqs. Softirqs are raised by interrupt
handlers to request "bottom half" processing of portions of the handler whose execution can be
deferred. We take a detailed look at bottom halves and softirqs in Chapter 4, "Laying the
Groundwork," but the basic idea here is to allow as little code as possible to be present inside
interrupt handlers. Having small interrupt handlers reduces interrupt-off times in the system,
resulting in lower latencies. Ksoftirqd's job is to ensure that a high load of softirqs neither starves
the softirqs nor overwhelms the system. On Symmetric Multi Processing (SMP) machines where
multiple thread instances can run on different processors in parallel, one instance of ksoftirqd is
created per CPU to improve throughput (ksoftirqd/n, where n is the CPU number).

The events/n threads (where n is the CPU number) help implement work queues, which are
another way of deferring work in the kernel. Parts of the kernel that desire deferred execution of
work can either create their own work queue or make use of the default events/n worker thread.
Work queues are also dissected in Chapter 4.

The task of the pdflush kernel thread is to flush out dirty pages from the page cache. The page
cache buffers accesses to the disk. To improve performance, actual writes to the disk are delayed
until the pdflush daemon writes out dirtied data to disk. This is done if the available free memory
dips below a threshold, or if the page has remained dirty for a sufficiently long time. In 2.4
kernels, these two tasks were respectively performed by separate kernel threads, bdflush and

kupdated. You might have noticed two instances of pdflush in the ps output. A new instance is
created if the kernel senses that existing instances have their hands full, servicing disk queues.
This improves throughput, especially if your system has multiple disks and many of them are busy.

As you saw in the preceding chapter, kjournald is the generic kernel journaling thread, which is
used by filesystems such as EXT3.

The Linux Network File System (NFS) server is implemented using a set of kernel threads named
nfsd.

Our example kernel thread relinquishes the processor until it gets woken up by parts of the kernel responsible
for monitoring the data structures of interest. When awake, it invokes a user mode helper program and passes
appropriate identity codes in its environment.

To create a kernel thread, use kernel_thread():

ret = kernel_thread(mykthread, NULL,

 CLONE_FS | CLONE_FILES | CLONE_SIGHAND | SIGCHLD);

The flags specify the resources to be shared between the parent and child threads. CLONE_FILES specifies that
open files are to be shared, and CLONE_SIGHAND requests that signal handlers be shared.

Listing 3.1 shows the example implementation. Because kernel threads usually act as helpers to device drivers,
they are created when the driver is initialized. In this case, however, the example thread can be created from
any suitable place, for instance, init/main.c.

The thread starts by invoking daemonize(), which performs initial housekeeping and changes the parent of the

calling thread to a kernel thread called kthreadd. Each Linux thread has a single parent. If a parent process dies
without waiting for its child to exit, the child becomes a zombie process and wastes resources. Reparenting the
child to kthreadd, avoids this and ensures proper cleanup when the thread exits.[1]

[1] In 2.6.21 and earlier kernels, daemonize() reparents the calling thread to the init task by calling reparent_to_init().

Because daemonize() blocks all signals by default, use allow_signal() to enable delivery if your thread
desires to handle a particular signal. There are no signal handlers inside the kernel, so use signal_pending()

to check for signals and take appropriate action. For debugging purposes, the code in Listing 3.1 requests
delivery of SIGKILL and dies if it's received.

kernel_thread() is depreciated in favor of the higher-level kthread API, which is built over the former. We will
look at kthreads later on.

Listing 3.1. Implementing a Kernel Thread

Code View:
static DECLARE_WAIT_QUEUE_HEAD(myevent_waitqueue);

rwlock_t myevent_lock;

extern unsigned int myevent_id; /* Holds the identity of the

 troubled data structure.

 Populated later on */

static int mykthread(void *unused)

{

 unsigned int event_id = 0;

 DECLARE_WAITQUEUE(wait, current);

 /* Become a kernel thread without attached user resources */

 daemonize("mykthread");

 /* Request delivery of SIGKILL */

 allow_signal(SIGKILL);

 /* The thread sleeps on this wait queue until it's

 woken up by parts of the kernel in charge of sensing

 the health of data structures of interest */

 add_wait_queue(&myevent_waitqueue, &wait);

 for (;;) {

 /* Relinquish the processor until the event occurs */

 set_current_state(TASK_INTERRUPTIBLE);

 schedule(); /* Allow other parts of the kernel to run */

 /* Die if I receive SIGKILL */

 if (signal_pending(current)) break;

 /* Control gets here when the thread is woken up */

 read_lock(&myevent_lock); /* Critical section starts */

 if (myevent_id) { /* Guard against spurious wakeups */

 event_id = myevent_id;

 read_unlock(&myevent_lock); /* Critical section ends */

 /* Invoke the registered user mode helper and

 pass the identity code in its environment */

 run_umode_handler(event_id); /* Expanded later on */

 } else {

 read_unlock(&myevent_lock);

 }

 }

 set_current_state(TASK_RUNNING);

 remove_wait_queue(&myevent_waitqueue, &wait);

 return 0;

}

If you compile and run this as part of the kernel, you can see the newly created thread, mykthread, in the ps
output:

bash> ps -ef

 UID PID PPID C STIME TTY TIME CMD
 root 1 0 0 21:56 ? 00:00:00 init [3]

 root 2 1 0 22:36 ? 00:00:00 [ksoftirqd/0]

 ...
 root 111 1 0 21:56 ? 00:00:00 [mykthread]

 ...

Before we delve further into the thread implementation, let's write a code snippet that monitors the health of a
data structure of interest and awakens mykthread if a problem condition is detected:

/* Executed by parts of the kernel that own the

 data structures whose health you want to monitor */
/* ... */

if (my_key_datastructure looks troubled) {

 write_lock(&myevent_lock); /* Serialize */
 /* Fill in the identity of the data structure */

 myevent_id = datastructure_id;

 write_unlock(&myevent_lock);

 /* Wake up mykthread */
 wake_up_interruptible(&myevent_waitqueue);

}

/* ... */

Listing 3.1 executes in process context, whereas the preceding snippet runs from either process or interrupt
context. Process and interrupt contexts communicate via kernel data structures. Our example uses myevent_id
and myevent_waitqueue for this communication. myevent_id contains the identity of the data structure in
trouble. Access to myevent_id is serialized using locks.

Note that kernel threads are preemptible only if CONFIG_PREEMPT is turned on at compile time. If

CONFIG_PREEMPT is off, or if you are still running a 2.4 kernel without the preemption patch, your thread will
freeze the system if it does not go to sleep. If you comment out schedule() in Listing 3.1 and disable

CONFIG_PREEMPT in your kernel configuration, your system will lock up.

You will learn how to obtain soft real-time responses from kernel threads when we discuss scheduling policies in
Chapter 19, "Drivers in User Space."

Process States and Wait Queues

Here's the code region from Listing 3.1 that puts mykthread to sleep while waiting for events:

add_wait_queue(&myevent_waitqueue, &wait);

for (;;) {

 /* ... */

 set_current_state(TASK_INTERRUPTIBLE);

 schedule(); /* Relinquish the processor */
 /* Point A */

 /* ... */

}
set_current_state(TASK_RUNNING);

remove_wait_queue(&myevent_waitqueue, &wait);

The operation of the preceding snippet is based on two concepts: wait queues and process states.

Wait queues hold threads that need to wait for an event or a system resource. Threads in a wait queue go to
sleep until they are woken up by another thread or an interrupt handler that is responsible for detecting the
event. Queuing and dequeuing are respectively done using add_wait_queue() and remove_wait_queue(), and
waking up queued tasks is accomplished via wake_up_interruptible().

A kernel thread (or a normal process) can be in any of the following process states: running, interruptible,
uninterruptible, zombie, stopped, traced, or dead. These states are defined in include/linux/sched.h:

A process in the running state (TASK_RUNNING) is in the scheduler run queue and is a candidate for

getting CPU time allotted by the scheduler.

A task in the interruptible state (TASK_INTERRUPTIBLE) is waiting for an event to occur and is not in the

scheduler run queue. When the task gets woken up, or if a signal is delivered to it, it re-enters the run
queue.

The uninterruptible state (TASK_UNINTERRUPTIBLE) is similar to the interruptible state except that
receipt of a signal will not put the task back into the run queue.

A stopped task (TASK_STOPPED) has stopped execution due to receipt of certain signals.

If an application such as strace is using the ptrace support in the kernel to intercept a task, it'll be in the
traced state (TASK_TRACED).

A task in the zombie state (EXIT_ZOMBIE) has terminated, but its parent did not wait for the task to
complete. An exiting task is either in the EXIT_ZOMBIE state or the dead (EXIT_DEAD) state.

You can use set_current_state() to set the run state of your kernel thread.

Let's now turn back to the preceding code snippet. mykthread sleeps on a wait queue (myevent_waitqueue) and
changes its state to TASK_INTERRUPTIBLE, signaling its desire to opt out of the scheduler run queue. The call to

schedule() asks the scheduler to choose and run a new task from its run queue. When code responsible for
health monitoring wakes up mykthread using wake_up_interruptible(&myevent_waitqueue), the thread is put

back into the scheduler run queue. The process state also gets simultaneously changed to TASK_RUNNING, so
there is no race condition even if the wake up occurs between the time the task state is set to
TASK_INTERRUPTIBLE and the time schedule() is called. The thread also gets back into the run queue if a

SIGKILL signal is delivered to it. When the scheduler subsequently picks mykthread from the run queue,

execution resumes from Point A.

User Mode Helpers

Mykthread invokes run_umode_handler() in Listing 3.1 to notify user space about detected events:

Code View:
/* Called from Listing 3.1 */

static void

run_umode_handler(int event_id)

{
 int i = 0;

 char *argv[2], *envp[4], *buffer = NULL;

 int value;

 argv[i++] = myevent_handler; /* Defined in
 kernel/sysctl.c */

 /* Fill in the id corresponding to the data structure

 in trouble */

 if (!(buffer = kmalloc(32, GFP_KERNEL))) return;
 sprintf(buffer, "TROUBLED_DS=%d", event_id);

 /* If no user mode handlers are found, return */
 if (!argv[0]) return; argv[i] = 0;

 /* Prepare the environment for /path/to/helper */

 i = 0;

 envp[i++] = "HOME=/";
 envp[i++] = "PATH=/sbin:/usr/sbin:/bin:/usr/bin";

 envp[i++] = buffer; envp[i] = 0;

 /* Execute the user mode program, /path/to/helper */

 value = call_usermodehelper(argv[0], argv, envp, 0);

 /* Check return values */
 kfree(buffer);

}

The kernel supports a mechanism for requesting user mode programs to help perform certain functions.
run_umode_handler() uses this facility by invoking call_usermodehelper().

You have to register the user mode program invoked by run_umode_handler() via a node in the /proc/sys/

directory. To do so, make sure that CONFIG_SYSCTL (files that are part of the /proc/sys/ directory are
collectively known as the sysctl interface) is enabled in your kernel configuration and add an entry to the
kern_table array in kernel/sysctl.c:

{
 .ctl_name = KERN_MYEVENT_HANDLER, /* Define in

 include/linux/sysctl.h */

 .procname = "myevent_handler",

 .data = &myevent_handler,
 .maxlen = 256,

 .mode = 0644,

 .proc_handler = &proc_dostring,

 .strategy = &sysctl_string,
},

This creates the node /proc/sys/kernel/myevent_handler in the process filesystem. To register your user mode
helper, do the following:

bash> echo /path/to/helper > /proc/sys/kernel/myevent_handler

This results in /path/to/helper getting executed when mykthread invokes run_umode_handler().

Mykthread passes the identity of the troubled kernel data structure to the user mode helper through the
environment variable TROUBLED_DS. The helper can be a simple script like the following that sends you an email

alert containing the information it gleaned from its environment:

bash> cat /path/to/helper

#!/bin/bash

echo Kernel datastructure $TROUBLED_DS is in trouble | mail -s Alert root

call_usermodehelper() has to be executed from process context and runs with root privileges. It's

implemented using a work queue, which we will soon discuss.

Helper Interfaces

Several useful helper interfaces exist in the kernel to make life easier for device driver developers. One example
is the implementation of the doubly linked list library. Many drivers need to maintain and manipulate linked lists
of data structures. The kernel's list interface routines eliminate the need for chasing list pointers and debugging
messy problems related to list maintenance. Let's learn to use helper interfaces such as lists, hlists, work
queues, completion functions, notifier blocks, and kthreads.

There are equivalent ways to do what the helper facilities offer. You can, for example, implement your own list
manipulation routines instead of using the list library, or use kernel threads to defer work instead of submitting
it to work queues. Using standard kernel helper interfaces, however, simplifies your code, weeds out
redundancies from the kernel, increases code readability, and helps long-term maintenance.

Because the kernel is vast, you can always find parts that do not yet take advantage of these helper
mechanisms, so updating those code regions might be a good way to start contributing to kernel
development.

Linked Lists

To weave doubly linked lists of data structures, use the functions provided in include/linux/list.h. Essentially,
you embed a struct list_head inside your data structure:

#include <linux/list.h>

struct list_head {
 struct list_head *next, *prev;

};

struct mydatastructure {
 struct list_head mylist; /* Embed */
 /* ... */ /* Actual Fields */

};

mylist is the link that chains different instances of mydatastructure. If you have multiple list_heads
embedded inside mydatastructure, each of them constitutes a link that renders mydatastructure a member of

a new list. You can use the list library to add or delete membership from individual lists.

To get the lay of the land before the detail, let's summarize the linked list programming interface offered by the
list library. This is done in Table 3.1.

Table 3.1. Linked List Manipulation Functions

Function Purpose

INIT_LIST_HEAD() Initializes the list head

list_add() Adds an element after the list head

Function Purpose

list_add_tail() Adds an element to the tail of the list

list_del() Deletes an element from the list

list_replace() Replaces an element in the list with another

list_entry() Loops through all nodes in the list

list_for_each_entry()/

list_for_each_entry_safe()

Simpler list iteration interfaces

list_empty() Checks whether there are any elements in the list

list_splice() Joins one list with another

To illustrate list usage, let's implement an example. The example also serves as a foundation to understand the
concept of work queues, which is discussed in the next section. Assume that your kernel driver needs to perform
a heavy-duty task from an entry point. An example is a task that forces the calling thread to sleep-wait.
Naturally, your driver doesn't like to block until the task finishes, because that slows down the responsiveness of
applications relying on it. So, whenever the driver needs to perform this expensive work, it defers execution by
adding the corresponding routine to a linked list of work functions. The actual work is performed by a kernel
thread, which traverses the list and executes the work functions in the background. The driver submits work
functions to the tail of the list, while the kernel thread ploughs its way from the head of the list, thus ensuring
that work queued first gets done first. Of course, the rest of the driver needs to be designed to suit this scheme
of deferred execution. Before understanding this example, however, be aware that we will use the work queue
interface in Listing 3.5 to implement the same task in a simpler manner.

Let's first introduce the key driver data structures used by our example:

static struct _mydrv_wq {
 struct list_head mydrv_worklist; /* Work List */

 spinlock_t lock; /* Protect the list */
 wait_queue_head_t todo; /* Synchronize submitter

 and worker */
} mydrv_wq;

struct _mydrv_work {

 struct list_head mydrv_workitem; /* The work chain */
 void (*worker_func)(void *); /* Work to perform */

 void *worker_data; /* Argument to worker_func */

 /* ... */ /* Other fields */
} mydrv_work;

mydrv_wq is global to all work submissions. Its members include a pointer to the head of the work list, and a
wait queue to communicate between driver functions that submit work and the kernel thread that performs the
work. The list helper functions do not protect accesses to list members, so you need to use concurrency
mechanisms to serialize simultaneous pointer references. This is done using a spinlock that is also a part of
mydrv_wq. The driver initialization routine mydrv_init() in Listing 3.2 initializes the spinlock, the list head, and

the wait queue, and kick starts the worker thread.

Listing 3.2. Initialize Data Structures

list_add_tail() Adds an element to the tail of the list

list_del() Deletes an element from the list

list_replace() Replaces an element in the list with another

list_entry() Loops through all nodes in the list

list_for_each_entry()/

list_for_each_entry_safe()

Simpler list iteration interfaces

list_empty() Checks whether there are any elements in the list

list_splice() Joins one list with another

To illustrate list usage, let's implement an example. The example also serves as a foundation to understand the
concept of work queues, which is discussed in the next section. Assume that your kernel driver needs to perform
a heavy-duty task from an entry point. An example is a task that forces the calling thread to sleep-wait.
Naturally, your driver doesn't like to block until the task finishes, because that slows down the responsiveness of
applications relying on it. So, whenever the driver needs to perform this expensive work, it defers execution by
adding the corresponding routine to a linked list of work functions. The actual work is performed by a kernel
thread, which traverses the list and executes the work functions in the background. The driver submits work
functions to the tail of the list, while the kernel thread ploughs its way from the head of the list, thus ensuring
that work queued first gets done first. Of course, the rest of the driver needs to be designed to suit this scheme
of deferred execution. Before understanding this example, however, be aware that we will use the work queue
interface in Listing 3.5 to implement the same task in a simpler manner.

Let's first introduce the key driver data structures used by our example:

static struct _mydrv_wq {
 struct list_head mydrv_worklist; /* Work List */

 spinlock_t lock; /* Protect the list */
 wait_queue_head_t todo; /* Synchronize submitter

 and worker */
} mydrv_wq;

struct _mydrv_work {

 struct list_head mydrv_workitem; /* The work chain */
 void (*worker_func)(void *); /* Work to perform */

 void *worker_data; /* Argument to worker_func */

 /* ... */ /* Other fields */
} mydrv_work;

mydrv_wq is global to all work submissions. Its members include a pointer to the head of the work list, and a
wait queue to communicate between driver functions that submit work and the kernel thread that performs the
work. The list helper functions do not protect accesses to list members, so you need to use concurrency
mechanisms to serialize simultaneous pointer references. This is done using a spinlock that is also a part of
mydrv_wq. The driver initialization routine mydrv_init() in Listing 3.2 initializes the spinlock, the list head, and

the wait queue, and kick starts the worker thread.

Listing 3.2. Initialize Data Structures

static int __init

mydrv_init(void)

{

 /* Initialize the lock to protect against

 concurrent list access */

 spin_lock_init(&mydrv_wq.lock);

 /* Initialize the wait queue for communication

 between the submitter and the worker */

 init_waitqueue_head(&mydrv_wq.todo);

 /* Initialize the list head */

 INIT_LIST_HEAD(&mydrv_wq.mydrv_worklist);

 /* Start the worker thread. See Listing 3.4 */

 kernel_thread(mydrv_worker, NULL,

 CLONE_FS | CLONE_FILES | CLONE_SIGHAND | SIGCHLD);

 return 0;

}

Before examining the worker thread that executes submitted work, let's look at work submission itself. Listing
3.3 implements a function that other parts of the kernel can use to submit work. It uses list_add_tail() to
add a work function to the tail of the list. Look at Figure 3.1 to see the physical structure of the work list.

Figure 3.1. Linked list of work functions.

[View full size image]

Listing 3.3. Submitting Work to Be Executed Later

int

submit_work(void (*func)(void *data), void *data)

{

 struct _mydrv_work *mydrv_work;

 /* Allocate the work structure */

 mydrv_work = kmalloc(sizeof(struct _mydrv_work), GFP_ATOMIC);

 if (!mydrv_work) return -1;

 /* Populate the work structure */

 mydrv_work->worker_func = func; /* Work function */

 mydrv_work->worker_data = data; /* Argument to pass */

 spin_lock(&mydrv_wq.lock); /* Protect the list */

 /* Add your work to the tail of the list */

 list_add_tail(&mydrv_work->mydrv_workitem,

 &mydrv_wq.mydrv_worklist);

 /* Wake up the worker thread */

 wake_up(&mydrv_wq.todo);

 spin_unlock(&mydrv_wq.lock);

 return 0;

}

To submit a work function void job(void *) from a driver entry point, do this:

submit_work(job, NULL);

After submitting the work function, Listing 3.3 wakes up the worker thread. The general structure of the worker
thread shown in Listing 3.4 is similar to standard kernel threads discussed in the previous section. The thread
uses list_entry() to work its way through all nodes in the list. list_entry() returns the container data
structure inside which the list node is embedded. Take a closer look at the relevant line in Listing 3.4:

mydrv_work = list_entry(mydrv_wq.mydrv_worklist.next,
 struct _mydrv_work, mydrv_workitem);

mydrv_workitem is embedded inside mydrv_work, so list_entry() returns a pointer to the corresponding
mydrv_work structure. The parameters passed to list_entry() are the address of the embedded list node, the

type of the container structure, and the field name of the embedded list node.

After executing a submitted work function, the worker thread removes the corresponding node from the list
using list_del(). Note that mydrv_wq.lock is released and reacquired in the time window when the submitted

work function is executed. This is because work functions can go to sleep resulting in potential deadlocks if
newly scheduled code tries to acquire the same spinlock.

Listing 3.4. The Worker Thread

Code View:
static int

mydrv_worker(void *unused)

{

 DECLARE_WAITQUEUE(wait, current);

 void (*worker_func)(void *);

 void *worker_data;

 struct _mydrv_work *mydrv_work;

 set_current_state(TASK_INTERRUPTIBLE);

 /* Spin until asked to die */

 while (!asked_to_die()) {

 add_wait_queue(&mydrv_wq.todo, &wait);

 if (list_empty(&mydrv_wq.mydrv_worklist)) {

 schedule();

 /* Woken up by the submitter */

 } else {

 set_current_state(TASK_RUNNING);

 }

 remove_wait_queue(&mydrv_wq.todo, &wait);

 /* Protect concurrent access to the list */

 spin_lock(&mydrv_wq.lock);

 /* Traverse the list and plough through the work functions

 present in each node */

 while (!list_empty(&mydrv_wq.mydrv_worklist)) {

 /* Get the first entry in the list */

 mydrv_work = list_entry(mydrv_wq.mydrv_worklist.next,

 struct _mydrv_work, mydrv_workitem);

 worker_func = mydrv_work->worker_func;

 worker_data = mydrv_work->worker_data;

 /* This node has been processed. Throw it

 out of the list */

 list_del(mydrv_wq.mydrv_worklist.next);

 kfree(mydrv_work); /* Free the node */

 /* Execute the work function in this node */

 spin_unlock(&mydrv_wq.lock); /* Release lock */

 worker_func(worker_data);

 spin_lock(&mydrv_wq.lock); /* Re-acquire lock */

 }

 spin_unlock(&mydrv_wq.lock);

 set_current_state(TASK_INTERRUPTIBLE);

 }

 set_current_state(TASK_RUNNING);

 return 0;

}

For simplicity, the example code does not perform error handling. For example, if the call to kernel_thread()

in Listing 3.2 fails, you need to free memory allocated for the corresponding work structure. Also,
asked_to_die() in Listing 3.4 is left unwritten. It essentially breaks out of the loop if it either detects a

delivered signal or receives a communication from the release() entry point that the module is about to be
unloaded from the kernel.

Before ending this section, let's take a look at another useful list library routine, list_for_each_entry(). With
this macro, iteration becomes simpler and more readable because you don't have to use list_entry() inside

the loop. Use the list_for_each_entry_safe() variant if you will delete list elements inside the loop. You can

replace the following snippet in Listing 3.4:

while (!list_empty(&mydrv_wq.mydrv_worklist)) {

 mydrv_work = list_entry(mydrv_wq.mydrv_worklist.next,
 struct _mydrv_work, mydrv_workitem);

 /* ... */

}

with:

struct _mydrv_work *temp;
list_for_each_entry_safe(mydrv_work, temp,

 &mydrv_wq.mydrv_worklist,
 mydrv_workitem) {
 /* ... */

}

You can't use list_for_each_entry() in this case because you are removing the entry pointed to by

mydrv_work inside the loop in Listing 3.4. list_for_each_entry_safe() solves this problem using the
temporary variable passed as the second argument (temp) to save the address of the next entry in the list.

Hash Lists

The doubly linked list implementation discussed previously is not optimal for cases where you want to
implement linked data structures such as hash tables. This is because hash tables need only a list head
containing a single pointer. To reduce memory overhead for such applications, the kernel provides hash lists (or
hlists), a variation of lists. Unlike lists, which use the same structure for the list head and list nodes, hlists have
separate definitions:

struct hlist_head {
 struct hlist_node *first;

};

struct hlist_node {
 struct hlist_node *next, **pprev;

};

To suit the scheme of a single-pointer hlist head, the nodes maintain the address of the pointer to the previous
node, rather than the pointer itself.

Hash tables are implemented using an array of hlist_heads. Each hlist_head sources a doubly linked list of
hlist_nodes. A hash function is used to locate the index (or bucket) in the hlist_head array. When that is

done, you may use hlist helper routines (also defined in include/linux/list.h) to operate on the list of
hlist_nodes linked to the chosen bucket. Look at the implementation of the directory cache (dcache) in

fs/dcache.c for an example.

Work Queues

Work queues are a way to defer work inside the kernel.[2] Deferring work is useful in innumerable situations.
Examples include the following:

[2] Softirqs and tasklets are two other mechanisms available for deferring work inside the kernel. Table 4.1 of Chapter 4 compares softirqs,

tasklets, and work queues.

Triggering restart of a network adapter in response to an error interrupt

Filesystem tasks such as syncing disk buffers

Sending a command to a disk and following through with the storage protocol state machine

The functionality of work queues is similar to the example described in Listings 3.2 to 3.4. However, work
queues can help you accomplish the same task in a simpler manner.

The work queue helper library exposes two interface structures to users: a workqueue_struct and a
work_struct. Follow these steps to use work queues:

1. Create a work queue (or a workqueue_struct) with one or more associated kernel threads. To create a

kernel thread to service a workqueue_struct, use create_singlethread_workqueue(). To create one
worker thread per CPU in the system, use the create_workqueue() variant. The kernel also has default
per-CPU worker threads (events/n, where n is the CPU number) that you can timeshare instead of
requesting a separate worker thread. Depending on your application, you might incur a performance hit if
you don't have a dedicated worker thread.

2. Create a work element (or a work_struct). A work_struct is initialized using INIT_WORK(), which

populates it with the address and argument of your work function.

3. Submit the work element to the work queue. A work_struct can be submitted to a dedicated queue using

queue_work(), or to the default kernel worker thread using schedule_work().

Let's rewrite Listings 3.2 to 3.4 to take advantage of the work queue interface. This is done in Listing 3.5. The
entire kernel thread, as well as the spinlock and the wait queue, vanish inside the work queue interface. Even
the call to create_singlethread_workqueue() goes away if you are using the default kernel worker thread.

Listing 3.5. Using Work Queues to Defer Work

Code View:
#include <linux/workqueue.h>

struct workqueue_struct *wq;

/* Driver Initialization */

static int __init

mydrv_init(void)

{

 /* ... */

 wq = create_singlethread_workqueue("mydrv");

 return 0;

}

 /* Work Submission. The first argument is the work function, and

 the second argument is the argument to the work function */

 int

 submit_work(void (*func)(void *data), void *data)

 {

 struct work_struct *hardwork;

 hardwork = kmalloc(sizeof(struct work_struct), GFP_KERNEL);

 /* Init the work structure */

 INIT_WORK(hardwork, func, data);

 /* Enqueue Work */

 queue_work(wq, hardwork);

 return 0;

}

If you are using work queues, you will get linker errors unless you declare your module as licensed under
GPL. This is because the kernel exports these functions only to GPLed code. If you look at the kernel
work queue implementation, you will see this restriction expressed in statements such as this:

EXPORT_SYMBOL_GPL(queue_work);

To announce that your module is copyleft-ed under GPL, declare the following:

MODULE_LICENSE("GPL");

Notifier Chains

Notifier chains are used to send status change messages to code regions that request them. Unlike hard-coded
mechanisms, notifiers offer a versatile technique for getting alerted when events of interest are generated.
Notifiers were originally added for passing network events to concerned sections of the kernel but are now used
for many other purposes. The kernel implements predefined notifiers for significant events. Examples of such
notifications include the following:

Die notification, which is sent when a kernel function triggers a trap or a fault, caused by an "oops,"
page fault, or a breakpoint hit. If you are, for example, writing a device driver for a medical grade card,
you might want to register yourself with the die notifier so that you can attempt to turn off the medical
electronics if a kernel panic occurs.

Net device notification, which is generated when a network interface goes up or down.

CPU frequency notification, which is dispatched when there is a transition in the processor frequency.

Internet address notification, which is sent when a change is detected in the IP address of a network
interface.

An example user of notifiers is the High-level Data Link Control (HDLC) protocol driver drivers/net/wan/hdlc.c,
which registers itself with the net device notifier chain to sense carrier changes.

To attach your code to a notifier chain, you have to register an event handler with the associated chain. An
event identifier and a notifier-specific argument are passed as arguments to the handler routine when the
concerned event is generated. To define a custom notifier chain, you have to additionally implement the
infrastructure to ignite the chain when the event is detected.

Listing 3.6 contains examples of using predefined and user-defined notifiers. Table 3.2 contains a brief
description of the notifier chains used by Listing 3.6 and the events they propagate, so look at the listing and
the table in tandem.

Table 3.2. Notifier Chains and the Events They Propagate

Notifier Chain Description

Die Notifier Chain (die_chain) my_die_event_handler() attaches to the die notifier chain,

die_chain, using register_die_notifier(). To trigger invocation
of my_die_event_handler(), introduce an invalid dereference

somewhere in your code, such as the following:
int *q = 0;

*q = 1;

When this code snippet is executed, my_die_event_handler() gets

called, and you will see a message like this:

my_die_event_handler: OOPs! at EIP=f00350e7

The die event notifier passes the die_args structure to the
registered event handler. This argument contains a pointer to the
regs structure, which carries a snapshot of processor register
contents when the fault occurred. my_die_event_handler() prints

the contents of the instruction pointer register.

Netdevice Notifier
Chain(netdev_chain)

my_dev_event_handler() attaches to the net device notifier chain,

netdev_chain, using register_netdevice_notifier(). You can
generate this event by changing the state of a network interface
such as Ethernet (ethX) or loopback (lo):
bash> ifconfig eth0 up

Notifier Chain Description

This results in the execution of my_dev_event_handler(). The

handler is passed a pointer to struct net_device as argument,
which contains the name of the network interface.
my_dev_event_handler() uses this information to produce the
following message:

my_dev_event_handler: Val=1, Interface=eth0

Val=1 corresponds to the NETDEV_UP event as defined in

include/linux/notifier.h.

User-Defined Notifier Chain Listing 3.6 also implements a user-defined notifier chain,
my_noti_chain. Assume that you want an event to be generated

whenever a user reads from a particular file in the process
filesystem. Add the following in the associated procfs read routine:

blocking_notifier_call_chain(&my_noti_chain, 100, NULL);

This results in the invocation of my_event_handler() whenever
you read from the corresponding /proc file and results in the
following message:

my_event_handler: Val=100

Val contains the identity of the generated event, which is 100 for
this example. The function argument is left unused.

You have to unregister event handlers from notifier chains when your module is released from the kernel. For
example, if you up or down a network interface after unloading the code in Listing 3.6, you will be rankled by an
"oops," unless you perform an unregister_netdevice_notifier(&my_dev_notifier) from the module's
release() method. This is because the notifier chain continues to think that the handler code is valid, even

though it has been pulled out of the kernel.

Listing 3.6. Notifier Event Handlers

Code View:
#include <linux/notifier.h>

#include <asm/kdebug.h>

#include <linux/netdevice.h>

#include <linux/inetdevice.h>

/* Die Notifier Definition */

static struct notifier_block my_die_notifier = {

 .notifier_call = my_die_event_handler,

};

/* Die notification event handler */

int

my_die_event_handler(struct notifier_block *self,

 unsigned long val, void *data)

{

 struct die_args *args = (struct die_args *)data;

 if (val == 1) { /* '1' corresponds to an "oops" */

 printk("my_die_event: OOPs! at EIP=%lx\n", args->regs->eip);

This results in the execution of my_dev_event_handler(). The

handler is passed a pointer to struct net_device as argument,
which contains the name of the network interface.
my_dev_event_handler() uses this information to produce the
following message:

my_dev_event_handler: Val=1, Interface=eth0

Val=1 corresponds to the NETDEV_UP event as defined in

include/linux/notifier.h.

User-Defined Notifier Chain Listing 3.6 also implements a user-defined notifier chain,
my_noti_chain. Assume that you want an event to be generated

whenever a user reads from a particular file in the process
filesystem. Add the following in the associated procfs read routine:

blocking_notifier_call_chain(&my_noti_chain, 100, NULL);

This results in the invocation of my_event_handler() whenever
you read from the corresponding /proc file and results in the
following message:

my_event_handler: Val=100

Val contains the identity of the generated event, which is 100 for
this example. The function argument is left unused.

You have to unregister event handlers from notifier chains when your module is released from the kernel. For
example, if you up or down a network interface after unloading the code in Listing 3.6, you will be rankled by an
"oops," unless you perform an unregister_netdevice_notifier(&my_dev_notifier) from the module's
release() method. This is because the notifier chain continues to think that the handler code is valid, even

though it has been pulled out of the kernel.

Listing 3.6. Notifier Event Handlers

Code View:
#include <linux/notifier.h>

#include <asm/kdebug.h>

#include <linux/netdevice.h>

#include <linux/inetdevice.h>

/* Die Notifier Definition */

static struct notifier_block my_die_notifier = {

 .notifier_call = my_die_event_handler,

};

/* Die notification event handler */

int

my_die_event_handler(struct notifier_block *self,

 unsigned long val, void *data)

{

 struct die_args *args = (struct die_args *)data;

 if (val == 1) { /* '1' corresponds to an "oops" */

 printk("my_die_event: OOPs! at EIP=%lx\n", args->regs->eip);

 } /* else ignore */

 return 0;

}

/* Net Device notifier definition */

static struct notifier_block my_dev_notifier = {

 .notifier_call = my_dev_event_handler,

};

/* Net Device notification event handler */

int my_dev_event_handler(struct notifier_block *self,

 unsigned long val, void *data)

{

 printk("my_dev_event: Val=%ld, Interface=%s\n", val,

 ((struct net_device *) data)->name);

 return 0;

}

/* User-defined notifier chain implementation */

static BLOCKING_NOTIFIER_HEAD(my_noti_chain);

static struct notifier_block my_notifier = {

 .notifier_call = my_event_handler,

};

/* User-defined notification event handler */

int my_event_handler(struct notifier_block *self,

 unsigned long val, void *data)

{

 printk("my_event: Val=%ld\n", val);

 return 0;

}

/* Driver Initialization */

static int __init

my_init(void)

{

 /* ... */

 /* Register Die Notifier */

 register_die_notifier(&my_die_notifier);

 /* Register Net Device Notifier */

 register_netdevice_notifier(&my_dev_notifier);

 /* Register a user-defined Notifier */

 blocking_notifier_chain_register(&my_noti_chain, &my_notifier);

 /* ... */

}

my_noti_chain in Listing 3.6 is declared as a blocking notifier using BLOCKING_NOTIFIER_HEAD() and is
registered via blocking_notifier_chain_register(). This means that the notifier handler is always invoked

from process context. So, the handler function, my_event_handler(), is allowed to go to sleep. If your notifier

handler can be called from interrupt context, declare the notifier chain using ATOMIC_NOTIFIER_HEAD(), and

register it via atomic_notifier_chain_register().

The Old Notifier Interface

Kernel releases earlier than 2.6.17 supported only a general-purpose notifier chain. The notifier
registration function notifier_chain_register() was internally protected using a spinlock, but

the routine that walked the notifier chain dispatching events to notifier handlers
(notifier_call_chain()) was lockless. The lack of locking was because of the possibility that the

handler functions may go to sleep, unregister themselves while running, or get called from
interrupt context. The lockless implementation introduced race conditions, however. The new
notifier API is built over the original interface and is intended to overcome its limitations.

Completion Interface

Many parts of the kernel initiate certain activities as separate execution threads and then wait for them to
complete. The completion interface is an efficient and easy way to implement such code patterns.

Some example usage scenarios include the following:

Your driver module is assisted by a kernel thread. If you rmmod the module, the release() method is

invoked before removing the module code from kernel space. The release routine asks the thread to kill
itself and blocks until the thread completes its exit. Listing 3.7 implements this case.

You are writing a portion of a block device driver (discussed in Chapter 14, "Block Drivers") that queues a
read request to a device. This triggers a state machine change implemented as a separate thread or work
queue. The driver wants to wait until the operation completes before proceeding with another activity.
Look at drivers/block/floppy.c for an example.

An application requests an Analog-to-Digital Converter (ADC) driver for a data sample. The driver initiates
a conversion request waits, until an interrupt signals completion of conversion, and returns the data.

Listing 3.7. Synchronizing Using Completion Functions

Code View:
static DECLARE_COMPLETION(my_thread_exit); /* Completion */

static DECLARE_WAIT_QUEUE_HEAD(my_thread_wait); /* Wait Queue */

int pink_slip = 0; /* Exit Flag */

/* Helper thread */

static int

my_thread(void *unused)

{

 DECLARE_WAITQUEUE(wait, current);

 daemonize("my_thread");

 add_wait_queue(&my_thread_wait, &wait);

 while (1) {

 /* Relinquish processor until event occurs */

 set_current_state(TASK_INTERRUPTIBLE);

 schedule();

 /* Control gets here when the thread is woken

 up from the my_thread_wait wait queue */

 /* Quit if let go */

 if (pink_slip) {

 break;

 }

 /* Do the real work */

 /* ... */

 }

 /* Bail out of the wait queue */

 __set_current_state(TASK_RUNNING);

 remove_wait_queue(&my_thread_wait, &wait);

 /* Atomically signal completion and exit */

 complete_and_exit(&my_thread_exit, 0);

}

/* Module Initialization */

static int __init

my_init(void)

{

 /* ... */

 /* Kick start the thread */

 kernel_thread(my_thread, NULL,

 CLONE_FS | CLONE_FILES | CLONE_SIGHAND | SIGCHLD);

 /* ... */

}

/* Module Release */

static void __exit

my_release(void)

{

 /* ... */

 pink_slip = 1; /* my_thread must go */

 wake_up(&my_thread_wait); /* Activate my_thread */

 wait_for_completion(&my_thread_exit); /* Wait until my_thread

 quits */

 /* ... */

}

A completion object can be declared statically using DECLARE_COMPLETION() or created dynamically with

init_completion(). A thread can signal completion with the help of complete() or complete_all(). A caller
can wait for completion via wait_for_completion().

In Listing 3.7, my_release() raises an exit request flag by setting pink_slip before waking up my_thread(). It

then calls wait_for_completion() to wait until my_thread() completes its exit. my_thread(), on its part,
wakes up to find pink_slip set, and does the following:

1.

Signals completion to my_release()1.

Kills itself2.

my_thread() accomplishes these two steps atomically using complete_and_exit(). Using

complete_and_exit() shuts the window between module exit and thread exit that opens if you separately

invoke complete() and exit().

We will use the completion API when we develop an example telemetry driver in Chapter 11.

Kthread Helpers

Kthread helpers add a coating over the raw thread creation routines and simplify the task of thread
management.

Listing 3.8 rewrites Listing 3.7 using the kthread helper interface. my_init() now uses kthread_create()

rather than kernel_thread(). You can pass the thread's name to kthread_create() rather than explicitly call
daemonize() within the thread.

The kthread interface provides you free access to a built-in exit synchronization mechanism implemented using
the completion interface. So, as my_release() does in Listing 3.8, you may directly call kthread_stop()
instead of laboriously setting pink_slip, waking up my_thread(), and waiting for it to complete using

wait_for_completion(). Similarly, my_thread() can make a neat call to kthread_should_stop() to check
whether it ought to call it a day.

Listing 3.8. Synchronizing Using Kthread Helpers

Code View:
/* '+' and '-' show the differences from Listing 3.7 */

#include <linux/kthread.h>

/* Assistant Thread */

static int

my_thread(void *unused)

{

 DECLARE_WAITQUEUE(wait, current);

- daemonize("my_thread");

- while (1) {

+ /* Continue work if no other thread has

+ * invoked kthread_stop() */

+ while (!kthread_should_stop()) {

 /* ... */

- /* Quit if let go */

- if (pink_slip) {

- break;

- }

 /* ... */

 }

 __set_current_state(TASK_RUNNING);

 remove_wait_queue(&my_thread_wait, &wait);

- complete_and_exit(&my_thread_exit, 0);

+ return 0;

 }

+ struct task_struct *my_task;

 /* Module Initialization */

 static int __init

 my_init(void)

 {

 /* ... */

- kernel_thread(my_thread, NULL,

- CLONE_FS | CLONE_FILES | CLONE_SIGHAND |

 SIGCHLD);

+ my_task = kthread_create(my_thread, NULL, "%s", "my_thread");

+ if (my_task) wake_up_process(my_task);

 /* ... */

 }

 /* Module Release */

 static void __exit

 my_release(void)

 {

 /* ... */

- pink_slip = 1;

- wake_up(&my_thread_wait);

- wait_for_completion(&my_thread_exit);

+ kthread_stop(my_task);

 /* ... */

 }

Instead of creating the thread using kthread_create() and activating it via wake_up_process() as done in

Listing 3.8, you may use the following single call:

kthread_run(my_thread, NULL, "%s", "my_thread");

Error-Handling Aids

Several kernel functions return pointer values. Whereas callers usually check for failure by comparing the return
value with NULL, they typically need more information to decipher the exact nature of the error that has
occurred. Because kernel addresses have redundant bits, they can be overloaded to encode error semantics.
This is done with the help of a set of helper routines. Listing 3.9 implements a simple usage example.

Listing 3.9. Using Error-Handling Aids

Code View:
#include <linux/err.h>

char *

collect_data(char *userbuffer)

{

 char *buffer;

 /* ... */

 buffer = kmalloc(100, GFP_KERNEL);

 if (!buffer) { /* Out of memory */

 return ERR_PTR(-ENOMEM);

 }

 /* ... */

 if (copy_from_user(buffer, userbuffer, 100)) {

 return ERR_PTR(-EFAULT);

 }

 /* ... */

 return(buffer);

}

int

my_function(char *userbuffer)

{

 char *buf;

 /* ... */

 buf = collect_data(userbuffer);

 if (IS_ERR(buf)) {

 printk("Error returned is %d!\n", PTR_ERR(buf));

 }

 /* ... */

}

If kmalloc() fails inside collect_data() in Listing 3.9, you will get the following message:

Error returned is -12!

However, if collect_data() is successful, it returns a valid pointer to a data buffer. As another example, let's

add error handling using IS_ERR() and PTR_ERR() to the thread creation code in Listing 3.8:

 my_task = kthread_create(my_thread, NULL, "%s", "mydrv");

+ if (!IS_ERR(my_task)) {

+ /* Success */

 wake_up_process(my_task);

+ } else {

+ /* Failure */

+ printk("Error value returned=%d\n", PTR_ERR(my_task));

+ }

Looking at the Sources

The ksoftirqd, pdflush, and khubd kernel threads live in kernel/softirq.c, mm/pdflush.c, and
drivers/usb/core/hub.c, respectively.

The daemonize() function can be found in kernel/exit.c. For the implementation of user mode helpers, look at

kernel/kmod.c.

The list and hlist library routines reside in include/linux/list.h. They are used all over the kernel, so you will find
usage examples in most subdirectories. An example is the request_queue structure defined in

include/linux/blkdev.h, which holds a linked list of disk I/O requests. We look at this data structure in Chapter
14.

Go to www.ussg.iu.edu/hypermail/linux/kernel/0007.3/0805.html and follow the discussion thread in the
mailing list for an interesting debate between Linus Torvalds and Andi Kleen about the pros and cons of
complementing the list library with hlist helper routines.

The kernel work queue implementation lives in kernel/workqueue.c. To understand the real-world use of work
queues, look at the PRO/Wireless 2200 network driver, drivers/net/wireless/ipw2200.c.

The kernel notifier chain implementation lives in kernel/sys.c and include/linux/notifier.h. Look at kernel/sched.c
and include/linux/completion.h for the guts of the completion interface. kernel/kthread.c contains the source
code for kthread helpers, and include/linux/err.h includes definitions of error handling aids.

Table 3.3 contains a summary of the main data structures used in this chapter and the location of their
definitions in the source tree. Table 3.4 lists the main kernel programming interfaces that you used in this
chapter along with the location of their definitions.

Table 3.3. Summary of Data Structures

Data Structure Location Description

wait_queue_t include/linux/wait.h Used by threads that desire to wait for
an event or a system resource

list_head include/linux/list.h Kernel structure to weave a doubly
linked list of data structures

hlist_head include/linux/list.h Kernel structure to implement hash
tables

work_struct include/linux/workqueue.h Implements work queues, which are a
way to defer work inside the kernel

notifier_block include/linux/notifier.h Implements notifier chains, which are
used to send status changes to code
regions that request them

completion include/linux/completion.h Used to initiate activities as separate
threads and then wait for them to
complete

Table 3.4. Summary of Kernel Programming Interfaces

Kernel Interface Location Description

DECLARE_WAITQUEUE() include/linux/wait.h Declares a wait queue.

add_wait_queue() kernel/wait.c Queues a task to a wait queue.
The task goes to sleep until it's
woken up by another thread or
interrupt handler.

remove_wait_queue() kernel/wait.c Dequeues a task from a wait
queue.

wake_up_interruptible() include/linux/wait.h
kernel/sched.c

Wakes up a task sleeping inside
a wait queue and puts it back
into the scheduler run queue.

schedule() kernel/sched.c Relinquishes the processor and
allows other parts of the kernel
to run.

set_current_state() include/linux/sched.h Sets the run state of a process.
The state can be one of
TASK_RUNNING,
TASK_INTERRUPTIBLE,

TASK_UNINTERRUPTIBLE,
TASK_STOPPED, TASK_TRACED,

EXIT_ZOMBIE, or EXIT_DEAD.

kernel_thread() arch/your-
arch/kernel/process.c

Creates a kernel thread.

daemonize() kernel/exit.c Activates a kernel thread
without attaching user resources
and changes the parent of the
calling thread to kthreadd.

allow_signal() kernel/exit.c Enables delivery of a specified
signal.

signal_pending() include/linux/sched.h Checks whether a signal has
been delivered. There are no
signal handlers inside the kernel,
so you have to explicitly check
whether a signal has been
delivered.

call_usermodehelper() include/linux/kmod.h
kernel/kmod.c

Executes a user mode program.

Linked list library functions include/linux/list.h See Table 3.1.

register_die_notifier() arch/your-
arch/kernel/traps.c

Registers a die notifier.

register_netdevice_notifier() net/core/dev.c Registers a netdevice notifier.

register_inetaddr_notifier() net/ipv4/devinet.c Registers an inetaddr notifier.

BLOCKING_NOTIFIER_HEAD() include/linux/notifier.h Creates a user-defined blocking
notifier.

blocking_notifier_chain_register() kernel/sys.c Registers a blocking notifier.

Kernel Interface Location Description

blocking_notifier_call_chain() kernel/sys.c Dispatches an event to a
blocking notifier chain.

ATOMIC_NOTIFIER_HEAD() include/linux/notifier.h Creates an atomic notifier.

atomic_notifier_chain_register() kernel/sys.c Registers an atomic notifier.

DECLARE_COMPLETION() include/linux/completion.h Statically declares a completion
object.

init_completion() include/linux/completion.h Dynamically declares a
completion object.

complete() kernel/sched.c Announces completion.

wait_for_completion() kernel/sched.c Waits until the completion object
completes.

complete_and_exit() kernel/exit.c Atomically signals completion
and exit.

kthread_create() kernel/kthread.c Creates a kernel thread.

kthread_stop() kernel/kthread.c Asks a kernel thread to stop.

kthread_should_stop() kernel/kthread.c A kernel thread can poll on this
function to detect whether
another thread has asked it to
stop via kthread_stop().

IS_ERR() include/linux/err.h Finds out whether the return
value is an error code.

blocking_notifier_call_chain() kernel/sys.c Dispatches an event to a
blocking notifier chain.

ATOMIC_NOTIFIER_HEAD() include/linux/notifier.h Creates an atomic notifier.

atomic_notifier_chain_register() kernel/sys.c Registers an atomic notifier.

DECLARE_COMPLETION() include/linux/completion.h Statically declares a completion
object.

init_completion() include/linux/completion.h Dynamically declares a
completion object.

complete() kernel/sched.c Announces completion.

wait_for_completion() kernel/sched.c Waits until the completion object
completes.

complete_and_exit() kernel/exit.c Atomically signals completion
and exit.

kthread_create() kernel/kthread.c Creates a kernel thread.

kthread_stop() kernel/kthread.c Asks a kernel thread to stop.

kthread_should_stop() kernel/kthread.c A kernel thread can poll on this
function to detect whether
another thread has asked it to
stop via kthread_stop().

IS_ERR() include/linux/err.h Finds out whether the return
value is an error code.

Chapter 4. Laying the Groundwork

In This Chapter

Introducing Devices and Drivers

90

Interrupt Handling

92

The Linux Device Model

103

Memory Barriers
114

Power Management

114

Looking at the Sources
115

We are now within whispering distance of writing a device driver. Before doing that, however, let's
equip ourselves with some driver concepts. We start the chapter by getting an idea of the book's
problem statement; we will look at the typical devices and I/O interfaces present on PC-compatible
systems and embedded computers. Interrupt handling is an integral part of most drivers, so we
next cover the art of writing interrupt handlers. We then turn our attention to the new device
model introduced in the 2.6 kernel. The new model is built around abstractions such as sysfs,
kobjects, device classes, and udev, which distill commonalities from device drivers. The new device
model also weeds policies out of kernel space and pushes them to user space, resulting in a total
revamp of features such as /dev node management, hotplug, coldplug, module autoload, and
firmware download.

Introducing Devices and Drivers

User applications cannot directly communicate with hardware because that entails possessing privileges such as
executing special instructions and handling interrupts. Device drivers assume the burden of interacting with
hardware and export interfaces that applications and the rest of the kernel can use to access devices.
Applications operate on devices via nodes in the /dev directory and glean device information using nodes in the
/sys directory.[1]

[1] As you'll learn later, networking applications route their requests to the underlying driver using a different mechanism.

Figure 4.1 shows the hardware block diagram of a typical PC-compatible system. As you can see, the system
supports diverse devices and interface technologies such as memory, video, audio, USB, PCI, WiFi, PCMCIA, I2C,
IDE, Ethernet, serial port, keyboard, mouse, floppy drive, parallel port, and Infrared. The memory controller and
the graphics controller are part of a North Bridge chipset in the PC architecture, whereas peripheral buses are
sourced out of a South Bridge.

Figure 4.1. Hardware block diagram of a PC-compatible system.

Figure 4.2 illustrates a similar block diagram for a hypothetical embedded device. This diagram contains several
interfaces not typical in the PC world such as flash memory, LCD, touch screen, and cellular modem.

Figure 4.2. Hardware block diagram of an embedded system.

[View full size image]

Naturally, the capability to access peripheral devices is a crucial part of a system's functioning. Device drivers
provide the engine to achieve this. The rest of the chapters in this book will zoom in on a device interface and
teach you how to implement the corresponding device driver.

Chapter 4. Laying the Groundwork

In This Chapter

Introducing Devices and Drivers

90

Interrupt Handling

92

The Linux Device Model

103

Memory Barriers
114

Power Management

114

Looking at the Sources
115

We are now within whispering distance of writing a device driver. Before doing that, however, let's
equip ourselves with some driver concepts. We start the chapter by getting an idea of the book's
problem statement; we will look at the typical devices and I/O interfaces present on PC-compatible
systems and embedded computers. Interrupt handling is an integral part of most drivers, so we
next cover the art of writing interrupt handlers. We then turn our attention to the new device
model introduced in the 2.6 kernel. The new model is built around abstractions such as sysfs,
kobjects, device classes, and udev, which distill commonalities from device drivers. The new device
model also weeds policies out of kernel space and pushes them to user space, resulting in a total
revamp of features such as /dev node management, hotplug, coldplug, module autoload, and
firmware download.

Introducing Devices and Drivers

User applications cannot directly communicate with hardware because that entails possessing privileges such as
executing special instructions and handling interrupts. Device drivers assume the burden of interacting with
hardware and export interfaces that applications and the rest of the kernel can use to access devices.
Applications operate on devices via nodes in the /dev directory and glean device information using nodes in the
/sys directory.[1]

[1] As you'll learn later, networking applications route their requests to the underlying driver using a different mechanism.

Figure 4.1 shows the hardware block diagram of a typical PC-compatible system. As you can see, the system
supports diverse devices and interface technologies such as memory, video, audio, USB, PCI, WiFi, PCMCIA, I2C,
IDE, Ethernet, serial port, keyboard, mouse, floppy drive, parallel port, and Infrared. The memory controller and
the graphics controller are part of a North Bridge chipset in the PC architecture, whereas peripheral buses are
sourced out of a South Bridge.

Figure 4.1. Hardware block diagram of a PC-compatible system.

Figure 4.2 illustrates a similar block diagram for a hypothetical embedded device. This diagram contains several
interfaces not typical in the PC world such as flash memory, LCD, touch screen, and cellular modem.

Figure 4.2. Hardware block diagram of an embedded system.

[View full size image]

Naturally, the capability to access peripheral devices is a crucial part of a system's functioning. Device drivers
provide the engine to achieve this. The rest of the chapters in this book will zoom in on a device interface and
teach you how to implement the corresponding device driver.

Interrupt Handling

Because of the indeterminate nature of I/O, and speed mismatches between I/O devices and the processor,
devices request the processor's attention by asserting certain hardware signals asynchronously. These hardware
signals are called interrupts. Each interrupting device is assigned an associated identifier called an interrupt
request (IRQ) number. When the processor detects that an interrupt has been generated on an IRQ, it abruptly
stops what it's doing and invokes an interrupt service routine (ISR) registered for the corresponding IRQ.
Interrupt handlers (ISRs) execute in interrupt context.

Interrupt Context

ISRs are critical pieces of code that directly converse with the hardware. They are given the privilege of instant
execution in the larger interest of system performance. However, if ISRs are not quick and lightweight, they
contradict their own philosophy. VIPs are given preferential treatment, but it's incumbent on them to minimize
the resulting inconvenience to the public. To compensate for rudely interrupting the current thread of execution,
ISRs have to politely execute in a restricted environment called interrupt context (or atomic context).

Here is a list of do's and don'ts for code executing in interrupt context:

It's a jailable offense if your interrupt context code goes to sleep. Interrupt handlers cannot relinquish the
processor by calling sleepy functions such as schedule_timeout(). Before invoking a kernel API from

your interrupt handler, penetrate the nested invocation train and ensure that it does not internally trigger
a blocking wait. For example, input_register_device() looks harmless from the surface, but tosses a

call to kmalloc() under the hood specifying GFP_KERNEL as an argument. As you saw in Chapter 2, "A
Peek Inside the Kernel," if your system's free memory dips below a watermark, kmalloc() sleep-waits for

memory to get freed up by the swapper, if you invoke it in this manner.

1.

For protecting critical sections inside interrupt handlers, you can't use mutexes because they may go to
sleep. Use spinlocks instead, and use them only if you must.

2.

Interrupt handlers cannot directly exchange data with user space because they are not connected to user
land via process contexts. This brings us to another reason why interrupt handlers cannot sleep: The
scheduler works at the granularity of processes, so if interrupt handlers sleep and are scheduled out, how
can they be put back into the run queue?

3.

Interrupt handlers are supposed to get out of the way quickly but are expected to get the job done. To
circumvent this Catch-22, interrupt handlers usually split their work into two. The slim top half of the
handler flags an acknowledgment claiming that it has serviced the interrupt but, in reality, offloads all the
hard work to a fat bottom half. Execution of the bottom half is deferred to a later point in time when all
interrupts are enabled. You will learn to develop bottom halves while discussing softirqs and tasklets later.

4.

You need not design interrupt handlers to be reentrant. When an interrupt handler is running, the
corresponding IRQ is disabled until the handler returns. So, unlike process context code, different
instances of the same handler will not run simultaneously on multiple processors.

5.

Interrupt handlers can be interrupted by handlers associated with IRQs that have higher priority. You can
prevent this nested interruption by specifically requesting the kernel to treat your interrupt handler as a

6.

fast handler. Fast handlers run with all interrupts disabled on the local processor. Before disabling
interrupts or labeling your interrupt handler as fast, be aware that interrupt-off times are bad for system
performance. More the interrupt-off times, more is the interrupt latency, or the delay before a generated
interrupt is serviced. Interrupt latency is inversely proportional to the real time responsiveness of the
system.

6.

A function can check the value returned by in_interrupt() to find out whether it's executing in interrupt

context.

Unlike asynchronous interrupts generated by external hardware, there are classes of interrupts that arrive
synchronously. Synchronous interrupts are so called because they don't occur unexpectedly—the processor itself
generates them by executing an instruction. Both external and synchronous interrupts are handled by the kernel
using identical mechanisms.

Examples of synchronous interrupts include the following:

Exceptions, which are used to report grave runtime errors

Software interrupts such as the int 0x80 instruction used to implement system calls on the x86
architecture

Assigning IRQs

Device drivers have to connect their IRQ number to an interrupt handler. For this, they need to know the IRQ
assigned to the device they're driving. IRQ assignments can be straightforward or may require complex probing.
In the PC architecture, for example, timer interrupts are assigned IRQ 0, and RTC interrupts answer to IRQ 8.
Modern bus technologies such as PCI are sophisticated enough to respond to queries regarding their IRQs
(assigned by the BIOS when it walks the bus during boot). PCI drivers can poke into earmarked regions in the
device's configuration space and figure out the IRQ. For older devices such as Industries Standard Architecture
(ISA)-based cards, the driver might have to leverage hardware-specific knowledge to probe and decipher the
IRQ.

Take a look at /proc/interrupts for a list of active IRQs on your system.

Device Example: Roller Wheel

Now that you have learned the basics of interrupt handling, let's implement an interrupt handler for an example
roller wheel device. Roller wheels can be found on some phones and PDAs for easy menu navigation and are
capable of three movements: clockwise rotation, anticlockwise rotation, and key-press. Our imaginary roller
wheel is wired such that any of these movements interrupt the processor on IRQ 7. Three low order bits of
General Purpose I/O (GPIO) Port D of the processor are connected to the roller device. The waveforms
generated on these pins corresponding to different wheel movements are shown in Figure 4.3. The job of the
interrupt handler is to decipher the wheel movements by looking at the Port D GPIO data register.

Figure 4.3. Sample wave forms generated by the roller wheel.

The driver has to first request the IRQ and associate an interrupt handler with it:

#define ROLLER_IRQ 7

static irqreturn_t roller_interrupt(int irq, void *dev_id);

if (request_irq(ROLLER_IRQ, roller_interrupt, IRQF_DISABLED |

 IRQF_TRIGGER_RISING, "roll", NULL)) {

 printk(KERN_ERR "Roll: Can't register IRQ %d\n", ROLLER_IRQ);
 return -EIO;

}

Let's look at the arguments passed to request_irq(). The IRQ number is not queried or probed but hard-coded

to ROLLER_IRQ in this simple case as per the hardware connection. The second argument, roller_interrupt(),

is the interrupt handler routine. Its prototype specifies a return type of irqreturn_t, which can be IRQ_HANDLED
if the interrupt is handled successfully or IRQ_NONE if it isn't. The return value assumes more significance for I/O

technologies such as PCI, where multiple devices can share the same IRQ.

The IRQF_DISABLED flag specifies that this interrupt handler has to be treated as a fast handler, so the kernel

has to disable interrupts while invoking the handler. IRQF_TRIGGER_RISING announces that the roller wheel

generates a rising edge on the interrupt line when it wants to signal an interrupt. In other words, the roller
wheel is an edge-sensitive device. Some devices are instead level-sensitive and keep the interrupt line asserted
until the CPU services it. To flag an interrupt as level-sensitive, use the IRQF_TRIGGER_HIGH flag. Other possible

values for this argument include IRQF_SAMPLE_RANDOM (used in the section, "Pseudo Char Drivers" in Chapter 5,

"Character Drivers") and IRQF_SHARED (used to specify that this IRQ is shared among multiple devices).

The next argument, "roll", is used to identify this device in data generated by files such as /proc/interrupts.

The final parameter, set to NULL in this case, is relevant only for shared interrupt handlers and is used to

identify each device sharing the IRQ line.

Starting with the 2.6.19 kernel, there have been some changes to the interrupt handler interface.
Interrupt handlers used to take a third argument (struct pt_regs *) that contained a pointer to CPU
registers, but this has been removed starting with the 2.6.19 kernel. Also, the IRQF_xxx family of

interrupt flags replaced the SA_xxx family. For example, with earlier kernels, you had to use

SA_INTERRUPT rather than IRQF_DISABLED to mark an interrupt handler as fast.

Driver initialization is not a good place for requesting an IRQ because that can hog that valuable resource even
when the device is not in use. So, device drivers usually request the IRQ when the device is opened by an
application. Similarly, the IRQ is freed when the application closes the device and not while exiting the driver
module. Freeing an IRQ is done as follows:

free_irq(int irq, void *dev_id);

Listing 4.1 shows the implementation of the roller interrupt handler. roller_interrupt() takes two

arguments: the IRQ and the device identifier passed as the final argument to the associated request_irq().
Look at Figure 4.3 side by side with this listing.

Listing 4.1. The Roller Interrupt Handler

Code View:
spinlock_t roller_lock = SPIN_LOCK_UNLOCKED;

static DECLARE_WAIT_QUEUE_HEAD(roller_poll);

static irqreturn_t

roller_interrupt(int irq, void *dev_id)

{

 int i, PA_t, PA_delta_t, movement = 0;

 /* Get the waveforms from bits 0, 1 and 2

 of Port D as shown in Figure 4.3 */

 PA_t = PORTD & 0x07;

 /* Wait until the state of the pins change.

 (Add some timeout to the loop) */

 for (i=0; (PA_t==PA_delta_t); i++){

 PA_delta_t = PORTD & 0x07;

 }

 movement = determine_movement(PA_t, PA_delta_t); /* See below */

 spin_lock(&roller_lock);

 /* Store the wheel movement in a buffer for

 later access by the read()/poll() entry points */

 store_movements(movement);

 spin_unlock(&roller_lock);

 /* Wake up the poll entry point that might have

 gone to sleep, waiting for a wheel movement */

 wake_up_interruptible(&roller_poll);

 return IRQ_HANDLED;

}

int

determine_movement(int PA_t, int PA_delta_t)

{

 switch (PA_t){

 case 0:

 switch (PA_delta_t){

 case 1:

 movement = ANTICLOCKWISE;

 break;

 case 2:

 movement = CLOCKWISE;

 break;

 case 4:

 movement = KEYPRESSED;

 break;

 }

 break;

 case 1:

 switch (PA_delta_t){

 case 3:

 movement = ANTICLOCKWISE;

 break;

 case 0:

 movement = CLOCKWISE;

 break;

 }

 break;

 case 2:

 switch (PA_delta_t){

 case 0:

 movement = ANTICLOCKWISE;

 break;

 case 3:

 movement = CLOCKWISE;

 break;

 }

 break;

 case 3:

 switch (PA_delta_t){

 case 2:

 movement = ANTICLOCKWISE;

 break;

 case 1:

 movement = CLOCKWISE;

 break;

 }

 case 4:

 movement = KEYPRESSED;

 break;

 }

}

Driver entry points such as read() and poll() operate in tandem with roller_interrupt(). For example,

when the handler deciphers wheel movement, it wakes up any waiting poll() threads that may have gone to
sleep in response to a select() system call issued by an application such as X Windows. Revisit Listing 4.1 and

implement the complete roller driver after learning the internals of character drivers in Chapter 5.

Listing 7.3 in Chapter 7, "Input Drivers," takes advantage of the kernel's input interface to convert this roller
wheel into a roller mouse.

Let's end this section by introducing some functions that enable and disable interrupts on a particular IRQ.
enable_irq(ROLLER_IRQ) enables interrupt generation when the roller wheel moves, while

disable_irq(ROLLER_IRQ) does the reverse. disable_irq_nosync(ROLLER_IRQ) disables roller interrupts but
does not wait for any currently executing instance of roller_interrupt() to return. This nosync flavor of

disable_irq() is faster but can potentially cause race conditions. Use this only when you know that there can
be no races. An example user of disable_irq_nosync() is drivers/ide/ide-io.c, which blocks interrupts during

initialization, because some systems have trouble with that.

Softirqs and Tasklets

As discussed previously, interrupt handlers have two conflicting requirements: They are responsible for the bulk
of device data processing, but they have to exit as fast as possible. To bail out of this situation, interrupt
handlers are designed in two parts: a hurried and harried top half that interacts with the hardware, and a
relaxed bottom half that does most of the processing with all interrupts enabled. Unlike interrupts, bottom
halves are synchronous because the kernel decides when to execute them. The following mechanisms are
available in the kernel to defer work to a bottom half: softirqs, tasklets, and work queues.

Softirqs are the basic bottom half mechanism and have strong locking requirements. They are used only by a
few performance-sensitive subsystems such as the networking layer, SCSI layer, and kernel timers. Tasklets are
built on top of softirqs and are easier to use. It's recommended to use tasklets unless you have crucial
scalability or speed requirements. A primary difference between a softirq and a tasklet is that the former is
reentrant whereas the latter isn't. Different instances of a softirq can run simultaneously on different processors,
but that is not the case with tasklets.

To illustrate the usage of softirqs and tasklets, assume that the roller wheel in the previous example has
inherent hardware problems due to the presence of moving parts (say, the wheel gets stuck occasionally)
resulting in the generation of out-of-spec waveforms. A stuck wheel can continuously generate spurious
interrupts and potentially freeze the system. To get around this problem, capture the wave stream, run some
analysis on it, and dynamically switch from interrupt mode to a polled mode if the wheel looks stuck, and vice
versa if it's unstuck. Capture the wave stream from the interrupt handler and perform the analysis from a
bottom half. Listing 4.2 implements this using softirqs, and Listing 4.3 uses tasklets. Both are simplified variants
of Listing 4.1. This reduces the handler to two functions: roller_capture() that obtains a wave snippet from

GPIO Port D, and roller_analyze() that runs an algorithmic analysis on the wave and switches to polled mode
if required.

Listing 4.2. Using Softirqs to Offload Work from Interrupt Handlers

Code View:
void __init

roller_init()

{

 /* ... */

 /* Open the softirq. Add an entry for ROLLER_SOFT_IRQ in

 the enum list in include/linux/interrupt.h */

 open_softirq(ROLLER_SOFT_IRQ, roller_analyze, NULL);

}

/* The bottom half */

void

roller_analyze()

{

 /* Analyze the waveforms and switch to polled mode if required */

}

/* The interrupt handler */

static irqreturn_t

roller_interrupt(int irq, void *dev_id)

{

 /* Capture the wave stream */

 roller_capture();

 /* Mark softirq as pending */

 raise_softirq(ROLLER_SOFT_IRQ);

 return IRQ_HANDLED;

}

To define a softirq, you have to statically add an entry to include/linux/interrupt.h. You can't define one
dynamically. raise_softirq() announces that the corresponding softirq is pending execution. The kernel will
execute it at the next available opportunity. This can be during exit from an interrupt handler or via the
ksoftirqd kernel thread.

Listing 4.3. Using Tasklets to Offload Work from Interrupt Handlers

Code View:
struct roller_device_struct { /* Device-specific structure */

 /* ... */

 struct tasklet_struct tsklt;

 /* ... */

}

void __init roller_init()

{

 struct roller_device_struct *dev_struct;

 /* ... */

 /* Initialize tasklet */

 tasklet_init(&dev_struct->tsklt, roller_analyze, dev);

}

/* The bottom half */

void

roller_analyze()

{

/* Analyze the waveforms and switch to

 polled mode if required */

}

/* The interrupt handler */

static irqreturn_t

roller_interrupt(int irq, void *dev_id)

{

 struct roller_device_struct *dev_struct;

 /* Capture the wave stream */

 roller_capture();

 /* Mark tasklet as pending */

 tasklet_schedule(&dev_struct->tsklt);

 return IRQ_HANDLED;

}

tasklet_init() dynamically initializes a tasklet. The function does not allocate memory for a tasklet_struct,

rather you have to pass the address of an allocated one. tasklet_schedule() announces that the

corresponding tasklet is pending execution. Like for interrupts, the kernel offers a bunch of functions to control
the execution state of tasklets on systems having multiple processors:

tasklet_enable() enables tasklets.

tasklet_disable() disables tasklets and waits until any currently executing tasklet instance has exited.

tasklet_disable_nosync() has semantics similar to disable_irq_nosync(). The function does not wait

for active instances of the tasklet to finish execution.

You have seen the differences between interrupt handlers and bottom halves, but there are a few similarities,
too. Interrupt handlers and tasklets are both not reentrant. And neither of them can go to sleep. Also, interrupt
handlers, tasklets, and softirqs cannot be preempted.

Work queues are a third way to defer work from interrupt handlers. They execute in process context and are
allowed to sleep, so they can use drowsy functions such as mutexes. We discussed work queues in the
preceding chapter when we looked at various kernel helper facilities. Table 4.1 compares softirqs, tasklets, and
work queues.

Table 4.1. Comparing Softirqs, Tasklets, and Work Queues

 Softirqs Tasklets Work Queues

Execution
context

Deferred work runs in
interrupt context.

Deferred work runs in
interrupt context.

Deferred work runs in
process context.

Reentrancy Can run simultaneously
on different CPUs.

Cannot run
simultaneously on
different CPUs. Different
CPUs can run different
tasklets, however.

Can run simultaneously
on different CPUs.

Sleep
semantics

Cannot go to sleep. Cannot go to sleep. May go to sleep.

Preemption Cannot be
preempted/scheduled.

Cannot be
preempted/scheduled.

May be
preempted/scheduled.

Ease of use Not easy to use. Easy to use. Easy to use.

When to use If deferred work will not
go to sleep and if you
have crucial scalability
or speed requirements.

If deferred work will not
go to sleep.

If deferred work may go
to sleep.

There is an ongoing debate in LKML on the feasibility of getting rid of the tasklet interface. Tasklets
enjoy more priority than process context code, so they present latency problems. Moreover, as you
learned, they are constrained not to sleep and to execute on the same CPU. It's being suggested that all
existing tasklets be converted to softirqs or work queues on a case-by-case basis.

The –rt patch-set alluded to in Chapter 2 moves interrupt handling to kernel threads to achieve wider
preemption coverage.

The Linux Device Model

The new Linux device model introduces C++-like abstractions that factor out commonalities from device drivers
into bus and core layers. Let's look at the different components constituting the device model such as udev,
sysfs, kobjects, and device classes and their effects on key kernel subsystems such as /dev node management,
hotplug, firmware download, and module autoload. Udev is the best vantage point to view the benefits of the
device model, so let's start from there.

Udev

Years ago when Linux was young, it was not fun to administer device nodes. All the needed nodes (which could
run into thousands) had to be statically created under the /dev directory. This problem, in fact, dated all the
way back to original UNIX systems. With the advent of the 2.4 kernels came devfs, which introduced dynamic
device node creation. Devfs provided services to generate device nodes in an in-memory filesystem, but the
onus of naming the nodes still rested with device drivers. Device naming policy is administrative and does not
mix well with the kernel, however. The place for policy is in header files, kernel module parameters, or user
space. Udev arrived on the scene to push device management to user space.

Udev depends on the following to do its work:

Kernel sysfs support, which is an important part of the Linux device model. Sysfs is an in-memory
filesystem mounted under /sys at boot time (look at /etc/fstab for the specifier). We will look at sysfs in
the next section, but for now, take the corresponding sysfs file accesses for granted.

1.

A set of user-space daemons and utilities such as udevd and udevinfo.2.

User-specified rules located in the /etc/udev/rules.d/ directory. You may frame rules to get a consistent
view of your devices.

3.

To understand how to use udev, let's look at an example. Assume that you have a USB DVD drive and a USB
CD-RW drive. Depending on the order in which you hotplug these devices, one of them is assigned the name
/dev/sr0, and the other gets the name /dev/sr1. During pre-udev days, you had to figure out the associated
names before you could use the devices. But with udev, you can consistently view the DVD (as say,
/dev/usbdvd) and the CD-RW (as say, /dev/usbcdrw) irrespective of the order in which they are plugged in or
out.

First, pull product attributes from corresponding files in sysfs. Assume that the (Targus) DVD drive has been
assigned the device node /dev/sr0 and that the (Addonics) CD-RW drive has been given the name /dev/sr1. Use
udevinfo to collect device information:

Code View:
bash> udevinfo -a -p /sys/block/sr0

...

looking at the device chain at
'/sys/devices/pci0000:00/0000:00:1d.7/usb1/1-4':

 BUS=»usb»

 ID=»1-4»

 SYSFS{bConfigurationValue}=»1»
 ...

 SYSFS{idProduct}=»0701»

 SYSFS{idVendor}=»05e3»

 SYSFS{manufacturer}=»Genesyslogic»
 SYSFS{maxchild}=»0»

 SYSFS{product}=»USB Mass Storage Device»

 ...

bash> udevinfo -a -p /sys/block/sr1

 ...

 looking at the device chain at

 '/sys/devices/pci0000:00/0000:00:1d.7/usb1/1-3':
 BUS=»usb»

 ID=»1-3»

 SYSFS{bConfigurationValue}=»2»

 ...
 SYSFS{idProduct}=»0302»

 SYSFS{idVendor}=»0dbf»

 SYSFS{manufacturer}=»Addonics»

 SYSFS{maxchild}=»0»
 SYSFS{product}=»USB to IDE Cable»

 ...

Next, let's use the product information gleaned to identify the devices and add udev naming rules. Create a file
called /etc/udev/rules.d/40-cdvd.rules and add the following rules to it:

BUS="usb", SYSFS{idProduct}="0701", SYSFS{idVendor}="05e3",
KERNEL="sr[0-9]*", NAME="%k", SYMLINK="usbdvd"

BUS="usb", SYSFS{idProduct}="0302", SYSFS{idVendor}="0dbf",

KERNEL="sr[0-9]*", NAME="%k", SYMLINK="usbcdrw"

The first rule tells udev that whenever it finds a USB device with a product ID of 0x0701, vendor ID of 0x05e3,
and a name starting with sr, it should create a node of the same name under /dev and produce a symbolic link
named usbdvd to the created node. Similarly, the second rule orders creation of a symbolic link named usbcdrw
for the CD-RW drive.

To test for syntax errors in your rules, run udevtest on /sys/block/sr*. To turn on verbose messages in
/var/log/messages, set udev_log to "yes" in /etc/udev/udev.conf. To repopulate the /dev directory with newly

added rules on-the-fly, restart udev using udevstart. When this is done, your DVD drive consistently appears to
the system as /dev/usbdvd, and your CD-RW drive always appears as /dev/usbcdrw. You can deterministically
mount them from shell scripts using commands such as these:

mount /dev/usbdvd /mnt/dvd

Consistent naming of device nodes (and network interfaces) is not the sole capability of udev. It has
metamorphed into the Linux hotplug manager, too. Udev is also in charge of automatically loading modules on
demand and downloading microcode onto devices that need them. But before digging into those capabilities,
let's obtain a basic understanding of the innards of the device model.

Sysfs, Kobjects, and Device Classes

Sysfs, kobjects, and device classes are the building blocks of the device model but are publicity shy and prefer
to remain behind the scenes. They are mostly in the usage domain of bus and core implementations, and hide
inside APIs that provide services to device drivers.

Sysfs is the user-space manifestation of the kernel's structured device model. It's similar to procfs in that both
are in-memory filesystems containing information about kernel data structures. Whereas procfs is a generic
window into kernel internals, sysfs is specific to the device model. Sysfs is, hence, not a replacement for procfs.
Information such as process descriptors and sysctl parameters belong to procfs and not sysfs. As will be
apparent soon, udev depends on sysfs for most of its extended functions.

Kobjects introduce an encapsulation of common object properties such as usage reference counts. They are
usually embedded within larger structures. The following are the main fields of a kobject, which is defined in
include/linux/kobject.h:

A kref object that performs reference count management. The kref_init() interface initializes a kref,

kref_get() increments the reference count associated with the kref, and kref_put() decrements the

reference count and frees the object if there are no remaining references. The URB structure (explained in
Chapter 11, "Universal Serial Bus"), for example, contains a kref to track the number of references to it.[2]

[2] The usb_alloc_urb() interface calls kref_init(), usb_submit_urb() invokes kref_get(), and usb_free_urb() calls

kref_put().

1.

A pointer to a kset, which is an object set to which the kobject belongs.2.

A kobj_type, which is an object type that describes the kobject.3.

Kobjects are intertwined with sysfs. Every kobject instantiated within the kernel has a sysfs representation.

The concept of device classes is another feature of the device model and is an interface you're more likely to
use in a driver. The class interface abstracts the idea that each device falls under a broader class (or category)
of devices. A USB mouse, a PS/2 keyboard, and a joystick all fall under the input class and own entries under
/sys/class/input/.

Figure 4.4 shows the sysfs hierarchy on a laptop that has an external USB mouse connected to it. The top-level
bus, class, and device directories are expanded to show that sysfs provides a view of the USB mouse based on
its device type as well as its physical connection. The mouse is an input class device but is physically a USB
device answering to two endpoint addresses, a control endpoint ep00, and an interrupt endpoint, ep81. The USB
port in question belongs to the USB host controller on bus 2, and the USB host controller itself is bridged to the
CPU via the PCI bus. If these details are not making much sense at this point, don't worry; rewind to this
section after reading the chapters that teach input drivers (Chapter 7), PCI drivers (Chapter 10, "Peripheral
Component Interconnect"), and USB drivers (Chapter 11).

Figure 4.4. Sysfs hierarchy of a USB mouse.

Code View:
[/sys]

 +[block]

 -[bus]—[usb]—[devices]—[usb2]—[2-2]—[2-2:1.0]-[usbendpoint:usbdev2.2-ep81]

 -[class]-[input]—[mouse2]—[device]—[bus]—[usbendpoint:usbdev2.2-ep81]

 -[usb_device]—[usbdev2.2]—[device]—[bus]

 -[usb_endpoint]—[usbdev2.2-ep00]—[device]

 —[usbdev2.2-ep81]—[device]

 -[devices]—[pci0000:00]—[0000:00:1d:1]—[usb2]—[2-2]—[2-2:1.0]

 +[firmware]

 +[fs]

 +[kernel]

 +[module]

 +[power]

Browse through /sys looking for entries that associate with another device (for example, your network card) to
get a better feel of its hierarchical organization. The section "Addressing and Identification" in Chapter 10
illustrates how sysfs mirrors the physical connection of a CardBus Ethernet-Modem card on a laptop.

The class programming interface is built on top of kobjects and sysfs, so it's a good place to start digging to
understand the end-to-end interactions between the components of the device model. Let's turn to the RTC
driver for an example. The RTC driver (drivers/char/rtc.c) is a miscellaneous (or "misc") driver. We discuss misc
drivers in detail when we look at character device drivers in Chapter 5.

Insert the RTC driver module and look at the nodes created under /sys and /dev:

bash> modprobe rtc

bash> ls -lR /sys/class/misc

drwr-xr-x 2 root root 0 Jan 15 01:23 rtc

/sys/class/misc/rtc:
total 0
-r--r--r-- 1 root root 4096 Jan 15 01:23 dev

--w------- 1 root root 4096 Jan 15 01:23 uevent
bash> ls -l /dev/rtc

crw-r--r-- 1 root root 10, 135 Jan 15 01:23 /dev/rtc

/sys/class/misc/rtc/dev contains the major and minor numbers (discussed in the next chapter) assigned to this
device, /sys/class/misc/rtc/uevent is used for coldplugging (discussed in the next section), and /dev/rtc is used
by applications to access the RTC driver.

Let's understand the code flow through the device model. Misc drivers utilize the services of misc_register()

during initialization, which looks like this if you peel off some code:

/* ... */

dev = MKDEV(MISC_MAJOR, misc->minor);

misc->class = class_device_create(misc_class, NULL, dev,

 misc->dev,

 "%s", misc->name);
if (IS_ERR(misc->class)) {

 err = PTR_ERR(misc->class);

 goto out;

}

/* ... */

Figure 4.5 continues to peel off more layers to get to the bottom of the device modeling. It illustrates the
transitions that ripple through classes, kobjects, sysfs, and udev, which result in the generation of the /sys and
/dev files listed previously.

Figure 4.5. Tying the pieces of the device model.

[View full size image]

Look at the parallel port LED driver (Listing 5.6 in the section "Talking to the Parallel Port" in Chapter 5) and the
virtual mouse input driver (Listing 7.2 in the section "Device Example: Virtual Mouse" in Chapter 7) for
examples on creating device control files inside sysfs.

Another abstraction that is part of the device model is the bus-device-driver programming interface. Kernel
device support is cleanly structured into buses, devices, and drivers. This renders the individual driver
implementations simpler and more general. Bus implementations can, for example, search for drivers that can
handle a particular device.

Consider the kernel's I2C subsystem (explored in Chapter 8, "The Inter-Integrated Circuit Protocol"). The I2C
layer consists of a core infrastructure, device drivers for bus adapters, and drivers for client devices. The I2C

core layer registers each detected I2C bus adapter using bus_register(). When an I2C client device (say, an

Electrically Erasable Programmable Read-Only Memory [EEPROM] chip) is probed and detected, its existence is
recorded via device_register(). Finally, the I2C EEPROM client driver registers itself using

driver_register(). These registrations are performed indirectly using service functions offered by the I2C
core.

bus_register() adds a corresponding entry to /sys/bus/, while device_register() adds entries under
/sys/devices/. struct bus_type, struct device, and struct device_driver are the main data structures

used respectively by buses, devices, and drivers. Take a peek inside include/linux/device.h for their definitions.

Hotplug and Coldplug

Devices connected to a running system on-the-fly are said to be hotplugged, whereas those connected prior to
system boot are considered to be coldplugged. Earlier, the kernel used to notify user space about hotplug
events by invoking a helper program registered via the /proc filesystem. But when current kernels detect
hotplug, they dispatch uevents to user space via netlink sockets. Netlink sockets are an efficient mechanism to
communicate between kernel space and user space using socket APIs. At the user-space end, udevd, the
daemon that manages device node creation and removal, receives the uevents and manages hotplug.

To see how hotplug handling has evolved recently, let's consider progressive levels of udev
running different versions of the 2.6 kernel:

With a udev-039 package and a 2.6.9 kernel, when the kernel detects a hotplug event, it
invokes the user space helper registered with /proc/sys/kernel/hotplug. This defaults to
/sbin/hotplug, which receives attributes of the hotplugged device in its environment.
/sbin/hotplug looks inside the hotplug configuration directory (usually
/etc/hotplug.d/default/) and runs, for example, /etc/hotplug.d/default/10-udev.hotplug, after
executing other scripts under /etc/hotplug/.

bash> ls -l /etc/hotplug.d/default/

...
lrwcrwxrwx 1 root root 14 May 11 2005 10-udev.hotplug -> /sbin/udevsend
...

When /sbin/udevsend thus gets executed, it passes the hotplugged device information to
udevd.

1.

With udev-058 and a 2.6.11 kernel, the story changes somewhat. The udevsend utility
replaces /sbin/hotplug:

bash> cat /proc/sys/kernel/hotplug

/sbin/udevsend

2.

With the latest levels of udev and the kernel, udevd assumes full responsibility of managing
hotplug without depending on udevsend. It now pulls hotplug events directly from the kernel
via netlink sockets (see Figure 4.4). /proc/sys/kernel/hotplug contains nothing:

bash> cat /proc/sys/kernel/hotplug

bash>

3.

Udev also handles coldplug. Because udev is part of user space and is started only after the kernel boots, a
special mechanism is needed to emulate hotplug events over coldplugged devices. At boot time, the kernel
creates a file named uevent under sysfs for all devices and emits coldplug events to those files. When udev
starts, it reads all the uevent files from /sys and generates hotplug uevents for each coldplugged device.

Microcode Download

You have to feed microcode to some devices before they can get ready for action. The microcode gets executed
by an on-card microcontroller. Device drivers used to store microcode inside static arrays in header files. But
this has become untenable because microcode is usually distributed as proprietary binary images by device
vendors, and that doesn't mix homogeneously with the GPL-ed kernel. Another reason against mixing firmware
with kernel sources is that they run on different release time lines. The solution apparently is to separately
maintain microcode in user space and pass it down to the kernel when required. Sysfs and udev provide an
infrastructure to achieve this.

Let's take the example of the Intel PRO/Wireless 2100 WiFi mini PCI card found on several laptops. The card is
built around a microcontroller that needs to execute externally supplied microcode for normal operation. Let's
walk through the steps that the Linux driver follows to download microcode to the card. Assume that you have
obtained the required microcode image (ipw2100-1.3.fw) from http://ipw2100.sourceforge.net/firmware.php
and saved it under /lib/firmware/ on your system and that you have inserted the driver module ipw2100.ko:

1. During initialization, the driver invokes the following:

request_firmware(..,"ipw2100-1.3.fw",..);

2. This dispatches a hotplug uevent to user space, along with the identity of the requested microcode image.

3. Udevd receives the uevent and responds by invoking /sbin/firmware_helper. For this, it uses a rule similar
to the following from a file under /etc/udev/rules.d/:

ACTION=="add", SUBSYSTEM=="firmware", RUN="/sbin/firmware_helper"

4. /sbin/firmware_helper looks inside /lib/firmware/ and locates the requested microcode image ipw2100-
1.3.fw. It dumps the image to /sys/class/0000:02:02.0/data. (0000:02:02 is the PCI bus:device:function
identifier of the WiFi card in this case.)

5. The driver receives the microcode and downloads it onto the device. When done, it calls
release_firmware() to free the corresponding data structures.

6. The driver goes through the rest of the initializations and the WiFi adapter beacons.

Module Autoload

Automatically loading kernel modules on demand is a convenient feature that Linux supports. To understand
how the kernel emits a "module fault" and how udev handles it, let's insert a Xircom CardBus Ethernet adapter
into a laptop's PC Card slot:

http://ipw2100.sourceforge.net/firmware.php

1. During compile time, the identity of supported devices is generated as part of the driver module object.
Take a peek at the driver that supports the Xircom CardBus Ethernet combo card
(drivers/net/tulip/xircom_cb.c) and find this snippet:

static struct pci_device_id xircom_pci_table[] = {
 {0x115D, 0x0003, PCI_ANY_ID, PCI_ANY_ID,},
 {0,},
};

/* Mark the device table */
MODULE_DEVICE_TABLE(pci, xircom_pci_table);

This declares that the driver can support any card having a PCI vendor ID of 0x115D and a PCI device ID of

0x0003 (more on this in Chapter 10). When you install the driver module, the depmod utility looks inside
the module image and deciphers the IDs present in the device table. It then adds the following entry to
/lib/modules/kernel-version/modules.alias:

alias pci:v0000115Dd00000003sv*sd*bc*sc*i* xircom_cb

where v stands for VendorID, d for DeviceID, sv for subvendorID, and * for wildcard match.

2. When you hotplug the Xircom card into a CardBus slot, the kernel generates a uevent that announces the
identity of the newly inserted device. You may look at the generated uevent using udevmonitor:

bash> udevmonitor --env
 ...
 MODALIAS=pci:v0000115Dd00000003sv0000115Dsd00001181bc02sc00i00
 ...

3. Udevd receives the uevent via a netlink socket and invokes modprobe with the above MODALIAS that the
kernel passed up to it:

modprobe pci:v0000115Dd00000003sv0000115Dsd00001181bc02sc00i00

4. Modprobe finds the matching entry in /lib/modules/kernel-version/modules.alias created during Step 1,
and proceeds to insert xircom_cb:

bash> lsmod
Module Size Used by
xircom_cb 10433 0
...

The card is now ready to surf.

You may want to revisit this section after reading Chapter 10.

Udev on Embedded Devices

One school of thought deprecates the use of udev in favor of statically created device nodes on
embedded devices for the following reasons:

Udev creates /dev nodes during each reboot, compared to static nodes that are created only
once during software install. If your embedded device uses flash storage, flash pages that
hold /dev nodes suffer an erase-write cycle on each boot in the case of the former, and this
reduces flash life span. (Flash memory is discussed in detail in Chapter 17, "Memory
Technology Devices.") You do have the option of mounting /dev over a RAM-based
filesystem, however.

Udev contributes to increased boot time.

Udev features such as dynamic creation of /dev nodes and autoloading of modules create a
degree of indeterminism that some solution designers prefer to avoid on special-purpose
embedded devices, especially ones that do not interact with the outside world via
hotpluggable buses. According to this point of view, static node creation and boot-time
insertion of any modules provide more control over the system and make it easier to test.

Memory Barriers

Many processors and compilers reorder instructions to achieve optimal execution speeds. The reordering is done
such that the new instruction stream is semantically equivalent to the original one. However, if you are, for
example, writing to memory mapped registers on an I/O device, instruction reordering can generate unexpected
side effects. To prevent the processor from reordering instructions, you can insert a barrier in your code. The
wmb() function inserts a road block that prevents writes from moving through it, rmb() provides a read

barricade that disallows reads from crossing it, and mb() results in a read-write barrier.

In addition to the CPU-to-hardware interactions referred to previously, memory barriers are also relevant for
CPU-to-CPU interactions on SMP systems. If your CPU's data cache is operating in write-back mode (in which
data is not copied from cache to memory until it's absolutely necessary), you might want to stall the instruction
stream until the cache-to-memory queue is drained. This is relevant, for example, when you encounter
instructions that acquire or release locks. Barriers are used in this scenario to obtain a consistent perception
across CPUs.

We revisit memory barriers when we discuss PCI drivers in Chapter 10 and flash map drivers in Chapter 17. In
the meanwhile, stop by Documentation/memory-barriers.txt for an explanation of different kinds of memory
barriers.

Power Management

Power management is critical on devices running on battery, such as laptops and handhelds. Linux drivers need
to be aware of power states and have to transition across states in response to events such as standby, sleep,
and low battery. Drivers utilize power-saving features supported by the underlying hardware when they switch
to modes that consume less power. For example, the storage driver spins down the disk, whereas the video
driver blanks the display.

Power-aware code in device drivers is only one piece of the overall power management framework. Power
management also features participation from user space daemons, utilities, configuration files, and boot
firmware. Two popular power management mechanisms are APM (discussed in the section, "Protected Mode
Calls" in Appendix B, "Linux and the BIOS") and Advanced Configuration and Power Interface (ACPI). APM is
getting obsolete, and ACPI has emerged as the de facto power management strategy on Linux systems. ACPI is
further discussed in Chapter 20, "More Devices and Drivers."

Looking at the Sources

The core interrupt handling code is generic and is in the kernel/irq/ directory. The architecture-specific portions
can be found in arch/your-arch/kernel/irq.c. The function do_IRQ() defined in this file is a good place to start
your journey into the kernel interrupt handling mechanism.

The kernel softirq and tasklet implementations live in kernel/softirq.c. This file also contains additional functions
that offer more fine-grained control over softirqs and tasklets. Look at include/linux/interrupt.h for softirq vector
enumerations and prototypes required to implement your interrupt handler. For a real-life example of writing
interrupt handlers and bottom halves, start from the handler that is part of drivers/net/lib8390.c and follow the
trail into the networking stack.

The kobject implementation and related programming interfaces live in lib/kobject.c and
include/linux/kobject.h. Look at drivers/base/sys.c for the sysfs implementation. You will find device class APIs
in drivers/base/class.c. Dispatching hotplug uevents via netlink sockets is done by lib/kobject_uevent.c. You
may download udev sources and documentation from www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html.

For a fuller understanding of how APM is implemented on x86 Linux, look at arch/x86/kernel/apm_32.c,
include/linux/apm_bios.h, and include/asm-x86/mach-default/apm.h in the kernel tree. If you are curious to
know how APM is implemented on BIOS-less architectures such as ARM, look at include/linux/apm-emulation.h
and its users. The kernel's ACPI implementation lives in drivers/acpi/.

Table 4.2 contains a summary of the main data structures used in this chapter and the location of their
definitions in the source tree. Table 4.3 lists the main kernel programming interfaces that you used in this
chapter along with the location of their definitions.

Table 4.2. Summary of Data Structures

Data Structure Location Description

tasklet_struct include/linux/interrupt.h Manages a tasklet, which is a method to
implement bottom halves

kobject include/linux/kobject.h Encapsulates common properties of a
kernel object

kset include/linux/kobject.h An object set to which a kobject belongs

kobj_type include/linux/kobject.h An object type that describes a kobject

class include/linux/device.h Abstracts the idea that a driver falls
under a broader category

bus device
device_driver

include/linux/device.h Structures that form the pillars under the
Linux device model

Table 4.3. Summary of Kernel Programming Interfaces

Kernel Interface Location Description

request_irq() kernel/irq/manage.c Requests an IRQ and associates an
interrupt handler with it

free_irq() kernel/irq/manage.c Frees an IRQ

Kernel Interface Location Description

disable_irq() kernel/irq/manage.c Disables the interrupt associated with
a supplied IRQ

disable_irq_nosync() kernel/irq/manage.c Disables the interrupt associated with
a supplied IRQ without waiting for
any currently executing instances of
the interrupt handler to return

enable_irq() kernel/irq/manage.c Re-enables the interrupt that has
been disabled using disable_irq()

or disable_irq_nosync()

open_softirq() kernel/softirq.c Opens a softirq

raise_softirq() kernel/softirq.c Marks the softirq as pending
execution

tasklet_init() kernel/softirq.c Dynamically initializes a tasklet

tasklet_schedule() include/linux/interrupt.hkernel/softirq.c Marks a tasklet as pending execution

tasklet_enable() include/linux/interrupt.h Enables a tasklet

tasklet_disable() include/linux/interrupt.h Disables a tasklet

tasklet_disable_nosync() include/linux/interrupt.h Disables a tasklet without waiting for
active instances to finish execution

class_device_register() drivers/base/class.c Family of functions in the Linux
device model that create/destroy a
class, device class, and associated
kobjects and sysfs files

kobject_add() lib/kobject.c

sysfs_create_dir() lib/kobject_uevent.c

class_device_create() fs/sysfs/dir.c

class_device_destroy()
class_create()
class_destroy()

class_device_create_file()
sysfs_create_file()

class_device_add_attrs()
kobject_uevent()

fs/sysfs/file.c

This finishes our exploration of device driver concepts. You might want to dip back into this chapter while
developing your driver.

disable_irq() kernel/irq/manage.c Disables the interrupt associated with
a supplied IRQ

disable_irq_nosync() kernel/irq/manage.c Disables the interrupt associated with
a supplied IRQ without waiting for
any currently executing instances of
the interrupt handler to return

enable_irq() kernel/irq/manage.c Re-enables the interrupt that has
been disabled using disable_irq()

or disable_irq_nosync()

open_softirq() kernel/softirq.c Opens a softirq

raise_softirq() kernel/softirq.c Marks the softirq as pending
execution

tasklet_init() kernel/softirq.c Dynamically initializes a tasklet

tasklet_schedule() include/linux/interrupt.hkernel/softirq.c Marks a tasklet as pending execution

tasklet_enable() include/linux/interrupt.h Enables a tasklet

tasklet_disable() include/linux/interrupt.h Disables a tasklet

tasklet_disable_nosync() include/linux/interrupt.h Disables a tasklet without waiting for
active instances to finish execution

class_device_register() drivers/base/class.c Family of functions in the Linux
device model that create/destroy a
class, device class, and associated
kobjects and sysfs files

kobject_add() lib/kobject.c

sysfs_create_dir() lib/kobject_uevent.c

class_device_create() fs/sysfs/dir.c

class_device_destroy()
class_create()
class_destroy()

class_device_create_file()
sysfs_create_file()

class_device_add_attrs()
kobject_uevent()

fs/sysfs/file.c

This finishes our exploration of device driver concepts. You might want to dip back into this chapter while
developing your driver.

Chapter 5. Character Drivers

In This Chapter

Char Driver Basics

120

Device Example: System CMOS

121

Sensing Data Availability

139

Talking to the Parallel Port
145

RTC Subsystem

156

Pseudo Char Drivers
157

Misc Drivers

160

Character Caveats
166

Looking at the Sources
167

You are now all set to make a foray into writing simple, albeit real-world, device drivers. In this
chapter, let's look at the internals of a character (or char) device driver, which is kernel code that
sequentially accesses data from a device. Char drivers can capture raw data from several types of
devices: printers, mice, watchdogs, tapes, memory, RTCs, and so on. They are however, not
suitable for managing data residing on block devices capable of random access such as hard disks,
floppies, or compact discs.

Char Driver Basics

Let's start with a top-down view. To access a char device, a system user invokes a suitable application program.
The application is responsible for talking to the device, but to do that, it needs to elicit the identity of a suitable
driver. The contact details of the driver are exported to user space via the /dev directory:

bash> ls -l /dev

total 0

crw------- 1 root root 5, 1 Jul 16 10:02 console
...

lrwxrwxrwx 1 root root 3 Oct 6 10:02 cdrom -> hdc

...

brw-rw---- 1 root disk 3, 0 Oct 6 2007 hda

brw-rw---- 1 root disk 3, 1 Oct 6 2007 hda1
...

crw------- 1 root tty 4, 1 Oct 6 10:20 tty1

crw------- 1 root tty 4, 2 Oct 6 10:02 tty2

The first character in each line of the ls output denotes the driver type: c signifies a char driver, b stands for a

block driver, and l denotes a symbolic link. The numbers in the fifth column are called major numbers, and
those in the sixth column are minor numbers. A major number broadly identifies the driver, whereas a minor
number pinpoints the exact device serviced by the driver. For example, the IDE block storage driver /dev/hda
owns a major number of 3 and is in charge of handling the hard disk on your system, but when you further
specify a minor number of 1 (/dev/hda1), that narrows it down to the first disk partition. Char and block drivers
occupy different spaces, so you can have same major number assigned to a char as well as a block driver.

Let's take a step further and peek inside a char driver. From a code-flow perspective, char drivers have the
following:

An initialization (or init()) routine that is responsible for initializing the device and seamlessly tying the
driver to the rest of the kernel via registration functions.

A set of entry points (or methods) such as open(), read(), ioctl(), llseek(), and write(), which

directly correspond to I/O system calls invoked by user applications over the associated /dev node.

Interrupt routines, bottom halves, timer handlers, helper kernel threads, and other support infrastructure.
These are largely transparent to user applications.

From a data-flow perspective, char drivers own the following key data structures:

A per-device structure. This is the information repository around which the driver revolves.1.

struct cdev, a kernel abstraction for character drivers. This structure is usually embedded inside the per-
device structure referred previously.

2.

struct file_operations, which contains the addresses of all driver entry points.3.

struct file, which contains information about the associated /dev node.4.

4.

Chapter 5. Character Drivers

In This Chapter

Char Driver Basics

120

Device Example: System CMOS

121

Sensing Data Availability

139

Talking to the Parallel Port
145

RTC Subsystem

156

Pseudo Char Drivers
157

Misc Drivers

160

Character Caveats
166

Looking at the Sources
167

You are now all set to make a foray into writing simple, albeit real-world, device drivers. In this
chapter, let's look at the internals of a character (or char) device driver, which is kernel code that
sequentially accesses data from a device. Char drivers can capture raw data from several types of
devices: printers, mice, watchdogs, tapes, memory, RTCs, and so on. They are however, not
suitable for managing data residing on block devices capable of random access such as hard disks,
floppies, or compact discs.

Char Driver Basics

Let's start with a top-down view. To access a char device, a system user invokes a suitable application program.
The application is responsible for talking to the device, but to do that, it needs to elicit the identity of a suitable
driver. The contact details of the driver are exported to user space via the /dev directory:

bash> ls -l /dev

total 0

crw------- 1 root root 5, 1 Jul 16 10:02 console
...

lrwxrwxrwx 1 root root 3 Oct 6 10:02 cdrom -> hdc

...

brw-rw---- 1 root disk 3, 0 Oct 6 2007 hda

brw-rw---- 1 root disk 3, 1 Oct 6 2007 hda1
...

crw------- 1 root tty 4, 1 Oct 6 10:20 tty1

crw------- 1 root tty 4, 2 Oct 6 10:02 tty2

The first character in each line of the ls output denotes the driver type: c signifies a char driver, b stands for a

block driver, and l denotes a symbolic link. The numbers in the fifth column are called major numbers, and
those in the sixth column are minor numbers. A major number broadly identifies the driver, whereas a minor
number pinpoints the exact device serviced by the driver. For example, the IDE block storage driver /dev/hda
owns a major number of 3 and is in charge of handling the hard disk on your system, but when you further
specify a minor number of 1 (/dev/hda1), that narrows it down to the first disk partition. Char and block drivers
occupy different spaces, so you can have same major number assigned to a char as well as a block driver.

Let's take a step further and peek inside a char driver. From a code-flow perspective, char drivers have the
following:

An initialization (or init()) routine that is responsible for initializing the device and seamlessly tying the
driver to the rest of the kernel via registration functions.

A set of entry points (or methods) such as open(), read(), ioctl(), llseek(), and write(), which

directly correspond to I/O system calls invoked by user applications over the associated /dev node.

Interrupt routines, bottom halves, timer handlers, helper kernel threads, and other support infrastructure.
These are largely transparent to user applications.

From a data-flow perspective, char drivers own the following key data structures:

A per-device structure. This is the information repository around which the driver revolves.1.

struct cdev, a kernel abstraction for character drivers. This structure is usually embedded inside the per-
device structure referred previously.

2.

struct file_operations, which contains the addresses of all driver entry points.3.

struct file, which contains information about the associated /dev node.4.

4.

Device Example: System CMOS

Let's implement a char driver to access the system CMOS. The BIOS on PC-compatible hardware (see Figure
5.1) uses the CMOS to store information such as startup options, boot order, and the system date, which you
can configure via the BIOS setup menu. Our example CMOS driver lets you access the two PC CMOS banks as
though they are regular files. Applications can operate on /dev/cmos/0 and /dev/cmos/1, and use I/O system
calls to access data from the two banks. Because the BIOS assigns semantics to the CMOS area at bit-level
granularity, the driver is capable of bit-level access. So, a read() obtains the specified number of bits and

advances the internal file pointer by the number of bits read.

Figure 5.1. CMOS on a PC-compatible system.

The CMOS is accessed via two I/O addresses, an index register and a data register, as shown in Table 5.1. You
have to specify the desired CMOS memory offset in the index register and exchange information via the data
register.

Table 5.1. Register Layout on the CMOS

Register Name Description

CMOS_BANK0_INDEX_PORT Specify the desired CMOS bank 0 offset in this register.

CMOS_BANK0_DATA_PORT Read/write data from/to the address specified in
CMOS_BANK0_INDEX_PORT.

CMOS_BANK1_INDEX_PORT Specify the desired CMOS bank 1 offset in this register.

CMOS_BANK1_DATA_PORT Read/write data from/to the address specified in
CMOS_BANK1_INDEX_PORT.

Because each driver method has a system call counterpart that applications use, we will look at the system calls
and the matching driver methods in tandem.

Driver Initialization

The driver init() method is the bedrock of the registration mechanism. It's responsible for the following:

Requesting allocation of device major numbers.

Allocating memory for the per-device structure.

Connecting the entry points (open(), read(), and so on) with the char driver's cdev abstraction.

Associating the device major number with the driver's cdev.

Creating nodes under /dev and /sys. As discussed in Chapter 4, "Laying the Groundwork," /dev
management has meandered from static device nodes in the 2.2 kernels, to dynamic names in 2.4, and
further to a user-space policy daemon (udevd) in 2.6.

Initializing the hardware. This is not relevant for our simple CMOS.

Listing 5.1 implements the CMOS driver's init() method.

Listing 5.1. CMOS Driver Initialization

Code View:
#include <linux/fs.h>

/* Per-device (per-bank) structure */

struct cmos_dev {

 unsigned short current_pointer; /* Current pointer within the

 bank */

 unsigned int size; /* Size of the bank */

 int bank_number; /* CMOS bank number */

 struct cdev cdev; /* The cdev structure */

 char name[10]; /* Name of I/O region */

 /* ... */ /* Mutexes, spinlocks, wait

 queues, .. */

} *cmos_devp;

/* File operations structure. Defined in linux/fs.h */

static struct file_operations cmos_fops = {

 .owner = THIS_MODULE, /* Owner */

 .open = cmos_open, /* Open method */

 .release = cmos_release, /* Release method */

 .read = cmos_read, /* Read method */

 .write = cmos_write, /* Write method */

 .llseek = cmos_llseek, /* Seek method */

 .ioctl = cmos_ioctl, /* Ioctl method */

};

static dev_t cmos_dev_number; /* Allotted device number */

struct class *cmos_class; /* Tie with the device model */

#define NUM_CMOS_BANKS 2

#define CMOS_BANK_SIZE (0xFF*8)

#define DEVICE_NAME "cmos"

#define CMOS_BANK0_INDEX_PORT 0x70

#define CMOS_BANK0_DATA_PORT 0x71

#define CMOS_BANK1_INDEX_PORT 0x72

#define CMOS_BANK1_DATA_PORT 0x73

unsigned char addrports[NUM_CMOS_BANKS] = {CMOS_BANK0_INDEX_PORT,

 CMOS_BANK1_INDEX_PORT,};

unsigned char dataports[NUM_CMOS_BANKS] = {CMOS_BANK0_DATA_PORT,

 CMOS_BANK1_DATA_PORT,};

/*

 * Driver Initialization

 */

int __init

cmos_init(void)

{

 int i;

 /* Request dynamic allocation of a device major number */

 if (alloc_chrdev_region(&cmos_dev_number, 0,

 NUM_CMOS_BANKS, DEVICE_NAME) < 0) {

 printk(KERN_DEBUG "Can't register device\n"); return -1;

 }

 /* Populate sysfs entries */

 cmos_class = class_create(THIS_MODULE, DEVICE_NAME);

 for (i=0; i<NUM_CMOS_BANKS; i++) {

 /* Allocate memory for the per-device structure */

 cmos_devp = kmalloc(sizeof(struct cmos_dev), GFP_KERNEL);

 if (!cmos_devp) {

 printk("Bad Kmalloc\n"); return 1;

 }

 /* Request I/O region */

 sprintf(cmos_devp->name, "cmos%d", i);

 if (!(request_region(addrports[i], 2, cmos_devp->name)) {

 printk("cmos: I/O port 0x%x is not free.\n", addrports[i]);

 return –EIO;

 }

 /* Fill in the bank number to correlate this device

 with the corresponding CMOS bank */

 cmos_devp->bank_number = i;

 /* Connect the file operations with the cdev */

 cdev_init(&cmos_devp->cdev, &cmos_fops);

 cmos_devp->cdev.owner = THIS_MODULE;

 /* Connect the major/minor number to the cdev */

 if (cdev_add(&cmos_devp->cdev, (dev_number + i), 1)) {

 printk("Bad cdev\n");

 return 1;

 }

 /* Send uevents to udev, so it'll create /dev nodes */

 class_device_create(cmos_class, NULL, (dev_number + i),

 NULL, "cmos%d", i);

 }

 printk("CMOS Driver Initialized.\n");

 return 0;

}

/* Driver Exit */

void __exit

cmos_cleanup(void)

{

 int i;

 /* Remove the cdev */

 cdev_del(&cmos_devp->cdev);

 /* Release the major number */

 unregister_chrdev_region(MAJOR(dev_number), NUM_CMOS_BANKS);

 /* Release I/O region */

 for (i=0; i<NUM_CMOS_BANKS; i++) {

 class_device_destroy(cmos_class, MKDEV(MAJOR(dev_number), i));

 release_region(addrports[i], 2);

 }

 /* Destroy cmos_class */

 class_destroy(cmos_class);

 return();

}

module_init(cmos_init);

module_exit(cmos_cleanup);

Most steps performed by cmos_init() are generic, so if you remove references to CMOS data structures, you
may use Listing 5.1 as a template to develop other char drivers, too.

First, cmos_init() invokes alloc_chrdev_region() to dynamically request an unused major number.

dev_number contains the allotted major number if the call is successful. The second and third arguments to

alloc_chrdev_region() specify the start minor number and the number of supported minor devices,
respectively. The last argument is the device name used to identify the CMOS in /proc/devices:

bash> cat /proc/devices | grep cmos

253 cmos

253 is the dynamically allocated major number for the CMOS device. During pre-2.6 days, dynamic device node
allocation was not supported, so char drivers made calls to register_chrdev() to statically request specific

major numbers.

Before proceeding further down the code path, let's take a peek at the data structures used in Listing 5.1.
cmos_dev is the per-device data structure referred to earlier. cmos_fops is the file_operations structure that

contains the address of driver entry points. cmos_fops also has a field called owner that is set to THIS_MODULE,

the address of the driver module in question. Knowing the identity of the structure owner enables the kernel to
offload from the driver the burden of some housekeeping functions such as tracking the use-count when
processes open or release the device.

As you saw, the kernel uses an abstraction called cdev to internally represent char devices. Char drivers usually
embed their cdev inside their per-device structure. In our example, cdev sits inside cmos_dev. cmos_init()

loops over each supported minor device (CMOS bank in this case) allocating memory for the associated per-
device structure and, hence, for the cdev structure living inside it. cdev_init() associates the file operations

(cmos_fops) with the cdev, and cdev_add() connects the major/minor numbers allocated by

alloc_chrdev_region() to the cdev.

class_create() populates a sysfs entry for this device, and class_device_create() results in the generation

of two uevents: cmos0 and cmos1. As you learned in Chapter 4, udevd listens to uevents and generates device
nodes after consulting its rules database. Add the following to the udev rules directory (/etc/udev/rules.d/) to
produce device nodes corresponding to the two CMOS banks (/dev/cmos/0 and /dev/cmos/1) on receiving the
respective uevents (cmos0 and cmos1):

KERNEL="cmos[0-1]*", NAME="cmos/%n"

Device drivers that need to operate on a range of I/O addresses stake claim to the addresses via a call to
request_region(). This regulatory mechanism ensures that requests by others for the same region fail until
the occupant releases it via a call to release_region(). request_region() is commonly invoked by I/O bus

drivers such as PCI and ISA to mark ownership of on-card memory in the processor's address space (more on
this in Chapter 10, "Peripheral Component Interconnect"). cmos_init() requests access to the I/O region of

each CMOS bank by calling request_region(). The last argument to request_region() is an identifier used by
/proc/ioports, so you will see this if you peek at that file:

bash> grep cmos /proc/ioports

0070-0071 : cmos0

0072-0073 : cmos1

This completes the registration process, and cmos_init() prints out a message signaling its happiness.

Open and Release

The kernel invokes the driver's open() method when an application opens the corresponding device node. You

can trigger execution of cmos_open() by doing this:

bash> cat /dev/cmos/0

The kernel calls the release() method when an application closes an open device. So when cat closes the file

descriptor attached to /dev/cmos/0 after reading the contents of CMOS bank 0, the kernel invokes
cmos_release().

Listing 5.2 shows the implementation of cmos_open() and cmos_release(). Let's take a closer look at

cmos_open(). There are a couple of things worthy of note here. The first is the extraction of cmos_dev. The

inode passed as an argument to cmos_open() contains the address of the cdev structure allocated during

initialization. As shown in Listing 5.1, cdev is embedded inside cmos_dev. To elicit the address of the container
structure cmos_dev, cmos_open() uses the kernel helper function, container_of().

The other notable operation in cmos_open() is the usage of the private_data field that is part of struct file,

the second argument. You can use this field (file->private_data) as a placeholder to conveniently correlate
information from inside other driver methods. The CMOS driver uses this field to store the address of cmos_dev.

Look at cmos_release() (and the rest of the methods) to see how private_data is used to directly obtain a

handle on the cmos_dev structure belonging to the corresponding CMOS bank.

Listing 5.2. Open and Release

Code View:
/*

 * Open CMOS bank

 */

int

cmos_open(struct inode *inode, struct file *file)

{

 struct cmos_dev *cmos_devp;

 /* Get the per-device structure that contains this cdev */

 cmos_devp = container_of(inode->i_cdev, struct cmos_dev, cdev);

 /* Easy access to cmos_devp from rest of the entry points */

 file->private_data = cmos_devp;

 /* Initialize some fields */

 cmos_devp->size = CMOS_BANK_SIZE;

 cmos_devp->current_pointer = 0;

 return 0;

}

/*

 * Release CMOS bank

 */

int

cmos_release(struct inode *inode, struct file *file)

{

 struct cmos_dev *cmos_devp = file->private_data;

 /* Reset file pointer */

 cmos_devp->current_pointer = 0;

 return 0;

}

Exchanging Data

read() and write() are the basic char driver methods responsible for exchanging data between user space and

the device. The extended read()/write() family contains several other methods, too: fsync(), aio_read(),

aio_write(), and mmap().

The CMOS driver operates on a simple memory device and does not have to work through some of the
complexities faced by usual char drivers:

CMOS data access routines do not need to sleep-wait for device I/O to complete, whereas read() and

write() methods belonging to many char drivers have to support both blocking and nonblocking modes of
operation. Unless a device file is opened in the nonblocking (O_NONBLOCK) mode, read() and write() are

allowed to put the calling process to sleep until the corresponding operation completes.

CMOS driver operations complete synchronously and do not depend on interrupts. However, data access
methods belonging to many drivers depend on interrupts for data collection and have to communicate
with interrupt context code via data structures such as wait queues.

Listing 5.3 contains the read() and write() methods belonging to the CMOS driver. You cannot directly access

user buffers from kernel space and vice versa, so to copy CMOS memory contents to user space, cmos_read()

uses the services of copy_to_user(). cmos_write() does the reverse using copy_from_user(). Because
copy_to_user() and copy_from_user() may fall asleep on the job, you cannot hold spinlocks while calling

them.

As you saw earlier, accessing CMOS memory is accomplished by operating on a pair of I/O addresses. To read
different sizes of data from an I/O address, the kernel provides a family of architecture-independent functions:
in[b|w|l|sb|sl](). Similarly, a cluster of routines, out[b|w|l|sb|sl](), are available for writing to I/O

regions. port_data_in() and port_data_out() in Listing 5.3 use inb() and oub() for data transfer.

Listing 5.3. Read and Write

Code View:
/*

 * Read from a CMOS Bank at bit-level granularity

 */

ssize_t

cmos_read(struct file *file, char *buf,

 size_t count, loff_t *ppos)

{

 struct cmos_dev *cmos_devp = file->private_data;

 char data[CMOS_BANK_SIZE];

 unsigned char mask;

 int xferred = 0, i = 0, l, zero_out;

 int start_byte = cmos_devp->current_pointer/8;

 int start_bit = cmos_devp->current_pointer%8;

 if (cmos_devp->current_pointer >= cmos_devp->size) {

 return 0; /*EOF*/

 }

 /* Adjust count if it edges past the end of the CMOS bank */

 if (cmos_devp->current_pointer + count > cmos_devp->size) {

 count = cmos_devp->size - cmos_devp->current_pointer;

 }

 /* Get the specified number of bits from the CMOS */

 while (xferred < count) {

 data[i] = port_data_in(start_byte, cmos_devp->bank_number)

 >> start_bit;

 xferred += (8 - start_bit);

 if ((start_bit) && (count + start_bit > 8)) {

 data[i] |= (port_data_in (start_byte + 1,

 cmos_devp->bank_number) << (8 - start_bit));

 xferred += start_bit;

 }

 start_byte++;

 i++;

 }

 if (xferred > count) {

 /* Zero out (xferred-count) bits from the MSB

 of the last data byte */

 zero_out = xferred - count;

 mask = 1 << (8 - zero_out);

 for (l=0; l < zero_out; l++) {

 data[i-1] &= ~mask; mask <<= 1;

 }

 xferred = count;

 }

 if (!xferred) return -EIO;

 /* Copy the read bits to the user buffer */

 if (copy_to_user(buf, (void *)data, ((xferred/8)+1)) != 0) {

 return -EIO;

 }

 /* Increment the file pointer by the number of xferred bits */

 cmos_devp->current_pointer += xferred;

 return xferred; /* Number of bits read */

}

/*

 * Write to a CMOS bank at bit-level granularity. 'count' holds the

 * number of bits to be written.

 */

ssize_t

cmos_write(struct file *file, const char *buf,

 size_t count, loff_t *ppos)

{

 struct cmos_dev *cmos_devp = file->private_data;

 int xferred = 0, i = 0, l, end_l, start_l;

 char *kbuf, tmp_kbuf;

 unsigned char tmp_data = 0, mask;

 int start_byte = cmos_devp->current_pointer/8;

 int start_bit = cmos_devp->current_pointer%8;

 if (cmos_devp->current_pointer >= cmos_devp->size) {

 return 0; /* EOF */

 }

 /* Adjust count if it edges past the end of the CMOS bank */

 if (cmos_devp->current_pointer + count > cmos_devp->size) {

 count = cmos_devp->size - cmos_devp->current_pointer;

 }

 kbuf = kmalloc((count/8)+1,GFP_KERNEL);

 if (kbuf==NULL)

 return -ENOMEM;

 /* Get the bits from the user buffer */

 if (copy_from_user(kbuf,buf,(count/8)+1)) {

 kfree(kbuf);

 return -EFAULT;

 }

 /* Write the specified number of bits to the CMOS bank */

 while (xferred < count) {

 tmp_data = port_data_in(start_byte, cmos_devp->bank_number);

 mask = 1 << start_bit;

 end_l = 8;

 if ((count-xferred) < (8 - start_bit)) {

 end_l = (count - xferred) + start_bit;

 }

 for (l = start_bit; l < end_l; l++) {

 tmp_data &= ~mask; mask <<= 1;

 }

 tmp_kbuf = kbuf[i];

 mask = 1 << end_l;

 for (l = end_l; l < 8; l++) {

 tmp_kbuf &= ~mask;

 mask <<= 1;

 }

 port_data_out(start_byte,

 tmp_data |(tmp_kbuf << start_bit),

 cmos_devp->bank_number);

 xferred += (end_l - start_bit);

 if ((xferred < count) && (start_bit) &&

 (count + start_bit > 8)) {

 tmp_data = port_data_in(start_byte+1,

 cmos_devp->bank_number);

 start_l = ((start_bit + count) % 8);

 mask = 1 << start_l;

 for (l=0; l < start_l; l++) {

 mask >>= 1;

 tmp_data &= ~mask;

 }

 port_data_out((start_byte+1),

 tmp_data |(kbuf[i] >> (8 - start_bit)),

 cmos_devp->bank_number);

 xferred += start_l;

 }

 start_byte++;

 i++;

 }

 if (!xferred) return -EIO;

 /* Push the offset pointer forward */

 cmos_devp->current_pointer += xferred;

 return xferred; /* Return the number of written bits */

}

/*

 * Read data from specified CMOS bank

 */

unsigned char

port_data_in(unsigned char offset, int bank)

{

 unsigned char data;

 if (unlikely(bank >= NUM_CMOS_BANKS)) {

 printk("Unknown CMOS Bank\n");

 return 0;

 } else {

 outb(offset, addrports[bank]); /* Read a byte */

 data = inb(dataports[bank]);

 }

 return data;

}

/*

 * Write data to specified CMOS bank

 */

void

port_data_out(unsigned char offset, unsigned char data,

 int bank)

{

 if (unlikely(bank >= NUM_CMOS_BANKS)) {

 printk("Unknown CMOS Bank\n");

 return;

 } else {

 outb(offset, addrports[bank]); /* Output a byte */

 outb(data, dataports[bank]);

 }

 return;

}

If a char driver's write() method returns successfully, it implies that the driver has assumed responsibility for

the data passed down to it by the application. However it does not guarantee that the data has been
successfully written to the device. If an application needs this assurance, it can invoke the fsync() system call.

The corresponding fsync() driver method ensures that application data is flushed from driver buffers and
written to the device. The CMOS driver does not need an fsync() method because, in this case, driver-writes

are synonymous with device-writes.

If a user application has data sitting on multiple buffers that it needs to send to a device, it can request multiple
driver writes, but that is inefficient for the following reasons:

The overhead of multiple system calls and related context switches.1.

The driver is the one who knows the device intimately, so it can probably do a more clever job of
efficiently gathering data from different buffers and dispatching it to the device.

2.

Because of this, vectored versions of read() and write() are supported on Linux and other UNIX flavors. The

Linux char driver infrastructure used to offer two dedicated methods to perform vector operations: readv() and

writev(). Starting with the 2.6.19 kernel release, these two methods have been folded into the generic Linux

Asynchronous I/O (AIO) layer, however. Linux AIO is a broad topic and is outside the scope of this discussion,
so we just concentrate on the synchronous vector capabilities offered by AIO.

The prototypes of the vector driver methods are as follows:

ssize_t aio_read(struct kiocb *iocb, const struct iovec *vector,

 unsigned long count, loff_t offset);

ssize_t aio_write(struct kiocb *iocb, const struct iovec *vector,
 unsigned long count, loff_t offset);

The first argument to aio_read()/aio_write() describes the AIO operation, and the second argument is an
array of iovecs. The latter is the principal data structure used by the vector functions and contains the

addresses and lengths of buffers that hold the data. In fact, this mechanism is the user space equivalent of
scatter-gather DMA discussed in Chapter 10. Look at include/linux/uio.h for the definition of iovecs and at

drivers/net/tun.c[1] for an example implementation of vectored char driver methods.

[1] Discussed in the sidebar "TUN/TAP Driver" in Chapter 15, "Network Interface Cards."

Another data access method is mmap(), which associates device memory with user virtual memory. Applications

may call the corresponding system call, also called mmap(), and directly operate on the returned memory region

to access device-resident memory. Not many drivers implement mmap(), so we won't delve into that here.
Instead, have a look at drivers/char/mem.c for an example mmap() implementation. The section "Accessing

Memory Regions" in Chapter 19, "Drivers in User Space," illustrates how applications use mmap(). Our example
CMOS driver does not implement mmap().

You might have noticed that port_data_in() and port_data_out() envelop the bank number sanity check

within a macro called unlikely(). Two macros, likely() and unlikely(), inform GCC about the probability of
success of the associated conditional evaluation. This information is used by GCC while predicting branches.
Because we mark it unlikely that the bank sanity check will fail, GCC generates intelligent code that gels the
else{} clause sequentially with the code flow. Branching is done for the if{} clause. The reverse happens if

you use likely() rather than unlikely().

Seek

The kernel uses an internal pointer to keep track of the current file access position. Applications use the
lseek() system call to request repositioning of this internal file pointer. Using the services of lseek(), you can

reset the file pointer to any offset within the file. The char driver counterpart of lseek() is the llseek()
method. cmos_llseek() implements this method in the CMOS driver.

As we saw previously, the internal file pointer for the CMOS moves bit-wise rather than byte-wise. If a byte of
data is read from the CMOS driver, the file pointer has to be moved by 8, so applications have to seek
accordingly. cmos_llseek() also implements end-of-file semantics depending on the size of the CMOS bank.

To understand the semantics of llseek(), let's start by looking at the commands supported by the lseek()

system call:

SEEK_SET, which sets the file pointer to a supplied fixed offset.1.

SEEK_CUR, which calculates the offset relative to the current location.2.

SEEK_END, which calculates the offset relative to the end-of-file. This command can maneuver the file

pointer beyond the end of the file, but does not change the file size. Reads beyond the end-of-file marker
return naught if no data is explicitly written. This technique is often used to create big files. The CMOS
driver does not support SEEK_END.

3.

Look at cmos_llseek() in Listing 5.4 and co-relate with the preceding definitions.

Listing 5.4. Seek

Code View:
/*

 * Seek to a bit offset within a CMOS bank

 */

static loff_t

cmos_llseek(struct file *file, loff_t offset,

 int orig)

{

 struct cmos_dev *cmos_devp = file->private_data;

 switch (orig) {

 case 0: /* SEEK_SET */

 if (offset >= cmos_devp->size) {

 return -EINVAL;

 }

 cmos_devp->current_pointer = offset; /* Bit Offset */

 break;

 case 1: /* SEEK_CURR */

 if ((cmos_devp->current_pointer + offset) >=

 cmos_devp->size) {

 return -EINVAL;

 }

 cmos_devp->current_pointer = offset; /* Bit Offset */

 break;

 case 2: /* SEEK_END - Not supported */

 return -EINVAL;

 default:

 return -EINVAL;

 }

 return(cmos_devp->current_pointer);

}

Control

Another common char driver method is called I/O Control (or ioctl). This routine is used to receive and
implement application commands that request device-specific actions. Because CMOS memory is used by the
BIOS to store crucial information such as the boot device order, it's usually protected via cyclic redundancy
check (CRC) algorithms. To detect data corruption, the CMOS driver supports two ioctl commands:

Adjust checksum, which is used to recalculate the CRC after the CMOS contents have been modified. The
calculated checksum is stored at a predetermined offset in CMOS bank 1.

1.

2.

1.

Verify checksum, which is used to check whether the CMOS contents are healthy. This is done by
comparing the CRC of the current contents with the value previously stored.

2.

Applications send these commands down to the driver via the ioctl() system call when they want to request it

to perform checksum operations. Look at cmos_ioctl() in Listing 5.5 for the implementation of the CMOS

driver's ioctl method. adjust_cmos_crc(int bank, unsigned short seed) implements the standard CRC
algorithm and is not shown in the listing.

Listing 5.5. I/O Control

Code View:
#define CMOS_ADJUST_CHECKSUM 1

#define CMOS_VERIFY_CHECKSUM 2

#define CMOS_BANK1_CRC_OFFSET 0x1E

/*

 * Ioctls to adjust and verify CRC16s.

 */

static int

cmos_ioctl(struct inode *inode, struct file *file,

 unsigned int cmd, unsigned long arg)

{

 unsigned short crc = 0;

 unsigned char buf;

 switch (cmd) {

 case CMOS_ADJUST_CHECKSUM:

 /* Calculate the CRC of bank0 using a seed of 0 */

 crc = adjust_cmos_crc(0, 0);

 /* Seed bank1 with CRC of bank0 */

 crc = adjust_cmos_crc(1, crc);

 /* Store calculated CRC */

 port_data_out(CMOS_BANK1_CRC_OFFSET,

 (unsigned char)(crc & 0xFF), 1);

 port_data_out((CMOS_BANK1_CRC_OFFSET + 1),

 (unsigned char) (crc >> 8), 1);

 break;

 case CMOS_VERIFY_CHECKSUM:

 /* Calculate the CRC of bank0 using a seed of 0 */

 crc = adjust_cmos_crc(0, 0);

 /* Seed bank1 with CRC of bank0 */

 crc = adjust_cmos_crc(1, crc);

 /* Compare the calculated CRC with the stored CRC */

 buf = port_data_in(CMOS_BANK1_CRC_OFFSET, 1);

 if (buf != (unsigned char) (crc & 0xFF)) return -EINVAL;

 buf = port_data_in((CMOS_BANK1_CRC_OFFSET+1), 1);

 if (buf != (unsigned char)(crc >> 8)) return -EINVAL;

 break;

 default:

 return -EIO;

 }

 return 0;

}

Sensing Data Availability

Many user applications are sophisticated and are not satisfied with the vintage open()/read()/write()/close()
calls. They desire synchronous or asynchronous notifications that alert them when new data is available from
the device or when the driver is ready to accept new data. In this section, we examine two char driver methods
that sense data availability: poll() and fasync(). The former is synchronous, whereas the latter is

asynchronous. Because these mechanisms are relatively advanced, let's first understand how applications use
these features before finding out how the underlying driver implements them. Sensing data availability is not
relevant for the simple CMOS memory device discussed previously, so let's take a few usage scenarios from a
popular user space application: the X Windows server.

Poll

Consider the following code snippet from the X Windows source tree (downloadable from www.xfree86.org) that
handles mice events:

xc/programs/Xserver/hw/xfree86/input/mouse/mouse.c:

case PROT_THINKING: /* ThinkingMouse */

 /* This mouse may send a PnP ID string, ignore it. */
 usleep(200000); xf86FlushInput(pInfo->fd);

 /* Send the command to initialize the beast. */
 for (s = "E5E5"; *s; ++s) {

 xf86WriteSerial(pInfo->fd, s, 1);
 if ((xf86WaitForInput(pInfo->fd, 1000000) <= 0))

 break;
 xf86ReadSerial(pInfo->fd, &c, 1);

 if (c != *s) break;
 }
 break;

Essentially, the code sends an initialization command to the mouse, polls until it senses input data, and reads
the response from the device. If you peel the envelope off Xf86WaitForInput() used previously, you will find a
call to the select() system call:

Code View:
xc/programs/Xserver/hw/xfree86/os-support/shared/posix_tty.c:

int

xf86WaitForInput(int fd, int timeout)
{

 fd_set readfds;

 struct timeval to;
 int r;

 FD_ZERO(&readfds);

 if (fd >= 0) {
 FD_SET(fd, &readfds);

 }

 to.tv_sec = timeout / 1000000;
 to.tv_usec = timeout % 1000000;

 if (fd >= 0) {

 SYSCALL (r = select(FD_SETSIZE, &readfds, NULL, NULL, &to));

 } else {

 SYSCALL (r = select(FD_SETSIZE, NULL, NULL, NULL, &to));
 }

 if (xf86Verbose >= 9)
 ErrorF ("select returned %d\n", r);

 return (r);
}

You may supply a bunch of file descriptors to select() and ask it to keep an eye on them until there is a change

in the associated data state. You may also request a timeout to override data availability. If you ask for a
timeout of NULL, select() blocks forever. Refer to the man or info pages of select() for detailed

documentation. The call to select() in the preceding snippet induces the X server to poll for data from a

connected mouse within a timeout.

Linux supports another system call, poll(), which has semantics similar to select(). The 2.6 kernel
supports a new non-POSIX system call named epoll() that is a more scalable superset of poll(). All

these system calls rely on the same underlying char driver method, poll().

Most I/O system calls are POSIX-compliant and are not Linux-specific (programs such as X Windows after all,
run on many UNIX flavors, not just on Linux), but the internal driver methods are operating system-specific. On
Linux, the poll() driver method is the pillar under the select() system call. In the previous X server scenario,

the mouse driver's poll() method looks like this:

static DECLARE_WAIT_QUEUE_HEAD(mouse_wait); /* Wait Queue */

static unsigned int
mouse_poll(struct file *file, poll_table *wait)

{
 poll_wait(file, &mouse_wait, wait);

 spin_lock_irq(&mouse_lock);

 /* See if data has arrived from the device or

 if the device is ready to accept more data */

 /* ... */
 spin_unlock_irq(&mouse_lock);

 /* Availability of data is detected from interrupt context */
 if (data_is_available()) return(POLLIN | POLLRDNORM);

 /* Data can be written. Not relevant for mice */

 if (data_can_be_written()) return(POLLOUT | POLLWRNORM);

 return 0;

}

When Xf86WaitForInput() invokes select(), the generic kernel poll implementation (defined in fs/select.c)
calls mouse_poll(). mouse_poll() takes two arguments, the usual file pointer (struct file *) and a pointer

to a kernel data structure called the poll_table. The poll_table is a table of wait queues owned by device

drivers that are being polled for data.

mouse_poll() uses the library function, poll_wait(), to add a wait queue (mouse_wait) to the kernel
poll_table and go to sleep. As you saw in Chapter 3, "Kernel Facilities," device drivers usually own several

wait queues that block until they detect a change in a data condition. This condition can be the arrival of new
data from the device, willingness of the driver to pass new data to the application, or the readiness of the
device (or the driver) to accept new data. Such conditions are usually (but not always) detected by the driver's
interrupt handler. When the mouse driver's interrupt handler senses mouse movement, it calls
wake_up_interruptible(&mouse_wait) to wake up the sleeping mouse_poll().

If there is no change in the data condition, the poll() method returns 0. If the driver is ready to send at least
one byte of data to the application, it returns POLLIN|POLLRDNORM. If the driver is ready to accept at least a byte

of data from the application, it returns POLLOUT|POLLWRNORM.[2] Thus, if there is no mouse movement,

mouse_poll() returns 0, and the calling thread is put to sleep. The kernel invokes mouse_poll() again when
the mouse interrupt handler senses device data and wakes up the mouse_wait queue. This time around,

mouse_poll() returns POLLIN|POLLRDNORM, so the select() call and hence Xf86WaitForInput() return
positive values. The X server's mouse handler (xc/programs/Xserver/hw/xfree86/input/mouse/mouse.c) goes
on to read data from the mouse.

[2] The full list of return codes is defined in include/asm-generic/poll.h. Some of them are used only by the networking stack.

User applications that poll a driver are usually more interested in driver characteristics than device
characteristics. For example, depending on the health of its buffers, a driver might be ready to accept
new data from the application before the device itself is.

Fasync

Some applications, for performance reasons, desire asynchronous notifications from the device driver. Assume
that an application on a Linux pacemaker programmer device is busy performing complex computations but
wants to be notified as soon as data arrives from an implanted pacemaker via a telemetry interface. The
select()/poll() mechanism is not of use in this case because it blocks the computations. What the application

needs is an asynchronous event report. If the telemetry driver can asynchronously dispatch a signal (usually
SIGIO) as soon as it detects data from the pacemaker, the application can catch it using a signal handler and

accordingly steer the code flow.

For a real-world example of asynchronous notification, let's revert to a region of the X server that requests
alerts when data is detected from input devices. Take a look at this snippet from the X server sources:

Code View:
xc/programs/Xserver/hw/xfree86/os-support/shared/sigio.c:

int xf86InstallSIGIOHandler(int fd, void (*f)(int, void *),
 void *closure)

{

 struct sigaction sa;

 struct sigaction osa;

 if (fcntl(fd, F_SETOWN, getpid()) == -1) {

 blocked = xf86BlockSIGIO();

 /* O_ASYNC is defined as SIGIO elsewhere by the X server */

 if (fcntl(fd, F_SETFL, fcntl(fd, F_GETFL) | O_ASYNC) == -1) {
 xf86UnblockSIGIO(blocked); return 0;

 }

 sigemptyset(&sa.sa_mask);
 sigaddset(&sa.sa_mask, SIGIO);

 sa.sa_flags = 0;

 sa.sa_handler = xf86SIGIO;

 sigaction(SIGIO, &sa, &osa);

 /* ... */
 return 0;

}

static void

xf86SIGIO(int sig)

{
 /* Identify the device that triggered generation of this

 SIGIO and handle the data arriving from it */
 /* ... */
}

As you can decipher from the above snippet, the X server does the following:

Calls fcntl(F_SETOWN). The fcntl() system call is used to manipulate file descriptor behavior. F_SETOWN

sets the ownership of the descriptor to the calling process. This is required since the kernel needs to know
where to send the asynchronous signal. This step is transparent to the device driver.

Invokes fcntl(F_SETFL). F_SETFL requests the driver to deliver SIGIO to the application whenever there
is data to be read, or if the driver is ready to receive more application data. The invocation of
fcntl(F_SETFL) results in the invocation of the fasync() driver method. It's this method's responsibility
to add or remove entries from the list of processes that are to be delivered SIGIO. To this end, fasync()
utilizes the services of a kernel library function called fasync_helper().

Implements the SIGIO signal handler, xf86SIGIO(), as per its code architecture and installs it using the

sigaction() system call. When the underlying input device driver detects a change in data status, it

dispatches SIGIO to registered requesters and this triggers execution of xf86SIGIO().[3] Char drivers call

kill_fasync() to send SIGIO to registered processes. To notify a read event, POLLIN is passed as the
argument to kill_fasync(). To notify a write event, the argument is POLLOUT.

[3] If your signal handler services asynchronous events from multiple devices, you will need additional mechanisms, such as a
select() call inside the handler, to figure out the identity of the device responsible for the event.

To see how the driver-side of the asynchronous notification chain is implemented, let's look at a fictitious

fasync() method belonging to the driver of an input device:

Code View:
/* This is invoked by the kernel when the X server opens this
 * input device and issues fcntl(F_SETFL) on the associated file

 * descriptor. fasync_helper() ensures that if the driver issues a

 * kill_fasync(), a SIGIO is dispatched to the owning application.

 */

static int
inputdevice_fasync(int fd, struct file *filp, int on)

{

 return fasync_helper(fd, filp, on, &inputdevice_async_queue);
}

/* Interrupt Handler */

irqreturn_t
inputdevice_interrupt(int irq, void *dev_id)

{

 /* ... */
 /* Dispatch a SIGIO using kill_fasync() when input data is

 detected. Output data is not relevant since this is a read-only
 device */

 wake_up_interruptible(&inputdevice_wait);
 kill_fasync(&inputdevice_async_queue, SIGIO, POLL_IN);

 /* ... */
 return IRQ_HANDLED;
}

To see how SIGIO delivery can be complex, consider the case of a tty driver (discussed in Chapter 6, "Serial
Drivers"). Interested applications get notified under different scenarios:

If the underlying driver is not ready to accept application data, it puts the calling process to sleep. When
the driver interrupt handler subsequently decides that the device can accept more data, it wakes the
application and invokes kill_fasync(POLLOUT).

If a newline character is received, the tty layer calls kill_fasync(POLLIN).

When the driver wakes up a sleeping reader thread after detecting that sufficient data bytes beyond a
threshold have arrived from a device, it sends that information to stakeholder processes by invoking
kill_fasync(POLLIN).

Talking to the Parallel Port

The parallel port is a ubiquitous 25-pin interface popularly found on PC-compatible systems. The capability of a
parallel port (whether it's unidirectional, bidirectional, supports DMA, and so on) depends on the underlying
chipset. Look at Figure 4.1 in Chapter 4 to find out how the PC architecture supports parallel ports.

The drivers/parport/ directory contains code (called parport) that implements IEEE 1284 parallel port
communication. Several devices that connect to the parallel port such as printers and scanners use parport's
services. Parport has an architecture-independent module called parport.ko and an architecture-dependent one
(parport_pc.ko for the PC architecture) that provide programming interfaces to drivers of devices that interface
via the parallel port.

Let's take the example of the parallel printer driver, drivers/char/lp.c. These are the high-level steps needed to
print a file:

1. The printer driver creates char device nodes /dev/lp0 to /dev/lpN, one per connected printer.

2. The Common UNIX Printing System (CUPS) is the framework that provides print capabilities on Linux. The
CUPS configuration file (/etc/printers.conf on some distributions) maps printers with their char device
nodes (/dev/lpX).

3. CUPS utilities consult this file and stream data to the corresponding device node. So, if you have a printer
connected to the first parallel port on your system and you issue the command, lpr myfile, it's streamed
via /dev/lp0 to the printer's write() method, lp_write(), defined in drivers/char/lp.c.

4. lp_write() uses the services of parport to send the data to the printer.

Apple Inc. has acquired ownership of CUPS software. The code continues to be licensed under GPLv2.

A char driver called ppdev(drivers/char/ppdev.c) exports the /dev/parportX device nodes that let user
applications directly communicate with the parallel port. (We talk more about ppdev in Chapter 19.)

Device Example: Parallel Port LED Board

To learn how to use the services offered by parport, let's write a simple driver. Consider a board that has eight
light-emitting diodes (LEDs) interfaced to a standard 25-pin parallel port connector. Because the 8-bit parallel
port data register on the PC is directly mapped to pins 2 to 9 of the parallel port connector, those pins are wired
to the LEDs on the board. Writing to the parallel port data register controls the voltage levels of these pins and
turns the LEDs on or off. Listing 5.6 implements a char driver that communicates with this board over the
system parallel port. Embedded comments explain the parport service routines that Listing 5.6 uses.

Listing 5.6. Driver for the Parallel LED Board (led.c)

Code View:
#include <linux/fs.h>

#include <linux/cdev.h>

#include <linux/parport.h>

#include <asm/uaccess.h>

#include <linux/platform_device.h>

#define DEVICE_NAME "led"

static dev_t dev_number; /* Allotted device number */

static struct class *led_class; /* Class to which this device

 belongs */

struct cdev led_cdev; /* Associated cdev */

struct pardevice *pdev; /* Parallel port device */

/* LED open */

int

led_open(struct inode *inode, struct file *file)

{

 return 0;

}

/* Write to the LED */

ssize_t

led_write(struct file *file, const char *buf,

 size_t count, loff_t *ppos)

{

 char kbuf;

 if (copy_from_user(&kbuf, buf, 1)) return -EFAULT;

 /* Claim the port */

 parport_claim_or_block(pdev);

 /* Write to the device */

 parport_write_data(pdev->port, kbuf);

 /* Release the port */

 parport_release(pdev);

 return count;

}

/* Release the device */

int

led_release(struct inode *inode, struct file *file)

{

 return 0;

}

/* File Operations */

static struct file_operations led_fops = {

 .owner = THIS_MODULE,

 .open = led_open,

 .write = led_write,

 .release = led_release,

};

static int

led_preempt(void *handle)

{

 return 1;

}

/* Parport attach method */

static void

led_attach(struct parport *port)

{

 /* Register the parallel LED device with parport */

 pdev = parport_register_device(port, DEVICE_NAME,

 led_preempt, NULL,

 NULL, 0, NULL);

 if (pdev == NULL) printk("Bad register\n");

}

/* Parport detach method */

static void

led_detach(struct parport *port)

{

 /* Do nothing */

}

/* Parport driver operations */

static struct parport_driver led_driver = {

 .name = "led",

 .attach = led_attach,

 .detach = led_detach,

};

/* Driver Initialization */

int __init

led_init(void)

{

 /* Request dynamic allocation of a device major number */

 if (alloc_chrdev_region(&dev_number, 0, 1, DEVICE_NAME)

 < 0) {

 printk(KERN_DEBUG "Can't register device\n");

 return -1;

 }

 /* Create the led class */

 led_class = class_create(THIS_MODULE, DEVICE_NAME);

 if (IS_ERR(led_class)) printk("Bad class create\n");

 /* Connect the file operations with the cdev */

 cdev_init(&led_cdev, &led_fops);

 led_cdev.owner = THIS_MODULE;

 /* Connect the major/minor number to the cdev */

 if (cdev_add(&led_cdev, dev_number, 1)) {

 printk("Bad cdev add\n");

 return 1;

 }

 class_device_create(led_class, NULL, dev_number,

 NULL, DEVICE_NAME);

 /* Register this driver with parport */

 if (parport_register_driver(&led_driver)) {

 printk(KERN_ERR "Bad Parport Register\n");

 return -EIO;

 }

 printk("LED Driver Initialized.\n");

 return 0;

}

/* Driver Exit */

void __exit

led_cleanup(void)

{

 unregister_chrdev_region(MAJOR(dev_number), 1);

 class_device_destroy(led_class, MKDEV(MAJOR(dev_number), 0));

 class_destroy(led_class);

 return;

}

module_init(led_init);

module_exit(led_cleanup);

MODULE_LICENSE("GPL");

led_init() is similar to cmos_init() developed in Listing 5.1, but for a couple of things:

As you saw in Chapter 4, the new device model distinguishes between drivers and devices. led_init()

registers the LED driver with parport via a call to parport_register_driver().When the kernel finds the

LED board during led_attach(), it registers the device by invoking parport_register_device().

1.

led_init() creates the device node /dev/led, which you can use to control the state of individual LEDs.2.

Compile and insert the driver module into the kernel:

bash> make –C /path/to/kerneltree/ M=$PWD modules

bash> insmod ./led.ko

LED Driver Initialized

To selectively drive some parallel port pins and glow the corresponding LEDs, echo the appropriate value to
/dev/led:

bash> echo 1 > /dev/led

Because ASCII for 1 is 31 (or 00110001), the first, fifth, and sixth LEDs should turn on.

The preceding command triggers invocation of led_write(). This driver method first copies user memory (the

value 31 in this case) to kernel buffers via copy_from_user(). It then claims the parallel port, writes data, and

releases the port, all using parport interfaces.

Sysfs is a better place than /dev to control device state, so it's a good idea to entrust LED control to sysfs files.
Listing 5.7 contains the driver implementation that achieves this. The sysfs manipulation code in the listing can

serve as a template to achieve device control from other drivers, too.

Listing 5.7. Using Sysfs to Control the Parallel LED Board

Code View:
#include <linux/fs.h>

#include <linux/cdev.h>

#include <linux/parport.h>

#include <asm/uaccess.h>

#include <linux/pci.h>

static dev_t dev_number; /* Allotted Device Number */

static struct class *led_class; /* Class Device Model */

struct cdev led_cdev; /* Character dev struct */

struct pardevice *pdev; /* Parallel Port device */

struct kobject kobj; /* Sysfs directory object */

/* Sysfs attribute of the leds */

struct led_attr {

 struct attribute attr;

 ssize_t (*show)(char *);

 ssize_t (*store)(const char *, size_t count);

};

#define glow_show_led(number) \

static ssize_t \

glow_led_##number(const char *buffer, size_t count) \

{ \

 unsigned char buf; \

 int value; \

 \

 sscanf(buffer, "%d", &value); \

 \

 parport_claim_or_block(pdev); \

 buf = parport_read_data(pdev->port); \

 if (value) { \

 parport_write_data(pdev->port, buf | (1<<number)); \

 } else { \

 parport_write_data(pdev->port, buf & ~(1<<number)); \

 } \

 parport_release(pdev); \

 return count; \

} \

 \

static ssize_t \

show_led_##number(char *buffer) \

{ \

 unsigned char buf; \

 \

 parport_claim_or_block(pdev); \

 \

 buf = parport_read_data(pdev->port); \

 parport_release(pdev); \

 \

 if (buf & (1 << number)) { \

 return sprintf(buffer, "ON\n"); \

 } else { \

 return sprintf(buffer, "OFF\n"); \

 } \

} \

 \

static struct led_attr led##number = \

__ATTR(led##number, 0644, show_led_##number, glow_led_##number);

glow_show_led(0); glow_show_led(1); glow_show_led(2);

glow_show_led(3); glow_show_led(4); glow_show_led(5);

glow_show_led(6); glow_show_led(7);

#define DEVICE_NAME "led"

static int

led_preempt(void *handle)

{

 return 1;

}

/* Parport attach method */

static void

led_attach(struct parport *port)

{

 pdev = parport_register_device(port, DEVICE_NAME,

 led_preempt, NULL, NULL, 0,

 NULL);

 if (pdev == NULL) printk("Bad register\n");

}

/* Parent sysfs show() method. Calls the show() method

 corresponding to the individual sysfs file */

static ssize_t

l_show(struct kobject *kobj, struct attribute *a, char *buf)

{

 int ret;

 struct led_attr *lattr = container_of(a, struct led_attr,attr);

 ret = lattr->show ? lattr->show(buf) : -EIO;

 return ret;

}

/* Sysfs store() method. Calls the store() method

 corresponding to the individual sysfs file */

static ssize_t

l_store(struct kobject *kobj, struct attribute *a,

 const char *buf, size_t count)

{

 int ret;

 struct led_attr *lattr = container_of(a, struct led_attr, attr);

 ret = lattr->store ? lattr->store(buf, count) : -EIO;

 return ret;

}

/* Sysfs operations structure */

static struct sysfs_ops sysfs_ops = {

 .show = l_show,

 .store = l_store,

};

/* Attributes of the /sys/class/pardevice/led/control/ kobject.

 Each file in this directory corresponds to one LED. Control

 each LED by writing or reading the associated sysfs file */

static struct attribute *led_attrs[] = {

 &led0.attr,

 &led1.attr,

 &led2.attr,

 &led3.attr,

 &led4.attr,

 &led5.attr,

 &led6.attr,

 &led7.attr,

 NULL

};

/* This describes the kobject. The kobject has 8 files, one

 corresponding to each LED. This representation is called the

 ktype of the kobject */

static struct kobj_type ktype_led = {

 .sysfs_ops = &sysfs_ops,

 .default_attrs = led_attrs,

};

/* Parport methods. We don't have a detach method */

static struct parport_driver led_driver = {

 .name = "led",

 .attach = led_attach,

};

/* Driver Initialization */

int __init

led_init(void)

{

 struct class_device *c_d;

 /* Create the pardevice class - /sys/class/pardevice */

 led_class = class_create(THIS_MODULE, "pardevice");

 if (IS_ERR(led_class)) printk("Bad class create\n");

 /* Create the led class device - /sys/class/pardevice/led/ */

 c_d = class_device_create(led_class, NULL, dev_number,

 NULL, DEVICE_NAME);

 /* Register this driver with parport */

 if (parport_register_driver(&led_driver)) {

 printk(KERN_ERR "Bad Parport Register\n");

 return -EIO;

 }

 /* Instantiate a kobject to control each LED

 on the board */

 /* Parent is /sys/class/pardevice/led/ */

 kobj.parent = &c_d->kobj;

 /* The sysfs file corresponding to kobj is

 /sys/class/pardevice/led/control/ */

 strlcpy(kobj.name, "control", KOBJ_NAME_LEN);

 /* Description of the kobject. Specifies the list of attribute

 files in /sys/class/pardevice/led/control/ */

 kobj.ktype = &ktype_led;

 /* Register the kobject */

 kobject_register(&kobj);

 printk("LED Driver Initialized.\n");

 return 0;

}

/* Driver Exit */

void

led_cleanup(void)

{

 /* Unregister kobject corresponding to

 /sys/class/pardevice/led/control */

 kobject_unregister(&kobj);

 /* Destroy class device corresponding to

 /sys/class/pardevice/led/ */

 class_device_destroy(led_class, MKDEV(MAJOR(dev_number), 0));

 /* Destroy /sys/class/pardevice */

 class_destroy(led_class);

 return;

}

module_init(led_init);

module_exit(led_cleanup);

MODULE_LICENSE("GPL");

The macro definition of glow_show_led() in Listing 5.7 uses a technique popular in kernel source files to
compactly define several similar functions. The definition produces read() and write() methods (called show()

and store() in sysfs terminology) attached to eight /sys files, one per LED on the board. Thus,
glow_show_led(0) attaches glow_led_0() and show_led_0() to the /sys file corresponding to the first LED.

These functions are respectively responsible for glowing/extinguishing the first LED and reading its status. ##

glues a value to a string, so glow_led_##number translates to glow_led_0() when the compiler processes the
statement, glow_show_led(0).

This sysfs-aware version of the driver uses a kobject to represent a "control" abstraction, which emulates a
software knob to control the LEDs. Each kobject is represented by a directory name in sysfs, so
kobject_register() in Listing 5.7 results in the creation of the /sys/class/pardevice/led/control/ directory.

A ktype describes a kobject. The "control" kobject is described via the ktype_led structure, which contains a
pointer to the attribute array, led_attrs[]. This array contains the addresses of the device attributes of each

LED. The attributes of each LED are tied together by the statement:

static struct led_attr led##number =

__ATTR(led##number, 0644, show_led_##number, glow_led_##number);

This results in instantiating the control file for each LED, /sys/class/pardevice/led/control/ledX, where X is the
LED number. To change the state of ledX, echo a 1 (or a 0) to the corresponding control file. To glow the first

LED on the board, do this:

bash> echo 1 > /sys/class/pardevice/led/control/led0

During module exit, the driver unregisters the kobjects and classes using kobject_unregister(),

class_device_destroy(), and class_destroy().

Listing 7.2 in Chapter 7, "Input Drivers," uses another route to create files in sysfs.

Writing a char driver is no longer as simple as it used to be in the days of the 2.4 kernel. To develop the simple
LED driver above, we used half a dozen abstractions: cdev, sysfs, kobjects, classes, class device, and parport.
The abstractions, however, bring several advantages to the table such as bug-free building blocks, code reuse,
and elegant design.

RTC Subsystem

RTC support in the kernel is architected into two layers: a hardware-independent top-layer char driver that
implements the kernel RTC API, and a hardware-dependent bottom-layer driver that communicates with the
underlying bus. The RTC API, specified in Documentation/rtc.txt, is a set of standard ioctls that conforming
applications such as hwclock leverage by operating on /dev/rtc. The API also specifies attributes in sysfs
(/sys/class/rtc/) and procfs (/proc/driver/rtc). The RTC API guarantees that user space tools are independent of
the underlying platform and the RTC chip. The bottom-layer RTC driver is bus-specific. The embedded device
discussed in the section "Device Example: Real Time Clock" in Chapter 8, "The Inter-Integrated Circuit
Protocol," has an RTC chip connected to the I2C bus, which is driven by an I2C client driver.

The kernel has a dedicated RTC subsystem that provides the top-layer char driver and a core infrastructure that
bottom-layer RTC drivers can use to tie in with the top layer. The main components of this infrastructure are the
rtc_class_ops structure and the registration functions, rtc_device_[register|unregister](). Bottom-layer

RTC drivers scattered under different bus-specific directories are being unified with this subsystem under
drivers/rtc/.

The RTC subsystem allows the possibility that a system can have more than one RTC. It does this by exporting
multiple interfaces, /dev/rtcN and /sys/class/rtc/rtcN, where N is the number of RTCs on your system. Some
embedded systems, for example, have two RTCs: one built in to the microcontroller to support sophisticated
operations such as periodic interrupt generation, and another no-frills low-power battery-backed external RTC
for timekeeping. Because RTC-aware applications operate over /dev/rtc, set up a symbolic link so that one of
the created /dev/rtcX nodes can be accessed as /dev/rtc.

To enable the RTC subsystem, turn on CONFIG_RTC_CLASS during kernel configuration.

The Legacy PC RTC Driver

On PC systems, you have the option of bypassing the RTC subsystem by using the legacy RTC
driver, drivers/char/rtc.c. This driver provides top and bottom layers for the RTC on PC-compatible
systems and exports /dev/rtc and /proc/driver/rtc to user applications. To enable this driver, turn
on CONFIG_RTC during kernel configuration.

Pseudo Char Drivers

Several commonly used kernel facilities are not connected with any physical hardware, and these are elegantly
implemented as char devices. The null sink, the perpetual zero source, and the kernel random number
generator are treated as virtual devices and are accessed using pseudo char device drivers.

The /dev/null char device sinks data that you don't want to display on your screen. So if you need to check out
source files from a Concurrent Versioning System (CVS) repository without spewing filenames all over the
screen, do this:

bash> cvs co kernel > /dev/null

This redirects command output to the write entry point belonging to the /dev/null driver. The driver's read()

and write() methods simply return success ignoring the contents of the input and output buffers, respectively.

If you want to fill an image file with zeros, call upon /dev/zero to come to your service:

bash> dd if=/dev/zero of=file.img bs=1024 count=1024

This sources a stream of zeros from the read() method belonging to the /dev/zero driver. The driver has no

write() method.

The kernel has a built-in random number generator. For the benefit of kernel users who desire to use random
sequences, the random number generator exports APIs such as get_random_bytes(). For user mode programs,

it exports two char interfaces: /dev/random and /dev/urandom. The quality of randomness is higher for reads
from /dev/random compared to that from /dev/urandom. When a user program reads from /dev/random, it gets
strong (or true) random numbers, but reads from /dev/urandom yield pseudo random numbers. The
/dev/random driver does not use formulae to generate strong random numbers. Instead, it gathers
"environmental noise" (interval between interrupts, key clicks, and so on) for maintaining a reservoir of disorder
(called an entropy pool) that seeds the random stream. To see the kernel's input subsystem (discussed in
Chapter 7) contributing to the entropy pool when it detects a keyboard press or mouse movement, look at
input_event() defined in drivers/input/input.c:

void

input_event(struct input_dev *dev, unsigned int type,
 unsigned int code, int value)

{

 /* ... */
 add_input_randomness(type, code, value); /* Contribute to entropy

 pool */

 /* ... */
}

To see how the core interrupt handling layer contributes inter-interrupt periods to the entropy pool, look at
handle_IRQ_event() defined in kernel/irq/handle.c:

irqreturn_t handle_IRQ_event(unsigned int irq,

 struct irqaction *action)

{

 /* ... */
 if (status & IRQF_SAMPLE_RANDOM)

 add_interrupt_randomness(irq); /* Contribute to entropy pool */

 /* ... */

}

The generation of strongly random numbers depends on the size of the entropy pool:

bash> od –x /dev/random

0000000 7331 9028 7c89 4791 7f64 3deb 86b3 7564

0000020 ebb9 e806 221a b8f9 af12 cb30 9a0e cc28
0000040 68d8 0bbf 68a4 0898 528e 1557 d8b3 57ec

0000060 b01d 8714 b1e1 19b9 0a86 9f60 646c c269

The output stops after a few lines, signaling that the entropy pool is exhausted. To replenish the entropy pool
and restart the random stream, jab the keyboard several times after switching to an unused terminal or push
the mouse around the screen.

A dump of /dev/ urandom, however, produces a continuous pseudo random stream that never stops.

/dev/mem and /dev/ kmem are classic pseudo char devices that are tools that let you peek inside system
memory. These char nodes export raw interfaces connected to physical memory and kernel virtual memory,
respectively. To manipulate system memory, you may mmap() these nodes and operate on the returned regions.
As an exercise, change the hostname of your system by accessing /dev/mem.

All the char devices discussed in this section (null, zero, random, urandom, mem, and kmem) have different
minor numbers but the same statically assigned major number, 1. Look at drivers/char/mem.c and
drivers/char/random.c for their implementation. Two other pseudo drivers belong to the same major number
family: /dev/full, which emulates an always full device; and /dev/port, which peeks at system I/O ports. We use
the latter in Chapter 19.

Misc Drivers

Misc (or miscellaneous) drivers are simple char drivers that share certain common characteristics. The kernel
abstracts these commonalities into an API (implemented in drivers/char/misc.c), and this simplifies the way
these drivers are initialized. All misc devices are assigned a major number of 10, but each can choose a single
minor number. So, if a char driver needs to drive multiple devices as in the CMOS example discussed earlier, it's
probably not a candidate for being a misc driver.

Consider the sequence of initialization steps that a char driver performs:

Allocates major/minor numbers via alloc_chrdev_region() and friends

Creates /dev and /sys nodes using class_device_create()

Registers itself as a char driver using cdev_init() and cdev_add()

A misc driver accomplishes all this with a single call to misc_register():

static struct miscdevice mydrv_dev = {
 MYDRV_MINOR,

 "mydrv",
 &mydrv_fops

};

misc_register(&mydrv_dev);

In the preceding example, MYDRV_MINOR is the minor number that you want to statically assign to your misc

driver. You may also request a minor number to be dynamically assigned by specifying MISC_DYNAMIC_MINOR
rather than MYDRV_MINOR in the mydrv_dev structure.

Each misc driver automatically appears under /sys/class/misc/ without explicit effort from the driver writer.
Because misc drivers are char drivers, the earlier discussion on char driver entry points hold for misc drivers,
too. Let's now look at an example misc driver.

Device Example: Watchdog Timer

A watchdog's function is to return an unresponsive system to operational state. It does this by periodically
checking the system's pulse and issuing a reset[4] if it can't detect any. Application software is responsible for
registering this pulse (or "heartbeat") by periodically strobing (or "petting") the watchdog using the services of
a watchdog device driver. Most embedded controllers support internal watchdog modules. External watchdog
chips are also available. An example is the Netwinder W83977AF chip.

[4] A watchdog may issue audible beeps rather than a system reset. An example scenario is when a timeout occurs due to a power supply

problem, assuming that the watchdog circuit is backed up using a battery or a super capacitor.

Linux watchdog drivers are implemented as misc drivers and live inside drivers/char/watchdog/. Watchdog
drivers, like RTC drivers, export a standard device interface to user land, so conforming applications are
rendered independent of the internals of watchdog hardware. This API is specified in
Documentation/watchdog/watchdog-api.txt in the kernel source tree. Programs that desire the services of a

watchdog operate on /dev/watchdog, a device node having a misc minor number of 130.

Listing 5.9 implements a device driver for a fictitious watchdog module built in to an embedded controller. The
example watchdog contains two main registers as shown in Table 5.2: a service register
(WD_SERVICE_REGISTER) and a control register (WD_CONTROL_REGISTER). To pet the watchdog, the driver writes
a specific sequence (0xABCD in this case) to the service register. To program watchdog timeout, the driver

writes to specified bit positions in the control register.

Table 5.2. Register Layout on the Watchdog Module

Register Name Description

WD_SERVICE_REGISTER Write a specific sequence to this register to pet the
watchdog.

WD_CONTROL_REGISTER Write the watchdog timeout to this register.

Strobing the watchdog is usually done from user space because the goal of having a watchdog is to detect and
respond to both application and kernel hangs. A critical application[5] such as the graphics engine in Listing 5.10
opens the watchdog driver in Listing 5.9 and periodically writes to it. If no write occurs within the watchdog
timeout due to an application hang or a kernel crash, the watchdog triggers a system reset. In the case of
Listing 5.10, the watchdog will reboot the system if

[5] If you need to monitor the health of several applications, you may implement a multiplexer in the watchdog device driver. If any one of the

processes that open the driver becomes unresponsive, the watchdog attempts to self-correct the system.

The application hangs inside process_graphics()

The kernel, and consequently the application, dies

The watchdog starts ticking when an application opens /dev/watchdog. Closing this device node stops the
watchdog unless you set CONFIG_WATCHDOG_NOWAYOUT during kernel configuration. Setting this option helps you

tide over the possibility that the watchdog monitoring process (such as Listing 5.10) gets killed by a signal while
the system continues running.

Listing 5.9. An Example Watchdog Driver

Code View:
#include <linux/miscdevice.h>

#include <linux/watchdog.h>

#define DEFAULT_WATCHDOG_TIMEOUT 10 /* 10-second timeout */

#define TIMEOUT_SHIFT 5 /* To get to the timeout field

 in WD_CONTROL_REGISTER */

#define WENABLE_SHIFT 3 /* To get to the

 watchdog-enable field in

 WD_CONTROL_REGISTER */

/* Misc structure */

static struct miscdevice my_wdt_dev = {

 .minor = WATCHDOG_MINOR, /* defined as 130 in

 include/linux/miscdevice.h*/

 .name = "watchdog", /* /dev/watchdog */

 .fops = &my_wdt_dog /* Watchdog driver entry points */

};

/* Driver methods */

struct file_operations my_wdt_dog = {

.owner = THIS_MODULE,

.open = my_wdt_open,

.release = my_wdt_close,

.write = my_wdt_write,

.ioctl = my_wdt_ioctl

}

/* Module Initialization */

static int __init

my_wdt_init(void)

{

 /* ... */

 misc_register(&my_wdt_dev);

 /* ... */

}

/* Open watchdog */

static void

my_wdt_open(struct inode *inode, struct file *file)

{

 /* Set the timeout and enable the watchdog */

 WD_CONTROL_REGISTER |= DEFAULT_WATCHDOG_TIMEOUT << TIMEOUT_SHIFT;

 WD_CONTROL_REGISTER |= 1 << WENABLE_SHIFT;

}

/* Close watchdog */

static int

my_wdt_close(struct inode *inode, struct file *file)

{

 /* If CONFIG_WATCHDOG_NOWAYOUT is chosen during kernel

 configuration, do not disable the watchdog even if the

 application desires to close it */

#ifndef CONFIG_WATCHDOG_NOWAYOUT

 /* Disable watchdog */

 WD_CONTROL_REGISTER &= ~(1 << WENABLE_SHIFT);

#endif

 return 0;

}

/* Pet the dog */

static ssize_t

my_wdt_write(struct file *file, const char *data,

 size_t len, loff_t *ppose)

{

 /* Pet the dog by writing a specified sequence of bytes to the

 watchdog service register */

 WD_SERVICE_REGISTER = 0xABCD;

}

/* Ioctl method. Look at Documentation/watchdog/watchdog-api.txt

 for the full list of ioctl commands. This is standard across

 watchdog drivers, so conforming applications are rendered

 hardware-independent */

static int

my_wdt_ioctl(struct inode *inode, struct file *file,

 unsigned int cmd, unsigned long arg)

{

 /* ... */

 switch (cmd) {

 case WDIOC_KEEPALIVE:

 /* Write to the watchdog. Applications can invoke

 this ioctl instead of writing to the device */

 WD_SERVICE_REGISTER = 0xABCD;

 break;

 case WDIOC_SETTIMEOUT:

 copy_from_user(&timeout, (int *)arg, sizeof(int));

 /* Set the timeout that defines unresponsiveness by

 writing to the watchdog control register */

 WD_CONTROL_REGISTER = timeout << TIMEOUT_BITS;

 break;

 case WDIOC_GETTIMEOUT:

 /* Get the currently set timeout from the watchdog */

 /* ... */

 break;

 default:

 return –ENOTTY;

 }

}

/* Module Exit */

static void __exit

my_wdt_exit(void)

{

 /* ... */

 misc_deregister(&my_wdt_dev);

 /* ... */

}

module_init(my_wdt_init);

module_exit(my_wdt_exit);

Listing 5.10. A Watchdog User

#include <fcntl.h>

#include <asm/types.h>

#include <linux/watchdog.h>

int

main()

{

 int new_timeout;

 int wfd = open("/dev/watchdog", O_WRONLY);

 /* Set the watchdog timeout to 20 seconds */

 new_timeout = 20;

 ioctl(fd, WDIOC_SETTIMEOUT, &new_timeout);

 while (1) {

 /* Graphics processing */

 process_graphics();

 /* Pet the watchdog */

 ioctl(fd, WDIOC_KEEPALIVE, 0);

 /* Or instead do: write(wfd, "\0", 1); */

 fsync(wfd);

 }

}

External Watchdogs

To ensure that the system attempts to recover even in the face of processor failures, some
regulatory bodies stipulate the use of an external watchdog chip, even if the main processor has a
sophisticated built-in watchdog module such as the one in our example. Because of this
requirement, embedded devices sometimes use an inexpensive no-frill watchdog chip (such as
MAX6730 from Maxim) that is based on simple hard-wired logic rather than a register interface.
The watchdog asserts a reset pin if no voltage pulse is detected on an input pin within a fixed
reset timeout. The reset pin is connected to the reset logic of the processor, and the input pin is
wired to a processor GPIO port. All that software has to do to prevent reset is to periodically pulse
the watchdog's input pin within the chip's reset timeout. If you are writing a driver for such a
device, the ioctl() method is not relevant. The driver's write() method pulses the watchdog's

input pin whenever application software writes to the associated device node. To aid
manufacturing and field diagnostics, the watchdog is wired such that it can be disabled by wiggling
a processor GPIO pin.

Such chips usually allow a large initial timeout to account for boot time, followed by shorter reset
timeouts.

For platforms that do not support a hardware watchdog module, the kernel implements a software watchdog,
also called a softdog. The softdog driver, drivers/char/watchdog/softdog.c, is a pseudo misc driver because it
does not operate on real hardware. The softdog driver has to perform two tasks that a watchdog driver doesn't
have to do, which the latter accomplishes in hardware:

Implement a timeout mechanism

Initiate a soft reboot if the system isn't healthy

This is done by delaying the execution of a timer handler whenever an application writes to the softdog. If no
write occurs to the softdog within a timeout, the timer handler fires and reboots the system.

A related support in 2.6 kernels is the sensing of soft lockups, which are instances when scheduling does not
occur for 10 or more seconds. A kernel thread watchdog/N, where N is the CPU number, touches a per-CPU
timestamp every second. If the thread doesn't touch the timestamp for more than 10 seconds, the system is
deemed to have locked up. Soft lockup detection (implemented in kernel/softlockup.c) will aid us while
debugging a kernel crash in the section "Kdump" in Chapter 21, "Debugging Device Drivers."

There are several more misc drivers in the kernel. The Qtronix infrared keyboard driver, drivers/char/qtronix.c,
is another example of a char driver that has a misc form factor. Do a grep on misc_register() in the
drivers/char/ directory to find other misc device drivers present in the kernel.

Character Caveats

Driver methods, and, hence, the associated system calls issued by user applications, may fail or partially
succeed. Your application has to factor this in to avoid unpleasant surprises. Let's look at some common pitfalls:

An open() call may fail for several reasons. Some char drivers support only a single user at a time, so
they fail with -EBUSY if an application attempts to open a device that is already in use. If a printer is out of

paper, the driver fails with -ENOSPC if you issue a device open().

A successful read() or write() can return anything between 1 byte and the number of bytes requested,

so your application needs sufficient logic to handle this.

A select() call returns success even if a single byte of data is ready to be read or written.

Some char devices such as mice and touch screens are input-only, so their drivers will not support the
write method family (write()/aio_write()/fsync()). Other devices such as printers are output-only,
and their drivers will not support the read method family (read()/aio_read()). Also, many char driver

methods are optional, so all methods will not be present in all drivers. When a method is absent, the
corresponding system call fails.

Looking at the Sources

Char drivers do not exclusively live in the drivers/char/ directory. Here are some examples of "super" char
drivers that merit special treatment and directories:

Serial drivers are char drivers that manage your computer's serial port. However, they are much more
than simple char drivers and reside separately in the drivers/serial/ directory. The next chapter discusses
serial drivers.

Input drivers are responsible for devices such as keyboards, mice, and joysticks. They live in a separate
source directory, drivers/input/ and, hence, get a distinct chapter, Chapter 7.

Frame buffers (/dev/fb/*) offer access to video memory, the way /dev/mem exports access to system
memory. Chapter 12, "Video Drivers," looks at frame buffer drivers.

Some device classes support a minority of hardware possessing a char interface. For example, SCSI
devices are generally block devices, but a SCSI tape is a char device.

Some subsystems export additional char interfaces that present a raw device model to user space. The
MTD subsystem is generally used for emulating a disk on top of diverse types of flash memory, but some
applications might be better served if they are provided with a raw view of the underlying flash memory.
This is done by the MTD char driver, drivers/mtd/mtdchar.c, which is discussed in Chapter 17, "Memory
Technology Devices."

Certain kernel layers provide hooks for implementing user-space device drivers by exporting suitable char
interfaces. Applications can directly access the innards of the device via these interfaces. One example is
the generic SCSI driver drivers/scsi/sg.c used to implement user space device drivers for SCSI scanners
and CD drives. Another example is the I2C device interface, i2c-dev. Such char interfaces are explained in
Chapter 19.

Meanwhile, run a grep -r on register_chrdev in the drivers/ directory to get an idea of the popularity of char
drivers in the kernel.

Table 5.3 contains a summary of the main data structures used in this chapter and the location of their
definitions in the source tree. Table 5.4 lists the main kernel programming interfaces that you used in this
chapter along with the location of their definitions.

Table 5.3. Summary of Data Structures

Data Structure Location Description

cdev include/linux/cdev.h Kernel abstraction of a char device

file_operations include/linux/fs.h Char driver methods

dev_t include/linux/types.h Device major/minor numbers

Data Structure Location Description

poll_table include/linux/poll.h A table of wait queues owned by drivers
that are being polled for data

pardevice include/linux/parport.h Kernel abstraction of a parallel port
device

rtc_class_ops include/linux/rtc.h Communication interface between top
layer and bottom layer RTC drivers

miscdevice include/linux/miscdevice.h Representation of a misc device

Table 5.4. Summary of Kernel Programming Interfaces

Kernel Interface Location Description

alloc_chrdev_region() fs/char_dev.c Requests dynamic allocation of a device
major number

unregister_chrdev_region() fs/char_dev.c Reverse of alloc_chrdev_region()

cdev_init() fs/char_dev.c Connects char driver methods with the
associated cdev

cdev_add() fs/char_dev.c Associates a device number with a cdev

cdev_del() fs/char_dev.c Removes a cdev

container_of() include/linux/kernel.h From a structure member, gets the
address of its containing structure

copy_from_user() arch/x86/lib/usercopy_32.c
(For i386)

Copies data from user space to kernel
space

copy_to_user() arch/x86/lib/usercopy_32.c
(For i386)

Copies data from kernel space to user
space

likely()

unlikely()

include/linux/compiler.h Informs GCC about the possibility of
success of the associated conditional
evaluation

request_region() include/linux/ioport.h
kernel/resource.c

Stakes claim to an I/O region

release_region() include/linux/ioport.h
kernel/resource.c

Relinquishes claim to an I/O region

in[b|w|l|sn|sl]()

out[b|w|l|sn|sl]()

include/asm-your-arch/io.h Family of functions to exchange data
with I/O regions

poll_wait() include/linux/poll.h Adds a wait queue to the kernel
poll_table

fasync_helper() fs/fcntl.c Ensures that if a driver issues a
kill_fasync(), a SIGIO is dispatched to
the owning application

kill_fasync() fs/fcntl.c Dispatches a SIGIO to the owning

application

poll_table include/linux/poll.h A table of wait queues owned by drivers
that are being polled for data

pardevice include/linux/parport.h Kernel abstraction of a parallel port
device

rtc_class_ops include/linux/rtc.h Communication interface between top
layer and bottom layer RTC drivers

miscdevice include/linux/miscdevice.h Representation of a misc device

Table 5.4. Summary of Kernel Programming Interfaces

Kernel Interface Location Description

alloc_chrdev_region() fs/char_dev.c Requests dynamic allocation of a device
major number

unregister_chrdev_region() fs/char_dev.c Reverse of alloc_chrdev_region()

cdev_init() fs/char_dev.c Connects char driver methods with the
associated cdev

cdev_add() fs/char_dev.c Associates a device number with a cdev

cdev_del() fs/char_dev.c Removes a cdev

container_of() include/linux/kernel.h From a structure member, gets the
address of its containing structure

copy_from_user() arch/x86/lib/usercopy_32.c
(For i386)

Copies data from user space to kernel
space

copy_to_user() arch/x86/lib/usercopy_32.c
(For i386)

Copies data from kernel space to user
space

likely()

unlikely()

include/linux/compiler.h Informs GCC about the possibility of
success of the associated conditional
evaluation

request_region() include/linux/ioport.h
kernel/resource.c

Stakes claim to an I/O region

release_region() include/linux/ioport.h
kernel/resource.c

Relinquishes claim to an I/O region

in[b|w|l|sn|sl]()

out[b|w|l|sn|sl]()

include/asm-your-arch/io.h Family of functions to exchange data
with I/O regions

poll_wait() include/linux/poll.h Adds a wait queue to the kernel
poll_table

fasync_helper() fs/fcntl.c Ensures that if a driver issues a
kill_fasync(), a SIGIO is dispatched to
the owning application

Kernel Interface Location Description

kill_fasync() fs/fcntl.c Dispatches a SIGIO to the owning
application

parport_register_device() drivers/parport/share.c Registers a parallel port device with
parport

parport_unregister_device() drivers/parport/share.c Unregisters a parallel port device

parport_register_driver() drivers/parport/share.c Registers a parallel port driver with
parport

parport_unregister_driver() drivers/parport/share.c Unregisters a parallel port driver

parport_claim_or_block() drivers/parport/share.c Claims a parallel port

parport_write_data() include/linux/parport.h Writes data to a parallel port

parport_read_data() include/linux/parport.h Reads data from a parallel port

parport_release() drivers/parport/share.c Releases a parallel port

kobject_register() lib/kobject.c Registers a kobject and creates
associated files in sysfs

kobject_unregister() lib/kobject.c Reverse of kobject_register()

rtc_device_register()/
rtc_device_unregister()

drivers/rtc/class.c Registers/unregisters a bottom-layer
driver with the RTC subsystem

misc_register() drivers/char/misc.c Registers a misc driver

misc_deregister() drivers/char/misc.c Unregisters a misc driver

kill_fasync() fs/fcntl.c Dispatches a SIGIO to the owning
application

parport_register_device() drivers/parport/share.c Registers a parallel port device with
parport

parport_unregister_device() drivers/parport/share.c Unregisters a parallel port device

parport_register_driver() drivers/parport/share.c Registers a parallel port driver with
parport

parport_unregister_driver() drivers/parport/share.c Unregisters a parallel port driver

parport_claim_or_block() drivers/parport/share.c Claims a parallel port

parport_write_data() include/linux/parport.h Writes data to a parallel port

parport_read_data() include/linux/parport.h Reads data from a parallel port

parport_release() drivers/parport/share.c Releases a parallel port

kobject_register() lib/kobject.c Registers a kobject and creates
associated files in sysfs

kobject_unregister() lib/kobject.c Reverse of kobject_register()

rtc_device_register()/
rtc_device_unregister()

drivers/rtc/class.c Registers/unregisters a bottom-layer
driver with the RTC subsystem

misc_register() drivers/char/misc.c Registers a misc driver

misc_deregister() drivers/char/misc.c Unregisters a misc driver

Chapter 6. Serial Drivers

In This Chapter

Layered Architecture

173

UART Drivers

176

TTY Drivers

192

Line Disciplines
194

Looking at the Sources

205

The serial port is a basic communication channel used by a slew of technologies and applications.
A chip known as the Universal Asynchronous Receiver Transmitter (UART) is commonly used to
implement serial communication. On PC-compatible hardware, the UART is part of the Super I/O
chipset, as shown in Figure 6.1.

Figure 6.1. Connection diagram of the PC serial port.

Though RS-232 communication channels are the common type of serial hardware, the kernel's
serial subsystem is architected in a generic manner to serve diverse users. You will touch the
serial subsystem if you

Run a terminal session over an RS-232 serial link

Connect to the Internet via a dialup, cellular, or software modem

Interface with devices such as touch controllers, smart cards, Bluetooth chips, or Infrared
dongles, which use a serial transport

Emulate a serial port using a USB-to-serial converter

Communicate over an RS-485 link, which is a multidrop variant of RS-232 that has larger
range and better noise immunity

In this chapter, let's find out how the kernel structures the serial subsystem. We will use the
example of a Linux cell phone to learn about low-level UART drivers and the example of a serial
touch controller to discover the implementation details of higher-level line disciplines.

The UART usually found on PCs is National Semiconductor's 16550, or compatible chips from other
vendors, so you will find references to "16550-type UART" in code and documentation. The 8250 chip is
the predecessor of the 16550, so the Linux driver for PC UARTs is named 8250.c.

Layered Architecture

As you just saw, the users of the serial subsystem are many and different. This has motivated kernel developers
to structure a layered serial architecture using the following building blocks:

Low-level drivers that worry about the internals of the UART or other underlying serial hardware.1.

A tty driver layer that interfaces with the low-level driver. A tty driver insulates higher layers from the
intricacies of the hardware.

2.

Line disciplines that "cook" data exchanged with the tty driver. Line disciplines shape the behavior of the
serial layer and help reuse lower layers to support different technologies.

3.

To help custom driver implementations, the serial subsystem also provides core APIs that factor commonalities
out of these layers.

Figure 6.2 shows the connection between the layers. N_TTY, N_IRDA, and N_PPP are drop-in line disciplines that
mold the serial subsystem to respectively support terminals, Infrared, and dialup networking. Figure 6.3 maps
the serial subsystem to kernel source files.

Figure 6.2. Connection between the layers in the serial subsystem.

Figure 6.3. Serial layers mapped to kernel sources.

[View full size image]

To illustrate the advantages of a layered serial architecture, let's use an example. Assume that you are using a
USB-to-serial adapter to obtain serial capabilities on a laptop that does not have a serial port. One possible
scenario is when you are debugging the kernel on a target embedded device from a host laptop using kgdb
(kgdb is discussed in Chapter 21, "Debugging Device Drivers"), as shown in Figure 6.4.

Figure 6.4. Using a USB-to-serial converter.

As shown in Figure 6.3, you first need a suitable USB physical layer driver (the USB counterpart of the UART
driver) on your host laptop. This is present in the kernel USB subsystem, drivers/usb/. Next, you need a tty
driver to sit on top of the USB physical layer. The usbserial driver (drivers/usb/serial/usb-serial.c) is the core
layer that implements a generic tty over USB-serial converters. This driver, in tandem with device-specific tty
methods registered by the converter driver (drivers/usb/serial/keyspan.c if you are using a Keyspan adapter, for
example), constitutes the tty layer. Last, but not the least, you need the N_TTY line discipline for terminal I/O

processing.

The tty driver insulates the line discipline and higher layers from the internals of USB. In fact, the line discipline
still thinks it's running over a conventional UART. This is so because the tty driver pulls data from USB Request
Blocks or URBs (discussed in Chapter 11, "Universal Serial Bus") and encapsulates it in the format expected by
the N_TTY line discipline. The layered architecture thus renders the implementation simpler—all blocks from the

line discipline upward can be reused unchanged.

The preceding example uses a technology-specific tty driver and a generic line discipline. The reverse usage is
also common. The Infrared stack, discussed in Chapter 16, "Linux Without Wires," uses a generic tty driver and
a technology-specific line discipline called N_IRDA.

As you might have noticed in Figure 6.2 and Figure 6.3, although UART drivers are char drivers, they do not
directly expose interfaces to kernel system calls like regular char drivers that we saw in the preceding chapter.
Rather, UART drivers (like keyboard drivers discussed in the next chapter) service another kernel layer, the tty
layer. I/O system calls start their journey above top-level line disciplines and finally ripple down to UART drivers
through the tty layer.

In the rest of this chapter, let's take a closer look at the different driver components of the serial layer. We start
at the bottom of the serial stack with low-level UART drivers, move on to middle-level tty drivers, and then
proceed to top-level line discipline drivers.

Chapter 6. Serial Drivers

In This Chapter

Layered Architecture

173

UART Drivers

176

TTY Drivers

192

Line Disciplines
194

Looking at the Sources

205

The serial port is a basic communication channel used by a slew of technologies and applications.
A chip known as the Universal Asynchronous Receiver Transmitter (UART) is commonly used to
implement serial communication. On PC-compatible hardware, the UART is part of the Super I/O
chipset, as shown in Figure 6.1.

Figure 6.1. Connection diagram of the PC serial port.

Though RS-232 communication channels are the common type of serial hardware, the kernel's
serial subsystem is architected in a generic manner to serve diverse users. You will touch the
serial subsystem if you

Run a terminal session over an RS-232 serial link

Connect to the Internet via a dialup, cellular, or software modem

Interface with devices such as touch controllers, smart cards, Bluetooth chips, or Infrared
dongles, which use a serial transport

Emulate a serial port using a USB-to-serial converter

Communicate over an RS-485 link, which is a multidrop variant of RS-232 that has larger
range and better noise immunity

In this chapter, let's find out how the kernel structures the serial subsystem. We will use the
example of a Linux cell phone to learn about low-level UART drivers and the example of a serial
touch controller to discover the implementation details of higher-level line disciplines.

The UART usually found on PCs is National Semiconductor's 16550, or compatible chips from other
vendors, so you will find references to "16550-type UART" in code and documentation. The 8250 chip is
the predecessor of the 16550, so the Linux driver for PC UARTs is named 8250.c.

Layered Architecture

As you just saw, the users of the serial subsystem are many and different. This has motivated kernel developers
to structure a layered serial architecture using the following building blocks:

Low-level drivers that worry about the internals of the UART or other underlying serial hardware.1.

A tty driver layer that interfaces with the low-level driver. A tty driver insulates higher layers from the
intricacies of the hardware.

2.

Line disciplines that "cook" data exchanged with the tty driver. Line disciplines shape the behavior of the
serial layer and help reuse lower layers to support different technologies.

3.

To help custom driver implementations, the serial subsystem also provides core APIs that factor commonalities
out of these layers.

Figure 6.2 shows the connection between the layers. N_TTY, N_IRDA, and N_PPP are drop-in line disciplines that
mold the serial subsystem to respectively support terminals, Infrared, and dialup networking. Figure 6.3 maps
the serial subsystem to kernel source files.

Figure 6.2. Connection between the layers in the serial subsystem.

Figure 6.3. Serial layers mapped to kernel sources.

[View full size image]

To illustrate the advantages of a layered serial architecture, let's use an example. Assume that you are using a
USB-to-serial adapter to obtain serial capabilities on a laptop that does not have a serial port. One possible
scenario is when you are debugging the kernel on a target embedded device from a host laptop using kgdb
(kgdb is discussed in Chapter 21, "Debugging Device Drivers"), as shown in Figure 6.4.

Figure 6.4. Using a USB-to-serial converter.

As shown in Figure 6.3, you first need a suitable USB physical layer driver (the USB counterpart of the UART
driver) on your host laptop. This is present in the kernel USB subsystem, drivers/usb/. Next, you need a tty
driver to sit on top of the USB physical layer. The usbserial driver (drivers/usb/serial/usb-serial.c) is the core
layer that implements a generic tty over USB-serial converters. This driver, in tandem with device-specific tty
methods registered by the converter driver (drivers/usb/serial/keyspan.c if you are using a Keyspan adapter, for
example), constitutes the tty layer. Last, but not the least, you need the N_TTY line discipline for terminal I/O

processing.

The tty driver insulates the line discipline and higher layers from the internals of USB. In fact, the line discipline
still thinks it's running over a conventional UART. This is so because the tty driver pulls data from USB Request
Blocks or URBs (discussed in Chapter 11, "Universal Serial Bus") and encapsulates it in the format expected by
the N_TTY line discipline. The layered architecture thus renders the implementation simpler—all blocks from the

line discipline upward can be reused unchanged.

The preceding example uses a technology-specific tty driver and a generic line discipline. The reverse usage is
also common. The Infrared stack, discussed in Chapter 16, "Linux Without Wires," uses a generic tty driver and
a technology-specific line discipline called N_IRDA.

As you might have noticed in Figure 6.2 and Figure 6.3, although UART drivers are char drivers, they do not
directly expose interfaces to kernel system calls like regular char drivers that we saw in the preceding chapter.
Rather, UART drivers (like keyboard drivers discussed in the next chapter) service another kernel layer, the tty
layer. I/O system calls start their journey above top-level line disciplines and finally ripple down to UART drivers
through the tty layer.

In the rest of this chapter, let's take a closer look at the different driver components of the serial layer. We start
at the bottom of the serial stack with low-level UART drivers, move on to middle-level tty drivers, and then
proceed to top-level line discipline drivers.

UART Drivers

UART drivers revolve around three key data structures. All three are defined in include/linux/serial_core.h :

The per-UART driver structure, struct uart_driver :

struct uart_driver {

 struct module *owner; /* Module that owns this
 struct */

 const char *driver_name; /* Name */

 const char *dev_name; /* /dev node name

 such as ttyS */

 /* ... */

 int major; /* Major number */

 int minor; /* Minor number */
 /* ... */
 struct tty_driver *tty_driver; /* tty driver */
};

The comments against each field explain the associated semantics. The owner field allows the same

benefits as that discussed in the previous chapter for the file_operations structure.

1.

struct uart_port . One instance of this structure exists for each port owned by the UART driver:

struct uart_port {

 spinlock_t lock; /* port lock */
 unsigned int iobase; /* in/out[bwl]*/
 unsigned char __iomem *membase; /* read/write[bwl]*/

 unsigned int irq; /* irq number */
 unsigned int uartclk; /* base uart clock */

 unsigned char fifosize; /* tx fifo size */
 unsigned char x_char; /* xon/xoff flow

 control */
 /* ... */

};

2.

struct uart_ops . This is a superset of entry points that each UART driver has to support and describes

the operations that can be done on physical hardware. The methods in this structure are invoked by the
tty layer:

struct uart_ops {

 uint (*tx_empty)(struct uart_port *); /* Is TX FIFO empty? */

 void (*set_mctrl)(struct uart_port *,
 unsigned int mctrl); /* Set modem control params */

 uint (*get_mctrl)(struct uart_port *); /* Get modem control params */

 void (*stop_tx)(struct uart_port *); /* Stop xmission */

 void (*start_tx)(struct uart_port *); /* Start xmission */

 /* ... */

 void (*shutdown)(struct uart_port *); /* Disable the port */

3.

 void (*set_termios)(struct uart_port *,

 struct termios *new,

 struct termios *old); /* Set terminal interface
 params */

 /* ... */

 void (*config_port)(struct uart_port *,
 int); /* Configure UART port */

 /* ... */

};

There are two important steps that a UART driver has to do to tie itself with the kernel:
1.
Register with the serial core by calling

uart_register_driver(struct uart_driver *);

2.
Invoke uart_add_one_port(struct uart_driver * , struct uart_port *) to register each individual port

that it supports. If your serial hardware is hotplugged, the ports are registered with the core from the entry
point that probes the presence of the device. Look at the CardBus Modem driver in Listing 10.4 in Chapter 10 ,
"Peripheral Component Interconnect," for an example where the serial device is plugged hot. Note that some
drivers use the wrapper registration function serial8250_register_port(struct uart_port *) , which

internally invokes uart_add_one_port() .

These data structures and registration functions constitute the least common denominator present in all UART
drivers. Armed with these structures and routines, let's develop a sample UART driver.

Device Example: Cell Phone

Consider a Linux cell phone built around an embedded System-on-Chip (SoC). The SoC has two built-in UARTs,
but as shown in Figure 6.5 , both of them are used up, one for communicating with a cellular modem, and the
other for interfacing with a Bluetooth chipset. Because there are no free UARTs for debug purposes, the phone
uses two USB-to-serial converter chips, one to provide a debug terminal to a PC host, and the other to obtain a
spare port. USB-to-serial converters, as you saw earlier in this chapter, let you connect serial devices to your PC
via USB. We discuss more on USB-to-serial converters in Chapter 11 .

Figure 6.5. USB_UART ports on a Linux cell phone.

[View full size image]

The serial sides of the two USB-to-serial converter chips are connected to the SoC via a Complex Programmable
Logic Device or CPLD (see the section "CPLD/FPGA " in Chapter 18 , "Embedding Linux"). The CPLD creates two
virtual UARTs (or USB_UART s) by providing a three-register interface to access each USB-to-serial converter, as

shown in Table 6.1 : a status register, a read-data register, and a write-data register. To write a character to a
USB_UART , loop on a bit in the status register that clears when there is space in the chip's internal transmit

first-in first-out (FIFO) memory and then write the byte to the write-data register. To read a character, wait
until a specified bit in the status register shows presence of data in the receive FIFO and then read from the
read-data register.

UU_STATUS_REGISTER

Bits to check whether the transmit FIFO is full or whether the receive FIFO is empty
0x0

UU_READ_DATA_REGISTER

Read a character from the USB_UART

0x1

UU_WRITE_DATA_REGISTER

Write a character to the USB_UART

0x2

Table 6.1. Register Layout of the USB_UART

Register Name Description Offset from USB_UART

Memory Base

At the PC end, use the appropriate Linux usbserial driver (for example, drivers/usb/serial/ftdi_sio.c if you are
using an FT232AM chip on the cell phone) to create and manage /dev/ttyUSBX device nodes that correspond to
the USB-serial ports. You may run terminal emulators such as minicom over one of these device nodes to obtain
a console or debug terminal from the cell phone. At the cell phone end, we have to implement a UART driver for
the USB_UART s. This driver creates and manages /dev/ttyUUX nodes that are responsible for communication at
the device side of the link.

The cell phone shown in Figure 6.5 can act as an intelligent gateway for Bluetooth devices—to the GSM
network and, hence, to the Internet. The phone can, for example, ferry data from your Bluetooth blood
pressure monitor to your health-care provider's server on the Internet. Or it can alert a doctor if it
detects a problem while communicating with your Bluetooth-enabled heart-rate monitor. The Bluetooth

MP3 player used in Chapter 13 , "Audio Drivers," and the Bluetooth pill dispenser used in Chapter 16 are
also examples of devices that can use the Linux cell phone to get Internet-enabled.

Listing 6.1 implements the USB_UART driver. It's implemented as a platform driver. A platform is a pseudo bus
usually used to tie lightweight devices integrated into SoCs, with the Linux device model. A platform consists of

A platform device. The architecture-specific setup code adds the platform device using
platform_device_register() or its simpler version, platform_device_register_simple() . You may

also register multiple platform devices at one shot using platform_add_devices() . The
platform_device structure defined in include/linux/platform_device.h represents a platform device:

struct platform_device {
 const char *name; /* Device Name */

 u32 id; /* Use this field to register multiple

 instances of a platform device. In
 this example, the two USB_UARTs

 have different IDs. */
 struct device dev; /* Contains a release() method and
 platform data */

 /* ... */
};

1.

A platform driver. The platform driver registers itself into the platform using
platform_driver_register() . The platform_driver structure, also defined in
include/linux/platform_device.h , represents a platform driver:

struct platform_driver {

 int (*probe)(struct platform_device *); /*Probe method*/
 int (*remove)(struct platform_device *);/*Remove method*/

 /* ... */
 /* The name field in the following structure should match
 the name field in the associated platform_device

 structure */
 struct device_driver driver;

};

2.

See Documentation/driver-model/platform.txt for more on platform devices and drivers. For simplicity, our
sample driver registers both the platform device and the platform driver.

During initialization, the USB_UART driver first registers itself with the serial core using uart_register_driver()

. When this is done, you will find a new line starting with usb_uart in /proc/tty/drivers . Next, the driver

registers two platform devices (one per USB_UART) using platform_device_register_simple() . As
mentioned earlier, platform device registrations are usually done during boot-time board setup. Following this,
the driver registers platform driver entry points (probe() , remove() , suspend() , and resume()) using
platform_driver_register() . The USB_UART platform driver ties into both the above platform devices and has

a matching name (usb_uart). After this step, you will see two new directories appearing in sysfs, each

corresponding to a USB_UART port: /sys/devices/platform/usb_uart.0/ and /sys/devices/platform/usb_uart.1/ .

Because the Linux device layer now detects a platform driver matching the name of the registered USB_UART

platform devices, it invokes the probe() entry point[1] (usb_uart_probe()) belonging to the platform driver,

once for each USB_UART . The probe entry point adds the associated USB_UART port using uart_add_one_port()

. This triggers invocation of the config_port() entry point (part of the uart_ops structure discussed earlier)

that claims and maps the USB_UART register space. If both USB_UART ports are successfully added, the serial

core emits the following kernel messages:

[1] Such platform devices usually cannot be hotplugged. This invocation semantics of the probe() method is different from what you will learn

in later chapters for hotpluggable devices such as PCMCIA, PCI, and USB, but the similar structure of driver entry points helps the Linux device

model to have a uniform and consistent view of all devices.

ttyUU0 at MMIO 0xe8000000 (irq = 3) is a USB_UART

ttyUU1 at MMIO 0xe9000000 (irq = 4) is a USB_UART

Claiming the IRQ, however, is deferred until an application opens the USB_UART port. The IRQ is freed when the

application closes the USB_UART . Table 6.2 traces the driver's code path for claiming and freeing memory

regions and IRQs.

Module Insert
usb_uart_init()

uart_register_driver()

usb_uart_probe()

uart_add_one_port()

usb_uart_config_port()

request_mem_region()

Module Unload
usb_uart_exit()

usb_unregister_driver()

usb_uart_remove()

uart_remove_one_port()

usb_uart_release_port()

release_mem_region()

Open /dev/ttyUUX
usb_uart_startup()

request_irq()

Close /dev/ttyUUX
usb_uart_shutdown()

free_irq()

Table 6.2.
Claiming

and
Freeing
Memory
and IRQ

Resources

In the transmit path, the driver collects egress data from the circular buffer associated with the UART port. Data
is present in port->info->xmit.buf[port->info->xmit.tail] as is evident from the UART driver's

start_tx() entry point, usb_uart_start_tx() .

In the receive path, the driver pushes data collected from the USB_UART to the associated tty driver using

tty_insert_flip_char() and tty_flip_buffer_push() . This is done in the receive interrupt handler,

usb_uart_rxint() . Revisit this routine after reading the next section, "TTY Drivers ."

Listing 6.1 uses comments to explain the purpose of driver entry points and their operation. It leaves some of
the entry points in the uart_ops structure unimplemented to cut out extra detail.

Listing 6.1. USB_UART Driver for the Linux Cell Phone

Code View:
#include <linux/console.h>

#include <linux/platform_device.h>

#include <linux/tty.h>

#include <linux/tty_flip.h>

#include <linux/serial_core.h>

#include <linux/serial.h>

#include <asm/irq.h>

#include <asm/io.h>

#define USB_UART_MAJOR 200 /* You've to get this assigned */

#define USB_UART_MINOR_START 70 /* Start minor numbering here */

#define USB_UART_PORTS 2 /* The phone has 2 USB_UARTs */

#define PORT_USB_UART 30 /* UART type. Add this to

 include/linux/serial_core.h */

/* Each USB_UART has a 3-byte register set consisting of

 UU_STATUS_REGISTER at offset 0, UU_READ_DATA_REGISTER at

 offset 1, and UU_WRITE_DATA_REGISTER at offset 2 as shown

 in Table 6.1 */

#define USB_UART1_BASE 0xe8000000 /* Memory base for USB_UART1 */

#define USB_UART2_BASE 0xe9000000 /* Memory base for USB_UART2 */

#define USB_UART_REGISTER_SPACE 0x3

/* Semantics of bits in the status register */

#define USB_UART_TX_FULL 0x20 /* TX FIFO is full */

#define USB_UART_RX_EMPTY 0x10 /* TX FIFO is empty */

#define USB_UART_STATUS 0x0F /* Parity/frame/overruns? */

#define USB_UART1_IRQ 3 /* USB_UART1 IRQ */

#define USB_UART2_IRQ 4 /* USB_UART2 IRQ */

#define USB_UART_FIFO_SIZE 32 /* FIFO size */

#define USB_UART_CLK_FREQ 16000000

static struct uart_port usb_uart_port[]; /* Defined later on */

/* Write a character to the USB_UART port */

static void

usb_uart_putc(struct uart_port *port, unsigned char c)

{

 /* Wait until there is space in the TX FIFO of the USB_UART.

 Sense this by looking at the USB_UART_TX_FULL bit in the

 status register */

 while (__raw_readb(port->membase) & USB_UART_TX_FULL);

 /* Write the character to the data port*/

 __raw_writeb(c, (port->membase+1));

}

/* Read a character from the USB_UART */

static unsigned char

usb_uart_getc(struct uart_port *port)

{

 /* Wait until data is available in the RX_FIFO */

 while (__raw_readb(port->membase) & USB_UART_RX_EMPTY);

 /* Obtain the data */

 return(__raw_readb(port->membase+2));

}

/* Obtain USB_UART status */

static unsigned char

usb_uart_status(struct uart_port *port)

{

 return(__raw_readb(port->membase) & USB_UART_STATUS);

}

/*

 * Claim the memory region attached to USB_UART port. Called

 * when the driver adds a USB_UART port via uart_add_one_port().

 */

static int

usb_uart_request_port(struct uart_port *port)

{

 if (!request_mem_region(port->mapbase, USB_UART_REGISTER_SPACE,

 "usb_uart")) {

 return -EBUSY;

 }

 return 0;

}

/* Release the memory region attached to a USB_UART port.

 * Called when the driver removes a USB_UART port via

 * uart_remove_one_port().

 */

static void

usb_uart_release_port(struct uart_port *port)

{

 release_mem_region(port->mapbase, USB_UART_REGISTER_SPACE);

}

/*

 * Configure USB_UART. Called when the driver adds a USB_UART port.

 */

static void

usb_uart_config_port(struct uart_port *port, int flags)

{

 if (flags & UART_CONFIG_TYPE && usb_uart_request_port(port) == 0)

 {

 port->type = PORT_USB_UART;

 }

}

/* Receive interrupt handler */

static irqreturn_t

usb_uart_rxint(int irq, void *dev_id)

{

 struct uart_port *port = (struct uart_port *) dev_id;

 struct tty_struct *tty = port->info->tty;

 unsigned int status, data;

 /* ... */

 do {

 /* ... */

 /* Read data */

 data = usb_uart_getc(port);

 /* Normal, overrun, parity, frame error? */

 status = usb_uart_status(port);

 /* Dispatch to the tty layer */

 tty_insert_flip_char(tty, data, status);

 /* ... */

 } while (more_chars_to_be_read()); /* More chars */

 /* ... */

 tty_flip_buffer_push(tty);

 return IRQ_HANDLED;

}

/* Called when an application opens a USB_UART */

static int

usb_uart_startup(struct uart_port *port)

{

 int retval = 0;

 /* ... */

 /* Request IRQ */

 if ((retval = request_irq(port->irq, usb_uart_rxint, 0,

 "usb_uart", (void *)port))) {

 return retval;

 }

 /* ... */

 return retval;

}

/* Called when an application closes a USB_UART */

static void

usb_uart_shutdown(struct uart_port *port)

{

 /* ... */

 /* Free IRQ */

 free_irq(port->irq, port);

 /* Disable interrupts by writing to appropriate

 registers */

 /* ... */

}

/* Set UART type to USB_UART */

static const char *

usb_uart_type(struct uart_port *port)

{

 return port->type == PORT_USB_UART ? "USB_UART" : NULL;

}

/* Start transmitting bytes */

static void

usb_uart_start_tx(struct uart_port *port)

{

 while (1) {

 /* Get the data from the UART circular buffer and

 write it to the USB_UART's WRITE_DATA register */

 usb_uart_putc(port,

 port->info->xmit.buf[port->info->xmit.tail]);

 /* Adjust the tail of the UART buffer */

 port->info->xmit.tail = (port->info->xmit.tail + 1) &

 (UART_XMIT_SIZE - 1);

 /* Statistics */

 port->icount.tx++;

 /* Finish if no more data available in the UART buffer */

 if (uart_circ_empty(&port->info->xmit)) break;

 }

 /* ... */

}

/* The UART operations structure */

static struct uart_ops usb_uart_ops = {

 .start_tx = usb_uart_start_tx, /* Start transmitting */

 .startup = usb_uart_startup, /* App opens USB_UART */

 .shutdown = usb_uart_shutdown, /* App closes USB_UART */

 .type = usb_uart_type, /* Set UART type */

 .config_port = usb_uart_config_port, /* Configure when driver

 adds a USB_UART port */

 .request_port = usb_uart_request_port,/* Claim resources

 associated with a

 USB_UART port */

 .release_port = usb_uart_release_port,/* Release resources

 associated with a

 USB_UART port */

#if 0 /* Left unimplemented for the USB_UART */

 .tx_empty = usb_uart_tx_empty, /* Transmitter busy? */

 .set_mctrl = usb_uart_set_mctrl, /* Set modem control */

 .get_mctrl = usb_uart_get_mctrl, /* Get modem control

 .stop_tx = usb_uart_stop_tx, /* Stop transmission */

 .stop_rx = usb_uart_stop_rx, /* Stop reception */

 .enable_ms = usb_uart_enable_ms, /* Enable modem status

 signals */

 .set_termios = usb_uart_set_termios, /* Set termios */

#endif

};

static struct uart_driver usb_uart_reg = {

 .owner = THIS_MODULE, /* Owner */

 .driver_name = "usb_uart", /* Driver name */

 .dev_name = "ttyUU", /* Node name */

 .major = USB_UART_MAJOR, /* Major number */

 .minor = USB_UART_MINOR_START, /* Minor number start */

 .nr = USB_UART_PORTS, /* Number of UART ports */

 .cons = &usb_uart_console, /* Pointer to the console

 structure. Discussed in Chapter

 12, "Video Drivers" */

};

/* Called when the platform driver is unregistered */

static int

usb_uart_remove(struct platform_device *dev)

{

 platform_set_drvdata(dev, NULL);

 /* Remove the USB_UART port from the serial core */

 uart_remove_one_port(&usb_uart_reg, &usb_uart_port[dev->id]);

 return 0;

}

/* Suspend power management event */

static int

usb_uart_suspend(struct platform_device *dev, pm_message_t state)

{

 uart_suspend_port(&usb_uart_reg, &usb_uart_port[dev->id]);

 return 0;

}

/* Resume after a previous suspend */

static int

usb_uart_resume(struct platform_device *dev)

{

 uart_resume_port(&usb_uart_reg, &usb_uart_port[dev->id]);

 return 0;

}

/* Parameters of each supported USB_UART port */

static struct uart_port usb_uart_port[] = {

 {

 .mapbase = (unsigned int) USB_UART1_BASE,

 .iotype = UPIO_MEM, /* Memory mapped */

 .irq = USB_UART1_IRQ, /* IRQ */

 .uartclk = USB_UART_CLK_FREQ, /* Clock HZ */

 .fifosize = USB_UART_FIFO_SIZE, /* Size of the FIFO */

 .ops = &usb_uart_ops, /* UART operations */

 .flags = UPF_BOOT_AUTOCONF, /* UART port flag */

 .line = 0, /* UART port number */

 },

 {

 .mapbase = (unsigned int)USB_UART2_BASE,

 .iotype = UPIO_MEM, /* Memory mapped */

 .irq = USB_UART2_IRQ, /* IRQ */

 .uartclk = USB_UART_CLK_FREQ, /* CLock HZ */

 .fifosize = USB_UART_FIFO_SIZE, /* Size of the FIFO */

 .ops = &usb_uart_ops, /* UART operations */

 .flags = UPF_BOOT_AUTOCONF, /* UART port flag */

 .line = 1, /* UART port number */

 }

};

/* Platform driver probe */

static int __init

usb_uart_probe(struct platform_device *dev)

{

 /* ... */

 /* Add a USB_UART port. This function also registers this device

 with the tty layer and triggers invocation of the config_port()

 entry point */

 uart_add_one_port(&usb_uart_reg, &usb_uart_port[dev->id]);

 platform_set_drvdata(dev, &usb_uart_port[dev->id]);

 return 0;

}

struct platform_device *usb_uart_plat_device1; /* Platform device

 for USB_UART 1 */

struct platform_device *usb_uart_plat_device2; /* Platform device

 for USB_UART 2 */

static struct platform_driver usb_uart_driver = {

 .probe = usb_uart_probe, /* Probe method */

 .remove = __exit_p(usb_uart_remove), /* Detach method */

 .suspend = usb_uart_suspend, /* Power suspend */

 .resume = usb_uart_resume, /* Resume after a suspend */

 .driver = {

 .name = "usb_uart", /* Driver name */

 },

};

/* Driver Initialization */

static int __init

usb_uart_init(void)

{

 int retval;

 /* Register the USB_UART driver with the serial core */

 if ((retval = uart_register_driver(&usb_uart_reg))) {

 return retval;

 }

 /* Register platform device for USB_UART 1. Usually called

 during architecture-specific setup */

 usb_uart_plat_device1 =

 platform_device_register_simple("usb_uart", 0, NULL, 0);

 if (IS_ERR(usb_uart_plat_device1)) {

 uart_unregister_driver(&usb_uart_reg);

 return PTR_ERR(usb_uart_plat_device1);

 }

 /* Register platform device for USB_UART 2. Usually called

 during architecture-specific setup */

 usb_uart_plat_device2 =

 platform_device_register_simple("usb_uart", 1, NULL, 0);

 if (IS_ERR(usb_uart_plat_device2)) {

 uart_unregister_driver(&usb_uart_reg);

 platform_device_unregister(usb_uart_plat_device1);

 return PTR_ERR(usb_uart_plat_device2);

 }

 /* Announce a matching driver for the platform

 devices registered above */

 if ((retval = platform_driver_register(&usb_uart_driver))) {

 uart_unregister_driver(&usb_uart_reg);

 platform_device_unregister(usb_uart_plat_device1);

 platform_device_unregister(usb_uart_plat_device2);

 }

 return 0;

}

/* Driver Exit */

static void __exit

usb_uart_exit(void)

{

 /* The order of unregistration is important. Unregistering the

 UART driver before the platform driver will crash the system */

 /* Unregister the platform driver */

 platform_driver_unregister(&usb_uart_driver);

 /* Unregister the platform devices */

 platform_device_unregister(usb_uart_plat_device1);

 platform_device_unregister(usb_uart_plat_device2);

 /* Unregister the USB_UART driver */

 uart_unregister_driver(&usb_uart_reg);

}

module_init(usb_uart_init);

module_exit(usb_uart_exit);

RS-485

RS-485 is not a standard PC interface like RS-232, but in the embedded space, you may come across computers
that use RS-485 connections to reliably communicate with control systems. RS-485 uses differential signals that
let it exchange data over distances of up to a few thousand feet, unlike RS-232 that has a range of only a few
dozen feet. On the processor side, the RS-485 interface is a UART operating in half-duplex mode. So, before
sending data from the transmit FIFO to the wire, the UART device driver needs to additionally enable the RS-
485 transmitter and disable the receiver, possibly by wiggling associated GPIO pins. To obtain data from the
wire to the receive FIFO, the UART driver has to perform the reverse operation.

You have to enable/disable the RS-485 transmitter/receiver at the right places in the serial layer. If you disable
the transmitter too soon, it might not get sufficient time to drain the last bytes from the transmit FIFO, and this
can result in data truncation. If you disable the transmitter too late, on the other hand, you prevent data
reception for that much time, which might lead to receive data loss.

RS-485 supports multidrop, so the higher-layer protocol must implement a suitable addressing mechanism if
you have multiple devices connected to the bus. RS-485 does not support hardware flow control lines using
Request To Send (RTS) and Clear To Send (CTS).

TTY Drivers

Let's now take a look at the structures and registration functions that lie at the heart of tty drivers. Three
structures are important for their operation:

struct tty_struct defined in include/linux/tty.h. This structure contains all state information associated
with an open tty. It's an enormous structure, but here are some important fields:

 struct tty_struct {
 int magic; /* Magic marker */

 struct tty_driver *driver; /* Pointer to the tty

 driver */
 struct tty_ldisc ldisc; /* Attached Line

 discipline */

 /* ... */
 struct tty_flip_buffer flip; /* Flip Buffer. See
 below. */

 /* ... */

 wait_queue_head_t write_wait; /* See the section
 "Line Disciplines" */

 wait_queue_head_t read_wait; /* See the section
 "Line Disciplines" */

 /* ... */
 };

1.

struct tty_flip_buffer or the flip buffer embedded inside tty_struct. This is the centerpiece of the
data collection and processing mechanism:

 struct tty_flip_buffer {

 /* ... */
 struct semaphore pty_sem; /* Serialize */

 char *char_buf_ptr; /* Pointer to the flip
 buffer */

 /* ... */

 unsigned char char_buf[2*TTY_FLIPBUF_SIZE]; /* The flip
 buffer */

 /* ... */

 };

The low-level serial driver uses one half of the flip buffer for gathering data, while the line discipline uses
the other half for processing the data. The buffer pointers used by the serial driver and the line discipline
are then flipped, and the process continues. Have a look at the function flush_to_ldisc() in
drivers/char/tty_io.c to see the flip in action.

In recent kernels, the tty_flip_buffer structure has been somewhat redesigned. It's now made up of a

buffer header (tty_bufhead) and a buffer list (tty_buffer):

struct tty_bufhead {
 /* ... */

 struct semaphore pty_sem; /* Serialize */

2.

 struct tty_buffer *head, tail, free; /* See below */

 /* ... */

};

struct tty_buffer {

 struct tty_buffer *next;
 char *char_buf_ptr; /* Pointer to the flip buffer */

 /* ... */

 unsigned long data[0]; /* The flip buffer, memory for
 which is dynamically

 allocated */

};

struct tty_driver defined in include/linux/tty_driver.h. This specifies the programming interface
between tty drivers and higher layers:

struct tty_driver {

 int magic; /* Magic number */
 /* ... */

 int major; /* Major number */
 int minor_start; /* Start of minor number */

 /* ... */
 /* Interface routines between a tty driver and higher

 layers */
 int (*open)(struct tty_struct *tty, struct file *filp);
 void (*close)(struct tty_struct *tty, struct file *filp);

 int (*write)(struct tty_struct *tty,
 const unsigned char *buf, int count);

 void (*put_char)(struct tty_struct *tty,
 unsigned char ch);

 /* ... */
};

3.

Like a UART driver, a tty driver needs to perform two steps to register itself with the kernel:

1. Call tty_register_driver(struct tty_driver *tty_d) to register itself with the tty core.

2. Call

tty_register_device(struct tty_driver *tty_d,
 unsigned device_index,
 struct device *device)

to register each individual tty that it supports.

We won't develop a sample tty driver, but here are some common ones used on Linux:

Serial emulation over Bluetooth, discussed in Chapter 16, is implemented in the form of a tty driver. This
driver (drivers/net/bluetooth/rfcomm/tty.c) calls tty_register_driver() during initialization and
tty_register_device() while handling each incoming Bluetooth connection.

To work with a system console on a Linux desktop, you need the services of virtual terminals (VTs) if you

are in text mode or pseudo terminals (PTYs) if you are in graphics mode. VTs and PTYs are implemented
as tty drivers and live in drivers/char/vt.c and drivers/char/pty.c, respectively.

The tty driver used over conventional UARTs resides in drivers/serial/serial_core.c.

The USB-serial tty driver is in drivers/usb/serial/usb-serial.c.

Line Disciplines

Line disciplines provide an elegant mechanism that lets you use the same serial driver to run different
technologies. The low-level physical driver and the tty driver handle the transfer of data to and from the
hardware, while line disciplines are responsible for processing the data and transferring it between kernel space
and user space.

The serial subsystem supports 17 standard line disciplines. The default line discipline that gets attached when
you open a serial port is N_TTY, which implements terminal I/O processing. N_TTY is responsible for "cooking"
characters received from the keyboard. Depending on user request, it maps the control character to newline,
converts lowercase to uppercase, expands tabs, and echoes characters to the associated VT. N_TTY also

supports a raw mode used by editors, which leaves all the preceding processing to user applications. See Figure
7.3 in the next chapter, "Input Drivers," to learn how the keyboard subsystem is connected to N_TTY. The
example tty drivers listed at the end of the previous section, "TTY Drivers," use N_TTY by default.

Line disciplines also implement network interfaces over serial transport protocols. For example, line disciplines
that are part of the Point-to-Point Protocol (N_PPP) and the Serial Line Internet Protocol (N_SLIP) subsystems,
frame packets, allocate and populate associated networking data structures, and pass the data on to the
corresponding network protocol stack. Other line disciplines handle Infrared Data (N_IRDA) and the Bluetooth
Host Control Interface (N_HCI).

Device Example: Touch Controller

Let's take a look at the internals of a line discipline by implementing a simple line discipline for a serial touch-
screen controller. Figure 6.6 shows how the touch controller is connected on an embedded laptop derivative.
The Finite State Machine (FSM) of the touch controller is a candidate for being implemented as a line discipline
because it can leverage the facilities and interfaces offered by the serial layer.

Figure 6.6. Connection diagram of a touch controller on a PC-derivative.

Open and Close

To create a line discipline, define a struct tty_ldisc and register a prescribed set of entry points with the

kernel. Listing 6.2 contains a code snippet that performs both these operations for the example touch controller.

Listing 6.2. Line Discipline Operations

Code View:
struct tty_ldisc n_touch_ldisc = {

 TTY_LDISC_MAGIC, /* Magic */

 "n_tch", /* Name of the line discipline */

 N_TCH, /* Line discipline ID number */

 n_touch_open, /* Open the line discipline */

 n_touch_close, /* Close the line discipline */

 n_touch_flush_buffer, /* Flush the line discipline's read

 buffer */

 n_touch_chars_in_buffer, /* Get the number of processed characters in

 the line discipline's read buffer */

 n_touch_read, /* Called when data is requested

 from user space */

 n_touch_write, /* Write method */

 n_touch_ioctl, /* I/O Control commands */

 NULL, /* We don't have a set_termios

 routine */

 n_touch_poll, /* Poll */

 n_touch_receive_buf, /* Called by the low-level driver

 to pass data to user space*/

 n_touch_receive_room, /* Returns the room left in the line

 discipline's read buffer */

 n_touch_write_wakeup /* Called when the low-level device

 driver is ready to transmit more

 data */

};

/* ... */

if ((err = tty_register_ldisc(N_TCH, &n_touch_ldisc))) {

 return err;

}

In Listing 6.2, n_tch is the name of the line discipline, and N_TCH is the line discipline identifier number. You

have to specify the value of N_TCH in include/linux/tty.h, the header file that contains all line discipline

definitions. Line disciplines active on your system can be found in /proc/tty/ldiscs.

Line disciplines gather data from their half of the tty flip buffer, process it, and copy the resulting data to a local
read buffer. For N_TCH, n_touch_receive_room() returns the memory left in the read buffer, while

n_touch_chars_in_buffer() returns the number of processed characters in the read buffer that are ready to

be delivered to user space. n_touch_write() and n_touch_write_wakeup() do nothing because N_TCH is a
read-only device. n_touch_open() takes care of allocating memory for the main line discipline data structures,

as shown in Listing 6.3.

Listing 6.3. Opening the Line Discipline

Code View:
/* Private structure used to implement the Finite State Machine

(FSM) for the touch controller. The controller and the processor

communicate using a specific protocol that the FSM implements */

struct n_touch {

 int current_state; /* Finite State Machine */

 spinlock_t touch_lock; /* Spinlock */

 struct tty_struct *tty; /* Associated tty */

 /* Statistics and other housekeeping */

 /* ... */

} *n_tch;

/* Device open() */

static int

n_touch_open(struct tty_struct *tty)

{

 /* Allocate memory for n_tch */

 if (!(n_tch = kmalloc(sizeof(struct n_touch), GFP_KERNEL))) {

 return -ENOMEM;

 }

 memset(n_tch, 0, sizeof(struct n_touch));

 tty->disc_data = n_tch; /* Other entry points now

 have direct access to n_tch */

 /* Allocate the line discipline's local read buffer

 used for copying data out of the tty flip buffer */

 tty->read_buf = kmalloc(BUFFER_SIZE, GFP_KERNEL);

 if (!tty->read_buf) return -ENOMEM;

 /* Clear the read buffer */

 memset(tty->read_buf, 0, BUFFER_SIZE);

 /* Initialize lock */

 spin_lock_init(&ntch->touch_lock);

 /* Initialize other necessary tty fields.

 See drivers/char/n_tty.c for an example */

 /* ... */

 return 0;

}

You might want to set N_TCH as the default line discipline (rather than N_TTY) when-ever the serial port

connected to the touch controller is opened. See the section "Changing Line Disciplines" to see how to change
line disciplines from user space.

Read Path

For interrupt-driven devices, the read data path usually consists of two threads working in tandem:

A top thread originating from the user process requesting the read1.

2.

1.

A bottom thread springing from the interrupt service routine that collects data from the device2.

Figure 6.7 shows these threads associated with the read data flow. The interrupt handler queues the
receive_buf() method (n_touch_receive_buf() in our example) as a task. You can override this behavior by
setting the tty->low_latency flag.

Figure 6.7. Line discipline read path.

[View full size image]

The touch controller and the processor communicate using a specific protocol described in the controller's data
sheet. The driver implements this communication protocol using an FSM as indicated earlier. Listing 6.4 encodes
this FSM as part of the receive_buf() entry point, n_touch_receive_buf().

Listing 6.4. The n_touch_receive_buf() Method

Code View:
static void

n_touch_receive_buf(struct tty_struct *tty,

 const unsigned char *cp, char *fp, int count)

{

 /* Work on the data in the line discipline's half of

 the flip buffer pointed to by cp */

 /* ... */

 /* Implement the Finite State Machine to interpret commands/data

 arriving from the touch controller and put the processed data

 into the local read buffer */

..

 /* Datasheet-dependent Code Region */

 switch (tty->disc_data->current_state) {

 case RESET:

 /* Issue a reset command to the controller */

 tty->driver->write(tty, 0, mode_stream_command,

 sizeof(mode_stream_command));

 tty->disc_data->current_state = STREAM_DATA;

 /* ... */

 break;

 case STREAM_DATA:

 /* ... */

 break;

 case PARSING:

 /* ... */

 tty->disc_data->current_state = PARSED;

 break;

 case PARSED:

 /* ... */

 }

..

 if (tty->disc_data->current_state == PARSED) {

 /* If you have a parsed packet, copy the collected coordinate

 and direction information into the local read buffer */

 spin_lock_irqsave(&tty->disc_data->touch_lock, flags);

 for (i=0; i < PACKET_SIZE; i++) {

 tty->disc_data->read_buf[tty->disc_data->read_head] =

 tty->disc_data->current_pkt[i];

 tty->disc_data->read_head =

 (tty->disc_data->read_head + 1) & (BUFFER_SIZE - 1);

 tty->disc_data->read_cnt++;

 }

 spin_lock_irqrestore(&tty->disc_data->touch_lock, flags);

 /* ... */ /* See Listing 6.5 */

 }

}

n_touch_receive_buf() processes the data arriving from the serial driver. It exchanges a series of commands

and responses with the touch controller and puts the received coordinate and direction (press/release)

information into the line discipline's read buffer. Accesses to the read buffer have to be serialized using a
spinlock because it's used by both ldisc.receive_buf() and ldisc.read() threads shown in Figure 6.7

(n_touch_receive_buf() and n_touch_read(), respectively, in our example). As you can see in Listing 6.4,

n_touch_receive_buf() dispatches commands to the touch controller by directly calling the write() entry
point of the serial driver.

n_touch_receive_buf() needs to do a couple more things:

The top read() thread in Figure 6.7 puts the calling process to sleep if no data is available. So,

n_touch_receive_buf() has to wake up that thread and let it read the data that was just processed.

1.

If the line discipline is running out of read buffer space, n_touch_receive_buf() has to request the serial

driver to throttle data arriving from the device. ldisc.read() is responsible for requesting the
corresponding unthrottling when it ferries the data to user space and frees memory in the read buffer. The
serial driver uses software or hardware flow control mechanisms to achieve the throttling and unthrottling.

2.

Listing 6.5 performs these two operations.

Listing 6.5. Waking Up the Read Thread and Throttling the Serial Driver

/* n_touch_receive_buf() continued.. */

/* Wake up any threads waiting for data */

if (waitqueue_active(&tty->read_wait) &&

 (tty->read_cnt >= tty->minimum_to_wake))

 wake_up_interruptible(&tty->read_wait);

}

/* If we are running out of buffer space, request the

 serial driver to throttle incoming data */

if (n_touch_receive_room(tty) < TOUCH_THROTTLE_THRESHOLD) {

 tty->driver.throttle(tty);

}

/* ... */

A wait queue (tty->read_wait) is used to synchronize between the ldisc.read() and ldisc.receive_buf()
threads. ldisc.read() adds the calling process to the wait queue when it does not find data to read, while

ldisc.receive_buf() wakes the ldisc.read() thread when there is data available to be read. So,

n_touch_read() does the following:

If there is no data to be read yet, put the calling process to sleep on the read_wait queue. The process

gets woken by n_touch_receive_buf() when data arrives.

If data is available, collect it from the local read buffer (tty->read_buf[tty->read_tail]) and dispatch it

to user space.

If the serial driver has been throttled and if enough space is available in the read buffer after this read,
ask the serial driver to unthrottle.

Networking line disciplines usually allocate an sk_buff (the basic Linux networking data structure discussed in

Chapter 15, "Network Interface Cards") and use this as the read buffer. They don't have a read() method,

because the corresponding receive_buf() copies received data into the allocated sk_buff and directly passes
it to the associated protocol stack.

Write Path

A line discipline's write() entry point performs any post processing that is required before passing the data

down to the low-level driver.

If the underlying driver is not able to accept all the data that the line discipline offers, the line discipline puts the
requesting thread to sleep. The driver's interrupt handler wakes the line discipline when it is ready to receive
more data. To do this, the driver calls the write_wakeup() method registered by the line discipline. The

associated synchronization is done using a wait queue (tty->write_wait), and the operation is similar to that
of the read_wait queue described in the previous section.

Many networking line disciplines have no write() methods. The protocol implementation directly transmits the
frames down to the serial device driver. However, these line disciplines usually still have a write_wakeup()

entry point to respond to the serial driver's request for more transmit data.

N_TCH does not need a write() method either, because the touch controller is a read-only device. As you saw in

Listing 6.4, routines in the receive path directly talk to the low-level UART driver when they need to send
command frames to the controller.

I/O Control

A user program can send commands to a device via ioctl() calls, as discussed in Chapter 5, "Character
Drivers." When an application opens a serial device, it can usually issue three classes of ioctls to it:

Commands supported by the serial device driver, such as TIOCMSET that sets modem information

Commands supported by the tty driver, such as TIOCSETD that changes the attached line discipline

Commands supported by the attached line discipline, such as a command to reset the touch controller in
the case of N_TCH

The ioctl() implementation for N_TCH is largely standard. Supported commands depend on the protocol

described in the touch controller's data sheet.

More Operations

Another line discipline operation is flush_buffer(), which is used to flush any data pending in the read buffer.

flush_buffer() is also called when a line discipline is closed. It wakes up any read threads that are waiting for

more data as follows:

if (tty->link->packet){

 wake_up_interruptible(&tty->disc_data->read_wait);
}

Yet another entry point (not supported by N_TCH) is set_termios(). The N_TTY line discipline supports the

set_termios() interface, which is used to set options specific to line discipline data processing. For example,

you may use set_termios() to put the line discipline in raw mode or "cooked" mode. Some options specific to

the touch controller (such as changing the baud rate, parity, and number of stop bits) are implemented by the
set_termios() method of the underlying device driver.

The remaining entry points such as poll() are fairly standard, and you can return to Chapter 5 in case you

need assistance.

You may compile your line discipline as part of the kernel or dynamically load it as a module. If you choose to
compile it as a module, you must, of course, also provide functions to be called during module initialization and
exit. The former is usually the same as the init() method. The latter needs to clean up private data structures
and unregister the line discipline. Unregistering the discipline is a one-liner:

tty_unregister_ldisc(N_TCH);

An easier way to drive a serial touch controller is by leveraging the services offered by the kernel's input
subsystem and the built-in serport line discipline. We look at that technique in the next chapter.

Changing Line Disciplines

N_TCH gets bound to the low-level serial driver when a user space program opens the serial port connected to
the touch controller. But sometimes, a user-space application might want to attach a different line discipline to
the device. For instance, you might want to write a program that dumps raw data received from the touch
controller without processing it. Listing 6.6 opens the touch controller and changes the line discipline to N_TTY to

dump the data that is coming in.

Listing 6.6. Changing a Line Discipline from User Space

fd = open("/dev/ttySX", O_RDONLY | O_NOCTTY);

/* At this point, N_TCH is attached to /dev/ttySX, the serial port used

 by the touch controller. Switch to N_TTY */

ldisc = N_TTY;

ioctl(fd, TIOCSETD, &ldisc);

/* Set termios to raw mode and dump the data coming in */

/* ... */

The TIOCSETD ioctl() closes the current line discipline and opens the newly requested line discipline.

Looking at the Sources

The serial core resides in drivers/serial/, but tty implementations and low-level drivers are scattered across the
source tree. The driver files referred to in Figure 6.3, for example, live in four different directories:
drivers/serial/, drivers/char/, drivers/usb/serial/, and drivers/net/irda/. The drivers/serial/ directory, which now
also contains UART drivers, didn't exist in the 2.4 kernel; UART-specific code used to be dispersed between
drivers/char/ and arch/your-arch/ directories. The present code partitioning is more logical because UART
drivers are not the only folks that access the serial layer—devices such as USB-to-serial converters and IrDA
dongles also need to talk to the serial core.

Look at drivers/serial/imx.c for a real-world, low-level UART driver. It handles UARTs that are part of Freescale's
i.MX series of embedded controllers.

For a list of line disciplines supported on Linux, see include/linux/tty.h. To get a feel of networking line
disciplines, look at the corresponding source files for PPP (drivers/net/ppp_async.c), Bluetooth
(drivers/bluetooth/hci_ldisc.c), Infrared (drivers/net/irda/irtty-sir.c), and SLIP (drivers/net/slip.c).

Table 6.3 contains a summary of the main data structures used in this chapter and the location of their
definitions in the source tree. Table 6.4 lists the main kernel programming interfaces that you used in this
chapter along with the location of their definitions.

Table 6.3. Summary of Data Structures

Data Structure Location Description

uart_driver include/linux/serial_core.h Representation of a low-level
UART driver.

uart_port include/linux/serial_core.h Representation of a UART port.

uart_ops include/linux/serial_core.h Entry points supported by UART
drivers.

platform_device include/linux/platform_device.h Representation of a platform
device.

platform_driver include/linux/platform_device.h Representation of a platform
driver.

tty_struct include/linux/tty.h State information about a tty.

tty_bufhead,

tty_buffer

include/linux/tty.h These two structures implement
the flip buffer associated with a
tty.

tty_driver include/linux/tty_driver.h Programming interface between
tty drivers and higher layers.

tty_ldisc include/linux/tty_ldisc.h Entry points supported by a line
discipline.

Table 6.4. Summary of Kernel Programming Interfaces

Kernel Interface Location Description

uart_register_driver() drivers/serial/sderial_core.c Registers a UART driver with the
serial core

uart_add_one_port() drivers/serial/sderial_core.c Registers a UART port supported
by the UART driver

uart_unregister_driver() drivers/serial/sderial_core.c Removes a UART driver from the
serial core

platform_device register()

platform_device_register_simple()

platform_add_devices()

drivers/base/platform.c Registers a platform device

platform_device_unregister() drivers/base/platform.c Unregisters a platform device

platform_driver_register()/

platform_driver_unregister()

drivers/base/platform.c Registers/unregisters a platform
driver

tty_insert_flip_char() include/linux/tty_flip.h Adds a character to the tty flip
buffer

tty_flip_buffer_push() drivers/char/tty_io.c Queues a request to push the
flip buffer to the line discipline

tty_register_driver() drivers/char/tty_io.c Registers a tty driver with the
serial core

tty_unregister_driver() drivers/char/tty_io.c Removes a tty driver from the
serial core

tty_register_ldisc() drivers/char/tty_io.c Creates a line discipline by
registering prescribed entry
points

tty_unregister_ldisc() drivers/char/tty_io.c Removes a line discipline from
the serial core

Some serial data transfer scenarios are complex. You might need to mix and match different serial layer blocks,
as you saw in Figure 6.3. Some situations may necessitate a data path passing through multiple line disciplines.
For example, setting up a dialup connection over Bluetooth involves the movement of data through the HCI line
discipline as well as the PPP line discipline. If you can, establish such a connection and step through the code
flow using a kernel debugger.

Chapter 7. Input Drivers

In This Chapter

Input Event Drivers

210

Input Device Drivers

216

Debugging

230

Looking at the Sources
231

The kernel's input subsystem was created to unify scattered drivers that handle diverse classes of
data-input devices such as keyboards, mice, trackballs, joysticks, roller wheels, touch screens,
accelerometers, and tablets. The input subsystem brings the following advantages to the table:

Uniform handling of functionally similar input devices even when they are physically
different. For example, all mice, such as PS/2, USB or Bluetooth, are treated alike.

An easy event interface for dispatching input reports to user applications. Your driver does
not have to create and manage /dev nodes and related access methods. Instead, it can
simply invoke input APIs to send mouse movements, key presses, or touch events upstream
to user land. Applications such as X Windows work seamlessly over the event interfaces
exported by the input subsystem.

Extraction of common portions out of input drivers and a resulting abstraction that simplifies
the drivers and introduces consistency. For example, the input subsystem offers a collection
of low-level drivers called serio that provides access to input hardware such as serial ports
and keyboard controllers.

Figure 7.1 illustrates the operation of the input subsystem. The subsystem contains two classes of
drivers that work in tandem: event drivers and device drivers. Event drivers are responsible for
interfacing with applications, whereas device drivers are responsible for low-level communication
with input devices. The mouse event generator, mousedev, is an example of the former, and the
PS/2 mouse driver is an example of the latter. Both event drivers and device drivers can avail the
services of an efficient, bug-free, reusable core, which lies at the heart of the input subsystem.

Figure 7.1. The input subsystem.

[View full size image]

Because event drivers are standardized and available for all input classes, you are more likely to
implement a device driver than an event driver. Your device driver can use a suitable existing event
driver via the input core to interface with user applications. Note that this chapter uses the term device
driver to refer to an input device driver as opposed to an input event driver.

Input Event Drivers

The event interfaces exported by the input subsystem have evolved into a standard that many graphical
windowing systems understand. Event drivers offer a hardware-independent abstraction to talk to input devices,
just as the frame buffer interface (discussed in Chapter 12, "Video Drivers") presents a generic mechanism to
communicate with display devices. Event drivers, in tandem with frame buffer drivers, insulate graphical user
interfaces (GUIs) from the vagaries of the underlying hardware.

The Evdev Interface

Evdev is a generic input event driver. Each event packet produced by evdev has the following format, defined in
include/linux/input.h:

struct input_event {

 struct timeval time; /* Timestamp */

 __u16 type; /* Event Type */
 __u16 code; /* Event Code */

 __s32 value; /* Event Value */

};

To learn how to use evdev, let's implement an input device driver for a virtual mouse.

Device Example: Virtual Mouse

This is how our virtual mouse works: An application (coord.c) emulates mouse movements and dispatches
coordinate information to the virtual mouse driver (vms.c) via a sysfs node,
/sys/devices/platform/vms/coordinates. The virtual mouse driver (vms driver for short) channels these
movements upstream via evdev. Figure 7.2 shows the details.

Figure 7.2. An input driver for a virtual mouse.

[View full size image]

General-purpose mouse (gpm) is a server that lets you use a mouse in text mode without assistance from an X
server. Gpm understands evdev messages, so the vms driver can directly communicate with it. After you have
everything in place, you can see the cursor dancing over your screen to the tune of the virtual mouse
movements streamed by coord.c.

Listing 7.1 contains coord.c, which continuously generates random X and Y coordinates. Mice, unlike joysticks or
touch screens, produce relative coordinates, so that is what coord.c does. The vms driver is shown in Listing
7.2.

Listing 7.1. Application to Simulate Mouse Movements (coord.c)

Code View:
#include <fcntl.h>

int

main(int argc, char *argv[])

{

 int sim_fd;

 int x, y;

 char buffer[10];

 /* Open the sysfs coordinate node */

 sim_fd = open("/sys/devices/platform/vms/coordinates", O_RDWR);

 if (sim_fd < 0) {

 perror("Couldn't open vms coordinate file\n");

 exit(-1);

 }

 while (1) {

 /* Generate random relative coordinates */

 x = random()%20;

 y = random()%20;

 if (x%2) x = -x; if (y%2) y = -y;

 /* Convey simulated coordinates to the virtual mouse driver */

 sprintf(buffer, "%d %d %d", x, y, 0);

 write(sim_fd, buffer, strlen(buffer));

 fsync(sim_fd);

 sleep(1);

 }

 close(sim_fd);

}

Listing 7.2. Input Driver for the Virtual Mouse (vms.c)

Code View:
#include <linux/fs.h>

#include <asm/uaccess.h>

#include <linux/pci.h>

#include <linux/input.h>

#include <linux/platform_device.h>

struct input_dev *vms_input_dev; /* Representation of an input device */

static struct platform_device *vms_dev; /* Device structure */

 /* Sysfs method to input simulated

 coordinates to the virtual

 mouse driver */

static ssize_t

write_vms(struct device *dev,

 struct device_attribute *attr,

 const char *buffer, size_t count)

{

 int x,y;

 sscanf(buffer, "%d%d", &x, &y);

 /* Report relative coordinates via the

 event interface */

 input_report_rel(vms_input_dev, REL_X, x);

 input_report_rel(vms_input_dev, REL_Y, y);

 input_sync(vms_input_dev);

 return count;

}

/* Attach the sysfs write method */

DEVICE_ATTR(coordinates, 0644, NULL, write_vms);

/* Attribute Descriptor */

static struct attribute *vms_attrs[] = {

 &dev_attr_coordinates.attr,

 NULL

};

/* Attribute group */

static struct attribute_group vms_attr_group = {

 .attrs = vms_attrs,

};

/* Driver Initialization */

int __init

vms_init(void)

{

 /* Register a platform device */

 vms_dev = platform_device_register_simple("vms", -1, NULL, 0);

 if (IS_ERR(vms_dev)) {

 PTR_ERR(vms_dev);

 printk("vms_init: error\n");

 }

 /* Create a sysfs node to read simulated coordinates */

 sysfs_create_group(&vms_dev->dev.kobj, &vms_attr_group);

 /* Allocate an input device data structure */

 vms_input_dev = input_allocate_device();

 if (!vms_input_dev) {

 printk("Bad input_alloc_device()\n");

 }

 /* Announce that the virtual mouse will generate

 relative coordinates */

 set_bit(EV_REL, vms_input_dev->evbit);

 set_bit(REL_X, vms_input_dev->relbit);

 set_bit(REL_Y, vms_input_dev->relbit);

 /* Register with the input subsystem */

 input_register_device(vms_input_dev);

 printk("Virtual Mouse Driver Initialized.\n");

 return 0;

}

/* Driver Exit */

void

vms_cleanup(void)

{

 /* Unregister from the input subsystem */

 input_unregister_device(vms_input_dev);

 /* Cleanup sysfs node */

 sysfs_remove_group(&vms_dev->dev.kobj, &vms_attr_group);

 /* Unregister driver */

 platform_device_unregister(vms_dev);

 return;

}

module_init(vms_init);

module_exit(vms_cleanup);

Let's take a closer look at Listing 7.2. During initialization, the vms driver registers itself as an input device
driver. For this, it first allocates an input_dev structure using the core API, input_allocate_device():

vms_input_dev = input_allocate_device();

It then announces that the virtual mouse generates relative events:

set_bit(EV_REL, vms_input_dev->evbit); /* Event Type is EV_REL */

Next, it declares the event codes that the virtual mouse produces:

set_bit(REL_X, vms_input_dev->relbit); /* Relative 'X' movement */
set_bit(REL_Y, vms_input_dev->relbit); /* Relative 'Y' movement */

If your virtual mouse is also capable of generating button clicks, you need to add this to vms_init():

set_bit(EV_KEY, vms_input_dev->evbit); /* Event Type is EV_KEY */
set_bit(BTN_0, vms_input_dev->keybit); /* Event Code is BTN_0 */

Finally, the registration:

input_register_device(vms_input_dev);

write_vms() is the sysfs store() method that attaches to /sys/devices/platform/vms/coordinates. When

coord.c writes an X/Y pair to this file, write_vms() does the following:

input_report_rel(vms_input_dev, REL_X, x);

input_report_rel(vms_input_dev, REL_Y, y);

input_sync(vms_input_dev);

The first statement generates a REL_X event or a relative device movement in the X direction. The second

produces a REL_Y event or a relative movement in the Y direction. input_sync() indicates that this event is

complete, so the input subsystem collects these two events into a single evdev packet and sends it out of the
door through /dev/input/eventX, where X is the interface number assigned to the vms driver. An application
reading this file will receive event packets in the input_event format described earlier. To request gpm to

attach to this event interface and accordingly chase the cursor around your screen, do this:

bash> gpm -m /dev/input/eventX -t evdev

The ADS7846 touch controller driver and the accelerometer driver, discussed respectively under the sections
"Touch Controllers" and "Accelerometers" later, are also evdev users.

More Event Interfaces

The vms driver utilizes the generic evdev event interface, but input devices such as keyboards, mice, and touch
controllers have custom event drivers. We will look at them when we discuss the corresponding device drivers.

To write your own event driver and export it to user space via /dev/input/mydev, you have to populate a
structure called input_handler and register it with the input core as follows:

Code View:
static struct input_handler my_event_handler = {

 .event = mydev_event, /* Handle event reports sent by
 input device drivers that use

 this event driver's services */
 .fops = &mydev_fops, /* Methods to manage

 /dev/input/mydev */

 .minor = MYDEV_MINOR_BASE, /* Minor number of
 /dev/input/mydev */

 .name = "mydev", /* Event driver name */
 .id_table = mydev_ids, /* This event driver can handle

 requests from these IDs */
 .connect = mydev_connect, /* Invoked if there is an

 ID match */
 .disconnect = mydev_disconnect, /* Called when the driver unregisters
 */

};

/* Driver Initialization */
static int __init

mydev_init(void)

{
 /* ... */

 input_register_handler(&my_event_handler);

 /* ... */

 return 0;

}

Look at the implementation of mousedev (drivers/input/mousedev.c) for a complete example.

Chapter 7. Input Drivers

In This Chapter

Input Event Drivers

210

Input Device Drivers

216

Debugging

230

Looking at the Sources
231

The kernel's input subsystem was created to unify scattered drivers that handle diverse classes of
data-input devices such as keyboards, mice, trackballs, joysticks, roller wheels, touch screens,
accelerometers, and tablets. The input subsystem brings the following advantages to the table:

Uniform handling of functionally similar input devices even when they are physically
different. For example, all mice, such as PS/2, USB or Bluetooth, are treated alike.

An easy event interface for dispatching input reports to user applications. Your driver does
not have to create and manage /dev nodes and related access methods. Instead, it can
simply invoke input APIs to send mouse movements, key presses, or touch events upstream
to user land. Applications such as X Windows work seamlessly over the event interfaces
exported by the input subsystem.

Extraction of common portions out of input drivers and a resulting abstraction that simplifies
the drivers and introduces consistency. For example, the input subsystem offers a collection
of low-level drivers called serio that provides access to input hardware such as serial ports
and keyboard controllers.

Figure 7.1 illustrates the operation of the input subsystem. The subsystem contains two classes of
drivers that work in tandem: event drivers and device drivers. Event drivers are responsible for
interfacing with applications, whereas device drivers are responsible for low-level communication
with input devices. The mouse event generator, mousedev, is an example of the former, and the
PS/2 mouse driver is an example of the latter. Both event drivers and device drivers can avail the
services of an efficient, bug-free, reusable core, which lies at the heart of the input subsystem.

Figure 7.1. The input subsystem.

[View full size image]

Because event drivers are standardized and available for all input classes, you are more likely to
implement a device driver than an event driver. Your device driver can use a suitable existing event
driver via the input core to interface with user applications. Note that this chapter uses the term device
driver to refer to an input device driver as opposed to an input event driver.

Input Event Drivers

The event interfaces exported by the input subsystem have evolved into a standard that many graphical
windowing systems understand. Event drivers offer a hardware-independent abstraction to talk to input devices,
just as the frame buffer interface (discussed in Chapter 12, "Video Drivers") presents a generic mechanism to
communicate with display devices. Event drivers, in tandem with frame buffer drivers, insulate graphical user
interfaces (GUIs) from the vagaries of the underlying hardware.

The Evdev Interface

Evdev is a generic input event driver. Each event packet produced by evdev has the following format, defined in
include/linux/input.h:

struct input_event {

 struct timeval time; /* Timestamp */

 __u16 type; /* Event Type */
 __u16 code; /* Event Code */

 __s32 value; /* Event Value */

};

To learn how to use evdev, let's implement an input device driver for a virtual mouse.

Device Example: Virtual Mouse

This is how our virtual mouse works: An application (coord.c) emulates mouse movements and dispatches
coordinate information to the virtual mouse driver (vms.c) via a sysfs node,
/sys/devices/platform/vms/coordinates. The virtual mouse driver (vms driver for short) channels these
movements upstream via evdev. Figure 7.2 shows the details.

Figure 7.2. An input driver for a virtual mouse.

[View full size image]

General-purpose mouse (gpm) is a server that lets you use a mouse in text mode without assistance from an X
server. Gpm understands evdev messages, so the vms driver can directly communicate with it. After you have
everything in place, you can see the cursor dancing over your screen to the tune of the virtual mouse
movements streamed by coord.c.

Listing 7.1 contains coord.c, which continuously generates random X and Y coordinates. Mice, unlike joysticks or
touch screens, produce relative coordinates, so that is what coord.c does. The vms driver is shown in Listing
7.2.

Listing 7.1. Application to Simulate Mouse Movements (coord.c)

Code View:
#include <fcntl.h>

int

main(int argc, char *argv[])

{

 int sim_fd;

 int x, y;

 char buffer[10];

 /* Open the sysfs coordinate node */

 sim_fd = open("/sys/devices/platform/vms/coordinates", O_RDWR);

 if (sim_fd < 0) {

 perror("Couldn't open vms coordinate file\n");

 exit(-1);

 }

 while (1) {

 /* Generate random relative coordinates */

 x = random()%20;

 y = random()%20;

 if (x%2) x = -x; if (y%2) y = -y;

 /* Convey simulated coordinates to the virtual mouse driver */

 sprintf(buffer, "%d %d %d", x, y, 0);

 write(sim_fd, buffer, strlen(buffer));

 fsync(sim_fd);

 sleep(1);

 }

 close(sim_fd);

}

Listing 7.2. Input Driver for the Virtual Mouse (vms.c)

Code View:
#include <linux/fs.h>

#include <asm/uaccess.h>

#include <linux/pci.h>

#include <linux/input.h>

#include <linux/platform_device.h>

struct input_dev *vms_input_dev; /* Representation of an input device */

static struct platform_device *vms_dev; /* Device structure */

 /* Sysfs method to input simulated

 coordinates to the virtual

 mouse driver */

static ssize_t

write_vms(struct device *dev,

 struct device_attribute *attr,

 const char *buffer, size_t count)

{

 int x,y;

 sscanf(buffer, "%d%d", &x, &y);

 /* Report relative coordinates via the

 event interface */

 input_report_rel(vms_input_dev, REL_X, x);

 input_report_rel(vms_input_dev, REL_Y, y);

 input_sync(vms_input_dev);

 return count;

}

/* Attach the sysfs write method */

DEVICE_ATTR(coordinates, 0644, NULL, write_vms);

/* Attribute Descriptor */

static struct attribute *vms_attrs[] = {

 &dev_attr_coordinates.attr,

 NULL

};

/* Attribute group */

static struct attribute_group vms_attr_group = {

 .attrs = vms_attrs,

};

/* Driver Initialization */

int __init

vms_init(void)

{

 /* Register a platform device */

 vms_dev = platform_device_register_simple("vms", -1, NULL, 0);

 if (IS_ERR(vms_dev)) {

 PTR_ERR(vms_dev);

 printk("vms_init: error\n");

 }

 /* Create a sysfs node to read simulated coordinates */

 sysfs_create_group(&vms_dev->dev.kobj, &vms_attr_group);

 /* Allocate an input device data structure */

 vms_input_dev = input_allocate_device();

 if (!vms_input_dev) {

 printk("Bad input_alloc_device()\n");

 }

 /* Announce that the virtual mouse will generate

 relative coordinates */

 set_bit(EV_REL, vms_input_dev->evbit);

 set_bit(REL_X, vms_input_dev->relbit);

 set_bit(REL_Y, vms_input_dev->relbit);

 /* Register with the input subsystem */

 input_register_device(vms_input_dev);

 printk("Virtual Mouse Driver Initialized.\n");

 return 0;

}

/* Driver Exit */

void

vms_cleanup(void)

{

 /* Unregister from the input subsystem */

 input_unregister_device(vms_input_dev);

 /* Cleanup sysfs node */

 sysfs_remove_group(&vms_dev->dev.kobj, &vms_attr_group);

 /* Unregister driver */

 platform_device_unregister(vms_dev);

 return;

}

module_init(vms_init);

module_exit(vms_cleanup);

Let's take a closer look at Listing 7.2. During initialization, the vms driver registers itself as an input device
driver. For this, it first allocates an input_dev structure using the core API, input_allocate_device():

vms_input_dev = input_allocate_device();

It then announces that the virtual mouse generates relative events:

set_bit(EV_REL, vms_input_dev->evbit); /* Event Type is EV_REL */

Next, it declares the event codes that the virtual mouse produces:

set_bit(REL_X, vms_input_dev->relbit); /* Relative 'X' movement */
set_bit(REL_Y, vms_input_dev->relbit); /* Relative 'Y' movement */

If your virtual mouse is also capable of generating button clicks, you need to add this to vms_init():

set_bit(EV_KEY, vms_input_dev->evbit); /* Event Type is EV_KEY */
set_bit(BTN_0, vms_input_dev->keybit); /* Event Code is BTN_0 */

Finally, the registration:

input_register_device(vms_input_dev);

write_vms() is the sysfs store() method that attaches to /sys/devices/platform/vms/coordinates. When

coord.c writes an X/Y pair to this file, write_vms() does the following:

input_report_rel(vms_input_dev, REL_X, x);

input_report_rel(vms_input_dev, REL_Y, y);

input_sync(vms_input_dev);

The first statement generates a REL_X event or a relative device movement in the X direction. The second

produces a REL_Y event or a relative movement in the Y direction. input_sync() indicates that this event is

complete, so the input subsystem collects these two events into a single evdev packet and sends it out of the
door through /dev/input/eventX, where X is the interface number assigned to the vms driver. An application
reading this file will receive event packets in the input_event format described earlier. To request gpm to

attach to this event interface and accordingly chase the cursor around your screen, do this:

bash> gpm -m /dev/input/eventX -t evdev

The ADS7846 touch controller driver and the accelerometer driver, discussed respectively under the sections
"Touch Controllers" and "Accelerometers" later, are also evdev users.

More Event Interfaces

The vms driver utilizes the generic evdev event interface, but input devices such as keyboards, mice, and touch
controllers have custom event drivers. We will look at them when we discuss the corresponding device drivers.

To write your own event driver and export it to user space via /dev/input/mydev, you have to populate a
structure called input_handler and register it with the input core as follows:

Code View:
static struct input_handler my_event_handler = {

 .event = mydev_event, /* Handle event reports sent by
 input device drivers that use

 this event driver's services */
 .fops = &mydev_fops, /* Methods to manage

 /dev/input/mydev */

 .minor = MYDEV_MINOR_BASE, /* Minor number of
 /dev/input/mydev */

 .name = "mydev", /* Event driver name */
 .id_table = mydev_ids, /* This event driver can handle

 requests from these IDs */
 .connect = mydev_connect, /* Invoked if there is an

 ID match */
 .disconnect = mydev_disconnect, /* Called when the driver unregisters
 */

};

/* Driver Initialization */
static int __init

mydev_init(void)

{
 /* ... */

 input_register_handler(&my_event_handler);

 /* ... */

 return 0;

}

Look at the implementation of mousedev (drivers/input/mousedev.c) for a complete example.

Input Device Drivers

Let's turn our attention to drivers for common input devices such as keyboards, mice, and touch screens. But
first, let's take a quick look at an off-the-shelf hardware access facility available to input drivers.

Serio

The serio layer offers library routines to access legacy input hardware such as i8042-compatible keyboard
controllers and the serial port. PS/2 keyboards and mice interface with the former, whereas serial touch
controllers connect to the latter. To communicate with hardware serviced by serio, for example, to send a
command to a PS/2 mouse, register prescribed callback routines with serio using serio_register_driver().

To add a new driver as part of serio, register open()/close()/start()/stop()/write() entry points using

serio_register_port (). Look at drivers/input/serio/serport.c for an example.

As you can see in Figure 7.1, serio is only one route to access low-level hardware. Several input device drivers
instead rely on low-level support from bus layers such as USB or SPI.

Keyboards

Keyboards come in different flavors—legacy PS/2, USB, Bluetooth, Infrared, and so on. Each type has a specific
input device driver, but all use the same keyboard event driver, thus ensuring a consistent interface to their
users. The keyboard event driver, however, has a distinguishing feature compared to other event drivers: It
passes data to another kernel subsystem (the tty layer), rather than to user space via /dev nodes.

PC Keyboards

The PC keyboard (also called PS/2 keyboard or AT keyboard) interfaces with the processor via an i8042-
compatible keyboard controller. Desktops usually have a dedicated keyboard controller, but on laptops,
keyboard interfacing is one of the responsibilities of a general-purpose embedded controller (see the section
"Embedded Controllers" in Chapter 20, "More Devices and Drivers"). When you press a key on a PC keyboard,
this is the road it takes:

The keyboard controller (or the embedded controller) scans and decodes the keyboard matrix and takes
care of nuances such as key debouncing.

1.

The keyboard device driver, with the help of serio, reads raw scancodes from the keyboard controller for
each key press and release. The difference between a press and a release is in the most significant bit,
which is set for the latter. A push on the "a" key, for example, yields a pair of scancodes, 0x1e and 0x9e.

Special keys are escaped using 0xE0, so a jab on the right-arrow key produces the sequence, (0xE0 0x4D

0xE0 0xCD). You may use the showkey utility to observe scancodes emanating from the controller (the

symbol attaches explanations):

bash> showkey -s

kb mode was UNICODE

[if you are trying this under X, it might not work since
 the X server is also reading /dev/console]

 press any key (program terminates 10s after last

 keypress)...

2.

 ...

 0x1e 0x9e A push of the "a" key

The keyboard device driver converts received scancodes to keycodes, based on the input mode. To see
the keycode corresponding to the "a" key:

bash> showkey

...

keycode 30 press A push of the "a" key

keycode 30 release Release of the "a" key

To report the keycode upstream, the driver generates an input event, which passes control to the
keyboard event driver.

3.

The keyboard event driver undertakes keycode translation depending on the loaded key map. (See man
pages of loadkeys and the map files present in /lib/kbd/keymaps.) It checks whether the translated
keycode is tied to actions such as switching the virtual console or rebooting the system. To glow the
CAPSLOCK and NUMLOCK LEDs instead of rebooting the system in response to a Ctrl+Alt+Del push, add the
following to the Ctrl+Alt+Del handler of the keyboard event driver, drivers/char/keyboard.c:

static void fn_boot_it(struct vc_data *vc,

 struct pt_regs *regs)
{

+ set_vc_kbd_led(kbd, VC_CAPSLOCK);

+ set_vc_kbd_led(kbd, VC_NUMLOCK);

- ctrl_alt_del();

}

4.

For regular keys, the translated keycode is sent to the associated virtual terminal and the N_TTY line
discipline. (We discussed virtual terminals and line disciplines in Chapter 6, "Serial Drivers.") This is done
as follows by drivers/char/keyboard.c:

/* Add the keycode to flip buffer */
tty_insert_flip_char(tty, keycode, 0);

/* Schedule */
con_schedule_flip(tty);

5.

The N_TTY line discipline processes the input thus received from the keyboard, echoes it to the virtual console,
and lets user-space applications read characters from the /dev/ttyX node connected to the virtual terminal.

Figure 7.3 shows the data flow from the time you push a key on your keyboard until the time it's echoed on
your virtual console. The left half of the figure is hardware-specific, and the right half is generic. As per the
design goal of the input subsystem, the underlying hardware interface is transparent to the keyboard event
driver and the tty layer. The input core and the clearly defined event interfaces thus insulate input users from
the intricacies of the hardware.

Figure 7.3. Data flow from a PS/2-compatible keyboard.

[View full size image]

USB and Bluetooth Keyboards

The USB specifications related to human interface devices (HID) stipulate the protocol that USB keyboards,
mice, keypads, and other input peripherals use for communication. On Linux, this is implemented via the usbhid
USB client driver, which is responsible for the USB HID class (0x03). Usbhid registers itself as an input device

driver. It conforms to the input API and reports input events appropriate to the connected HID.

To understand the code path for a USB keyboard, revert to Figure 7.3 and modify the hardware-specific left half.
Replace the keyboard controller in the Input Hardware box with a USB controller, serio with the USB core layer,
and the Input Device Driver box with the usbhid driver.

For a Bluetooth keyboard, replace the keyboard controller in Figure 7.3 with a Bluetooth chipset, serio with the
Bluetooth core layer, and the Input Device Driver box with the Bluetooth hidp driver.

USB and Bluetooth are discussed in detail in Chapter 11, "Universal Serial Bus," and Chapter 16, "Linux Without
Wires," respectively.

Mice

Mice, like keyboards, come with different capabilities and have different interfacing options. Let's look at the
common ones.

PS/2 Mice

Mice generate relative movements in the X and Y axes. They also possess one or more buttons. Some have
scroll wheels, too. The input device driver for PS/2-compatible legacy mice relies on the serio layer to talk to the
underlying controller. The input event driver for mice, called mousedev, reports mouse events to user
applications via /dev/input/mice.

Device Example: Roller Mouse

To get a feel of a real-world mouse device driver, let's convert the roller wheel discussed in Chapter 4, "Laying
the Groundwork," into a variation of the generic PS/2 mouse. The "roller mouse" generates one-dimensional
movement in the Y-axis. Clockwise and anticlockwise turns of the wheel produce positive and negative relative Y
coordinates respectively (like the scroll wheel in mice), while pressing the roller wheel results in a left button
mouse event. The roller mouse is thus ideal for navigating menus in devices such as smart phones, handhelds,
and music players.

The roller mouse device driver implemented in Listing 7.3 works with windowing systems such as X Windows.
Look at roller_mouse_init() to see how the driver declares its mouse-like capabilities. Unlike the roller wheel

driver in Listing 4.1 of Chapter 4, the roller mouse driver needs no read() or poll() methods because events
are reported using input APIs. The roller interrupt handler roller_isr() also changes accordingly. Gone are the

housekeepings done in the interrupt handler using a wait queue, a spinlock, and the store_movement() routine
to support read() and poll().

In Listing 7.3, the leading + and - denote the differences from the roller wheel driver implemented in Listing 4.1

of Chapter 4.

Listing 7.3. The Roller Mouse Driver

Code View:
+ #include <linux/input.h>

+ #include <linux/interrupt.h>

+ /* Device structure */

+ struct {

+ /* ... */

+ struct input_dev dev;

+ } roller_mouse;

+ static int __init

+ roller_mouse_init(void)

+ {

+ /* Allocate input device structure */

+ roller_mouse->dev = input_allocate_device();

+

+ /* Can generate a click and a relative movement */

+ roller_mouse->dev->evbit[0] = BIT(EV_KEY) | BIT(EV_REL);

+ /* Can move only in the Y-axis */

+ roller_mouse->dev->relbit[0] = BIT(REL_Y);

+

+ /* My click should be construed as the left button

+ press of a mouse */

+ roller_mouse->dev->keybit[LONG(BTN_MOUSE)] = BIT(BTN_LEFT);

+ roller_mouse->dev->name = "roll";

+

+ /* For entries in /sys/class/input/inputX/id/ */

+ roller_mouse->dev->id.bustype = ROLLER_BUS;

+ roller_mouse->dev->id.vendor = ROLLER_VENDOR;

+ roller_mouse->dev->id.product = ROLLER_PROD;

+ roller_mouse->dev->id.version = ROLLER_VER;

+ /* Register with the input subsystem */

+ input_register_device(roller_mouse->dev);

+}

/* Global variables */

- spinlock_t roller_lock = SPIN_LOCK_UNLOCKED;

- static DECLARE_WAIT_QUEUE_HEAD(roller_poll);

/* The Roller Interrupt Handler */

static irqreturn_t

roller_interrupt(int irq, void *dev_id)

{

 int i, PA_t, PA_delta_t, movement = 0;

 /* Get the waveforms from bits 0, 1 and 2

 of Port D as shown in Figure 7.1 */

 PA_t = PORTD & 0x07;

 /* Wait until the state of the pins change.

 (Add some timeout to the loop) */

 for (i=0; (PA_t==PA_delta_t); i++){

 PA_delta_t = PORTD & 0x07;

 }

 movement = determine_movement(PA_t, PA_delta_t);

- spin_lock(&roller_lock);

-

- /* Store the wheel movement in a buffer for

- later access by the read()/poll() entry points */

- store_movements(movement);

-

- spin_unlock(&roller_lock);

-

- /* Wake up the poll entry point that might have

- gone to sleep, waiting for a wheel movement */

- wake_up_interruptible(&roller_poll);

-

+ if (movement == CLOCKWISE) {

+ input_report_rel(roller_mouse->dev, REL_Y, 1);

+ } else if (movement == ANTICLOCKWISE) {

+ input_report_rel(roller_mouse->dev, REL_Y, -1);

+ } else if (movement == KEYPRESSED) {

+ input_report_key(roller_mouse->dev, BTN_LEFT, 1);

+ }

+ input_sync(roller_mouse->dev);

 return IRQ_HANDLED;

}

Trackpoints

A trackpoint is a pointing device that comes integrated with the PS/2-type keyboard on several laptops. This
device includes a joystick located among the keys and mouse buttons positioned under the spacebar. A
trackpoint essentially functions as a mouse, so you can operate it using the PS/2 mouse driver.

Unlike a regular mouse, a trackpoint offers more movement control. You can command the trackpoint controller
to change properties such as sensitivity and inertia. The kernel has a special driver,
drivers/input/mouse/trackpoint.c, to create and manage associated sysfs nodes. For the full set of track point
configuration options, look under /sys/devices/platform/i8042/serioX/serioY/.

Touchpads

A touchpad is a mouse-like pointing device commonly found on laptops. Unlike conventional mice, a touchpad
does not have moving parts. It can generate mouse-compatible relative coordinates but is usually used by
operating systems in a more powerful mode that produces absolute coordinates. The communication protocol
used in absolute mode is similar to the PS/2 mouse protocol, but not compatible with it.

The basic PS/2 mouse driver is capable of supporting devices that conform to different variations of the bare
PS/2 mouse protocol. You may add support for a new mouse protocol to the base driver by supplying a protocol
driver via the psmouse structure. If your laptop uses the Synaptics touchpad in absolute mode, for example, the

base PS/2 mouse driver uses the services of a Synaptics protocol driver to interpret the streaming data. For an
end-to-end understanding of how the Synaptics protocol works in tandem with the base PS/2 driver, look at the
following four code regions collected in Listing 7.4:

The PS/2 mouse driver, drivers/input/mouse/psmouse-base.c, instantiates a psmouse_protocol structure
with information regarding supported mouse protocols (including the Synaptics touchpad protocol).

The psmouse structure, defined in drivers/input/mouse/psmouse.h, ties various PS/2 protocols together.

synaptics_init() populates the psmouse structure with the address of associated protocol functions.

The protocol handler function synaptics_process_byte(), populated in synaptics_init(), gets called

from interrupt context when serio senses mouse movement. If you unfold synaptics_process_byte(),

you will see touchpad movements being reported to user applications via mousedev.

Listing 7.4. PS/2 Mouse Protocol Driver for the Synaptics Touchpad

Code View:
drivers/input/mouse/psmouse-base.c:

/* List of supported PS/2 mouse protocols */

static struct psmouse_protocol psmouse_protocols[] = {

 {

 .type = PSMOUSE_PS2, /* The bare PS/2 handler */

 .name = "PS/2",

 .alias = "bare",

 .maxproto = 1,

 .detect = ps2bare_detect,

 },

 /* ... */

 {

 .type = PSMOUSE_SYNAPTICS, /* Synaptics TouchPad Protocol */

 .name = "SynPS/2",

 .alias = "synaptics",

 .detect = synaptics_detect, /* Is the protocol detected? */

 .init = synaptics_init, /* Initialize Protocol Handler */

 },

 /* ... */

}

drivers/input/mouse/psmouse.h:

/* The structure that ties various mouse protocols together */

struct psmouse {

 struct input_dev *dev; /* The input device */

 /* ... */

 /* Protocol Methods */

 psmouse_ret_t (*protocol_handler)

 (struct psmouse *psmouse, struct pt_regs *regs);

 void (*set_rate)(struct psmouse *psmouse, unsigned int rate);

 void (*set_resolution)

 (struct psmouse *psmouse, unsigned int resolution);

 int (*reconnect)(struct psmouse *psmouse);

 void (*disconnect)(struct psmouse *psmouse);

 /* ... */

};

drivers/input/mouse/synaptics.c:

/* init() method of the Synaptics protocol */

int synaptics_init(struct psmouse *psmouse)

{

 struct synaptics_data *priv;

 psmouse->private = priv = kmalloc(sizeof(struct synaptics_data),

 GFP_KERNEL);

 /* ... */

 /* This is called in interrupt context when mouse

 movement is sensed */

 psmouse->protocol_handler = synaptics_process_byte;

 /* More protocol methods */

 psmouse->set_rate = synaptics_set_rate;

 psmouse->disconnect = synaptics_disconnect;

 psmouse->reconnect = synaptics_reconnect;

 /* ... */

}

drivers/input/mouse/synaptics.c:

/* If you unfold synaptics_process_byte() and look at

 synaptics_process_packet(), you can see the input

 events being reported to user applications via mousedev */

static void synaptics_process_packet(struct psmouse *psmouse)

{

 /* ... */

 if (hw.z > 0) {

 /* Absolute X Coordinate */

 input_report_abs(dev, ABS_X, hw.x);

 /* Absolute Y Coordinate */

 input_report_abs(dev, ABS_Y,

 YMAX_NOMINAL + YMIN_NOMINAL - hw.y);

 }

 /* Absolute Z Coordinate */

 input_report_abs(dev, ABS_PRESSURE, hw.z);

 /* ... */

 /* Left TouchPad button */

 input_report_key(dev, BTN_LEFT, hw.left);

 /* Right TouchPad button */

 input_report_key(dev, BTN_RIGHT, hw.right);

 /* ... */

}

USB and Bluetooth Mice

USB mice are handled by the same input driver (usbhid) that drives USB keyboards. Similarly, the hidp driver
that implements support for Bluetooth keyboards also takes care of Bluetooth mice.

As you would expect, USB and Bluetooth mice drivers channel device data through mousedev.

Touch Controllers

In Chapter 6, we implemented a device driver for a serial touch controller in the form of a line discipline called
N_TCH. The input subsystem offers a better and easier way to implement that driver. Refashion the finite state

machine in N_TCH as an input device driver with the following changes:

Serio offers a line discipline called serport for accessing devices connected to the serial port. Use serport's
services to talk to the touch controller.

1.

Instead of passing coordinate information to the tty layer, generate input reports via evdev as you did in
Listing 7.2 for the virtual mouse.

2.

With this, the touch screen is accessible to user space via /dev/input/eventX. The actual driver implementation
is left as an exercise.

An example of a touch controller that does not interface via the serial port is the Analog Devices ADS7846 chip,
which communicates over a Serial Peripheral Interface (SPI). The driver for this device uses the services of the
SPI core rather than serio. The section "The Serial Peripheral Interface Bus" in Chapter 8, "The Inter-Integrated
Circuit Protocol," discusses SPI. Like most touch drivers, the ADS7846 driver uses the evdev interface to
dispatch touch information to user applications.

Some touch controllers interface over USB. An example is the 3M USB touch controller, driven by
drivers/input/touchscreen/usbtouchscreen.c.

Many PDAs have four-wire resistive touch panels superimposed on their LCDs. The X and Y plates of the
panel (two wires for either axes) connect to an analog-to-digital converter (ADC), which provides a
digital readout of the analog voltage difference arising out of touching the screen. An input driver collects
the coordinates from the ADC and dispatches it to user space.

Different instances of the same touch panel may produce slightly different coordinate ranges (maximum values
in the X and Y directions) due to the nuances of manufacturing processes. To insulate applications from this
variation, touch screens are calibrated prior to use. Calibration is usually initiated by the GUI by displaying
cross-marks at screen boundaries and other vantage points, and requesting the user to touch those points. The
generated coordinates are programmed back into the touch controller using appropriate commands if it
supports self-calibration, or used to scale the coordinate stream in software otherwise.

The input subsystem also contains an event driver called tsdev that generates coordinate information according
to the Compaq touch-screen protocol. If your system reports touch events via tsdev, applications that
understand this protocol can elicit touch input from /dev/input/tsX. This driver is, however, scheduled for
removal from the mainline kernel in favor of the user space tslib library. Documentation/feature-removal-
schedule.txt lists features that are going away from the kernel source tree.

Accelerometers

An accelerometer measures acceleration. Several IBM/Lenovo laptops have an accelerometer that detects
sudden movement. The generated information is used to protect the hard disk from damage using a mechanism
called Hard Drive Active Protection System (HDAPS), analogous to the way a car airbag shields a passenger
from injury. The HDAPS driver is implemented as a platform driver that registers with the input subsystem. It
uses evdev to stream the X and Y components of the detected acceleration. Applications can read acceleration
events via /dev/input/eventX to detect conditions, such as shock and vibe, and perform a defensive action, such
as parking the hard drive's head. The following command spews output if you move the laptop (assume that
event3 is assigned to HDAPS):

bash> od –x /dev/input/event3

0000000 a94d 4599 1f19 0007 0003 0000 ffed ffff

...

The accelerometer also provides information such as temperature, keyboard activity, and mouse activity, all of
which can be gleaned via files in /sys/devices/platform/hdaps/. Because of this, the HDAPS driver is part of the
hardware monitoring (hwmon) subsystem in the kernel sources. We talk about hardware monitoring in the
section "Hardware Monitoring with LM-Sensors" in the next chapter.

Output Events

Some input device drivers also handle output events. For example, the keyboard driver can glow the CAPSLOCK

LED, and the PC speaker driver can sound a beep. Let's zoom in on the latter. During initialization, the speaker
driver declares its output capability by setting appropriate evbits and registering a callback routine to handle the
output event:

Code View:
drivers/input/misc/pcspkr.c:

static int __devinit pcspkr_probe(struct platform_device *dev)

{
 /* ... */

 /* Capability Bits */

 pcspkr_dev->evbit[0] = BIT(EV_SND);

 pcspkr_dev->sndbit[0] = BIT(SND_BELL) | BIT(SND_TONE);

 /* The Callback routine */

 pcspkr_dev->event = pcspkr_event;

 err = input_register_device(pcspkr_dev);

 /* ... */
}

/* The callback routine */
static int pcspkr_event(struct input_dev *dev, unsigned int type,

 unsigned int code, int value)
{

 /* ... */

 /* I/O programming to sound a beep */

 outb_p(inb_p(0x61) | 3, 0x61);
 /* set command for counter 2, 2 byte write */

 outb_p(0xB6, 0x43);
 /* select desired HZ */

 outb_p(count & 0xff, 0x42);
 outb((count >> 8) & 0xff, 0x42);

 /* ... */
}

To sound the beeper, the keyboard event driver generates a sound event (EV_SND) as follows:

input_event(handle->dev, EV_SND, /* Type */

 SND_TONE, /* Code */

 hz /* Value */);

This triggers execution of the callback routine, pcspkr_event(), and you hear the beep.

Debugging

You can use the evbug module as a debugging aid if you're developing an input driver. It dumps the (type,
code, value) tuple (see struct input_event defined previously) corresponding to events generated by the
input subsystem. Figure 7.4 contains data captured by evbug while operating some input devices:

Figure 7.4. Evbug output.

Code View:
/* Touchpad Movement */

evbug.c Event. Dev: isa0060/serio1/input0: Type: 3, Code: 28, Value: 0

evbug.c Event. Dev: isa0060/serio1/input0: Type: 1, Code: 325, Value: 0

evbug.c Event. Dev: isa0060/serio1/input0: Type: 0, Code: 0, Value: 0

/* Trackpoint Movement */

evbug.c Event. Dev: synaptics-pt/serio0/input0: Type: 2, Code: 0, Value: -1

evbug.c Event. Dev: synaptics-pt/serio0/input0: Type: 2, Code: 1, Value: -2

evbug.c Event. Dev: synaptics-pt/serio0/input0: Type: 0, Code: 0, Value: 0

/* USB Mouse Movement */

evbug.c Event. Dev: usb-0000:00:1d.1-2/input0: Type: 2, Code: 1, Value: -1

evbug.c Event. Dev: usb-0000:00:1d.1-2/input0: Type: 0, Code: 0, Value: 0

evbug.c Event. Dev: usb-0000:00:1d.1-2/input0: Type: 2, Code: 0, Value: 1

evbug.c Event. Dev: usb-0000:00:1d.1-2/input0: Type: 0, Code: 0, Value: 0

/* PS/2 Keyboard keypress 'a' */

evbug.c Event. Dev: isa0060/serio0/input0: Type: 4, Code: 4, Value: 30

evbug.c Event. Dev: isa0060/serio0/input0: Type: 1, Code: 30, Value: 0

evbug.c Event. Dev: isa0060/serio0/input0: Type: 0, Code: 0, Value: 0

/* USB keyboard keypress 'a' */

evbug.c Event. Dev: usb-0000:00:1d.1-1/input0: Type: 1, Code: 30, Value: 1

evbug.c Event. Dev: usb-0000:00:1d.1-1/input0: Type: 0, Code: 0, Value: 0

evbug.c Event. Dev: usb-0000:00:1d.1-2/input0: Type: 1, Code: 30, Value: 0

evbug.c Event. Dev: usb-0000:00:1d.1-2/input0: Type: 0, Code: 0, Value: 0

To make sense of the dump in Figure 7.4, remember that touchpads generate absolute coordinates (EV_ABS) or

event type 0x03, trackpoints produce relative coordinates (EV_REL) or event type 0x02, and keyboards emit key
events (EV_KEY) or event type 0x01. Event type 0x0 corresponds to an invocation of input_sync(), which does

the following:

input_event(dev, EV_SYN, SYN_REPORT, 0);

This translates to a (type, code, value) tuple of (0x0, 0x0, 0x0) and completes each input event.

Looking at the Sources

Most input event drivers are present in the drivers/input/ directory. The keyboard event driver, however, lives in
drivers/char/keyboard.c, because it's connected to virtual terminals and not to device nodes under /dev/input/.

You can find input device drivers in several places. Drivers for legacy keyboards, mice, and joysticks, reside in
separate subdirectories under drivers/input/. Bluetooth input drivers live in net/bluetooth/hidp/. You can also
find input drivers in regions such as drivers/hwmon/ and drivers/media/video/. Event types, codes, and values,
are defined in include/linux/input.h.

The serio subsystem stays in drivers/input/serio/. Sources for the serport line discipline is in
drivers/input/serio/serport.c. Documentation/input/ contains more details on different input interfaces.

Table 7.1 summarizes the main data structures used in this chapter and their location inside the source tree.
Table 7.2 lists the main kernel programming interfaces that you used in this chapter along with the location of
their definitions.

Table 7.1. Summary of Data Structures

Data Structure Location Description

input_event include/linux/input.h Each event packet produced by
evdev has this format.

input_dev include/linux/input.h Representation of an input
device.

input_handler include/linux/serial_core.h Contains the entry points
supported by an event driver.

psmouse_protocol drivers/input/mouse/psmouse-base.c Information about a supported
PS/2 mouse protocol driver.

psmouse drivers/input/mouse/psmouse.h Methods supported by a PS/2
mouse driver.

Table 7.2. Summary of Kernel Programming Interfaces

Kernel Interface Location Description

input_register_device() drivers/input/input.c Registers a device with the input
core

input_unregister_device() drivers/input/input.c Removes a device from the input
core

input_report_rel() include/linux/input.h Generates a relative movement
in a specified direction

input_report_abs() include/linux/input.h Generates an absolute
movement in a specified
direction

input_report_key() include/linux/input.h Generates a key or a button
press

Kernel Interface Location Description

input_sync() include/linux/input.h Indicates that the input
subsystem can collect previously
generated events into an evdev
packet and send it to user space
via /dev/input/inputX

input_register_handler() drivers/input/input.c Registers a custom event driver

sysfs_create_group() fs/sysfs/group.c Creates a sysfs node group with
specified attributes

sysfs_remove_group() fs/sysfs/group.c Removes a sysfs group created
using sysfs_create_group()

tty_insert_flip_char() include/linux/tty_flip.h Sends a character to the line
discipline layer

platform_device_register_simple() drivers/base/platform.c Creates a simple platform device

platform_device_unregister() drivers/base/platform.c Unregisters a platform device

input_sync() include/linux/input.h Indicates that the input
subsystem can collect previously
generated events into an evdev
packet and send it to user space
via /dev/input/inputX

input_register_handler() drivers/input/input.c Registers a custom event driver

sysfs_create_group() fs/sysfs/group.c Creates a sysfs node group with
specified attributes

sysfs_remove_group() fs/sysfs/group.c Removes a sysfs group created
using sysfs_create_group()

tty_insert_flip_char() include/linux/tty_flip.h Sends a character to the line
discipline layer

platform_device_register_simple() drivers/base/platform.c Creates a simple platform device

platform_device_unregister() drivers/base/platform.c Unregisters a platform device

Chapter 8. The Inter-Integrated Circuit Protocol

In This Chapter

What's I2C/SMBus?

234

I2C Core

235

Bus Transactions

237

Device Example: EEPROM
238

Device Example: Real Time Clock

247

I2C-dev
251

Hardware Monitoring Using LM-
Sensors

251

The Serial Peripheral Interface Bus

251

The 1-Wire Bus
254

Debugging

254

Looking at the Sources
255

The Inter-Integrated Circuit, or I2C (pronounced I squared C) bus and its subset, the System
Management Bus (SMBus), are synchronous serial interfaces that are ubiquitous on desktops and
embedded devices. Let's find out how the kernel supports I2C/SMBus host adapters and client
devices by implementing example drivers to access an I2C EEPROM and an I2C RTC. And before
wrapping up this chapter, let's also peek at two other serial interfaces supported by the kernel:
the Serial Peripheral Interface or SPI (often pronounced spy) bus and the 1-wire bus.

All these serial interfaces (I2C, SMBus, SPI, and 1-wire) share two common characteristics:

The amount of data exchanged is small.

The required data transfer rate is low.

What's I2C/SMBus?

I2C is a serial bus that is widely used in desktops and laptops to interface the processor with devices such as
EEPROMs, audio codecs, and specialized chips that monitor parameters such as temperature and power-supply
voltage. In addition, I2C is widely used in embedded devices to communicate with RTCs, smart battery circuits,
multiplexers, port expanders, optical transceivers, and other similar devices. Because I2C is supported by a
large number of microcontrollers, there are loads of cheap I2C devices available in the market today.

I2C and SMBus are master-slave protocols where communication takes place between a host adapter (or host
controller) and client devices (or slaves). The host adapter is usually part of the South Bridge chipset on
desktops and part of the microcontroller on embedded devices. Figure 8.1 shows an example I2C bus on PC-
compatible hardware.

Figure 8.1. I2C/SMBus on PC-compatible hardware.

I2C and its subset SMBus are 2-wire interfaces originally developed by Philips and Intel, respectively. The two
wires are clock and bidirectional data, and the corresponding lines are called Serial CLock (SCL) and Serial DAta
(SDA). Because the I2C bus needs only a pair of wires, it consumes less space on the circuit board. However,
the supported bandwidths are also low. I2C allows up to 100Kbps in the standard mode and 400Kbps in a fast
mode. (SMBus supports only up to 100Kbps, however.) The bus is thus suitable only for slow peripherals. Even
though I2C supports bidirectional exchange, the communication is half duplex because there is only a single
data wire.

I2C and SMBus devices own 7-bit addresses. The protocol also supports 10-bit addresses, but many devices
respond only to 7-bit addressing, which yields a maximum of 127 devices on the bus. Due to the master-slave
nature of the protocol, device addresses are also known as slave addresses.

Chapter 8. The Inter-Integrated Circuit Protocol

In This Chapter

What's I2C/SMBus?

234

I2C Core

235

Bus Transactions

237

Device Example: EEPROM
238

Device Example: Real Time Clock

247

I2C-dev
251

Hardware Monitoring Using LM-
Sensors

251

The Serial Peripheral Interface Bus

251

The 1-Wire Bus
254

Debugging

254

Looking at the Sources
255

The Inter-Integrated Circuit, or I2C (pronounced I squared C) bus and its subset, the System
Management Bus (SMBus), are synchronous serial interfaces that are ubiquitous on desktops and
embedded devices. Let's find out how the kernel supports I2C/SMBus host adapters and client
devices by implementing example drivers to access an I2C EEPROM and an I2C RTC. And before
wrapping up this chapter, let's also peek at two other serial interfaces supported by the kernel:
the Serial Peripheral Interface or SPI (often pronounced spy) bus and the 1-wire bus.

All these serial interfaces (I2C, SMBus, SPI, and 1-wire) share two common characteristics:

The amount of data exchanged is small.

The required data transfer rate is low.

What's I2C/SMBus?

I2C is a serial bus that is widely used in desktops and laptops to interface the processor with devices such as
EEPROMs, audio codecs, and specialized chips that monitor parameters such as temperature and power-supply
voltage. In addition, I2C is widely used in embedded devices to communicate with RTCs, smart battery circuits,
multiplexers, port expanders, optical transceivers, and other similar devices. Because I2C is supported by a
large number of microcontrollers, there are loads of cheap I2C devices available in the market today.

I2C and SMBus are master-slave protocols where communication takes place between a host adapter (or host
controller) and client devices (or slaves). The host adapter is usually part of the South Bridge chipset on
desktops and part of the microcontroller on embedded devices. Figure 8.1 shows an example I2C bus on PC-
compatible hardware.

Figure 8.1. I2C/SMBus on PC-compatible hardware.

I2C and its subset SMBus are 2-wire interfaces originally developed by Philips and Intel, respectively. The two
wires are clock and bidirectional data, and the corresponding lines are called Serial CLock (SCL) and Serial DAta
(SDA). Because the I2C bus needs only a pair of wires, it consumes less space on the circuit board. However,
the supported bandwidths are also low. I2C allows up to 100Kbps in the standard mode and 400Kbps in a fast
mode. (SMBus supports only up to 100Kbps, however.) The bus is thus suitable only for slow peripherals. Even
though I2C supports bidirectional exchange, the communication is half duplex because there is only a single
data wire.

I2C and SMBus devices own 7-bit addresses. The protocol also supports 10-bit addresses, but many devices
respond only to 7-bit addressing, which yields a maximum of 127 devices on the bus. Due to the master-slave
nature of the protocol, device addresses are also known as slave addresses.

I2C Core

The I2C core is a code base consisting of routines and data structures available to host adapter drivers and
client drivers. Common code in the core makes the driver developer's job easier. The core also provides a level
of indirection that renders client drivers independent of the host adapter, allowing them to work unchanged
even if the client device is used on a board that has a different I2C host adapter. This philosophy of a core layer
and its attendant benefits is also relevant for many other device driver classes in the kernel, such as PCMCIA,
PCI, and USB.

In addition to the core, the kernel I2C infrastructure consists of the following:

Device drivers for I2C host adapters. They fall in the realm of bus drivers and usually consist of an adapter
driver and an algorithm driver. The former uses the latter to talk to the I2C bus.

Device drivers for I2C client devices.

i2c-dev, which allows the implementation of user mode I2C client drivers.

You are more likely to implement client drivers than adapter or algorithm drivers because there are a lot more
I2C devices than there are I2C host adapters. So, we will confine ourselves to client drivers in this chapter.

Figure 8.2 illustrates the Linux I2C subsystem. It shows I2C kernel modules talking to a host adapter and a
client device on an I2C bus.

Figure 8.2. The Linux I2C subsystem.

[View full size image]

Because SMBus is a subset of I2C, using only SMBus commands to talk to your device yields a driver that works
with both SMBus and I2C adapters. Table 8.1 lists the SMBus-compatible data transfer routines provided by the
I2C core.

Table 8.1. SMBus-Compatible Data Access Functions Provided by the I2C Core

Function Purpose

i2c_smbus_read_byte() Reads a single byte from the device without
specifying a location offset. Uses the same offset
as the previously issued command.

i2c_smbus_write_byte() Sends a single byte to the device at the same
memory offset as the previously issued
command.

i2c_smbus_write_quick() Sends a single bit to the device (in place of the
Rd/Wr bit shown in Listing 8.1).

i2c_smbus_read_byte_data() Reads a single byte from the device at a specified
offset.

i2c_smbus_write_byte_data() Sends a single byte to the device at a specified
offset.

i2c_smbus_read_word_data() Reads 2 bytes from the specified offset.

i2c_smbus_write_word_data() Sends 2 bytes to the specified offset.

Function Purpose

i2c_smbus_read_block_data() Reads a block of data from the specified offset.

i2c_smbus_write_block_data() Sends a block of data (<= 32 bytes) to the
specified offset.

i2c_smbus_read_block_data() Reads a block of data from the specified offset.

i2c_smbus_write_block_data() Sends a block of data (<= 32 bytes) to the
specified offset.

Bus Transactions

Before implementing an example driver, let's get a better understanding of the I2C protocol by peering at the
wires through a magnifying glass. Listing 8.1 shows a code snippet that talks to an I2C EEPROM and the
corresponding transactions that occur on the bus. The transactions were captured by connecting an I2C bus
analyzer while running the code snippet. The code uses user mode I2C functions. (We talk more about user
mode I2C programming in Chapter 19, "Drivers in User Space.")

Listing 8.1. Transactions on the I2C Bus

Code View:
/* ... */

/*

 * Connect to the EEPROM. 0x50 is the device address.

 * smbus_fp is a file pointer into the SMBus device.

 */

ioctl(smbus_fp, 0x50, slave);

/* Write a byte (0xAB) at memory offset 0 on the EEPROM */

i2c_smbus_write_byte_data(smbus_fp, 0, 0xAB);

/*

 * This is the corresponding transaction observed

 * on the bus after the write:

 * S 0x50 Wr [A] 0 [A] 0xAB [A] P

 *

 * S is the start bit, 0x50 is the 7-bit slave address (0101000b),

 * Wr is the write command (0b), A is the Accept bit (or

 * acknowledgment) received by the host from the slave, 0 is the

 * address offset on the slave device where the byte is to be

 * written, 0xAB is the data to be written, and P is the stop bit.

 * The data enclosed within [] is sent from the slave to the

 * host, while the rest of the bits are sent by the host to the

 * slave.

 */

/* Read a byte from offset 0 on the EEPROM */

res = i2c_smbus_read_byte_data(smbus_fp, 0);

/*

 * This is the corresponding transaction observed

 * on the bus after the read:

 * S 0x50 Wr [A] 0 [A] S 0x50 Rd [A] [0xAB] NA P

 *

 * The explanation of the bits is the same as before, except that

 * Rd stands for the Read command (1b), 0xAB is the data received

 * from the slave, and NA is the Reverse Accept bit (or the

 * acknowledgment sent by the host to the slave).

 */

Device Example: EEPROM

Our first example client device is an EEPROM sitting on an I2C bus, as shown in Figure 8.1. Almost all laptops
and desktops have such an EEPROM for storing BIOS configuration information. The example EEPROM has two
memory banks. The driver exports /dev interfaces corresponding to each bank: /dev/eep/0 and /dev/eep/1.
Applications operate on these nodes to exchange data with the EEPROM.

Each I2C/SMBus client device is assigned a slave address that functions as the device identifier. The EEPROM in
the example answers to two slave addresses, SLAVE_ADDR1 and SLAVE_ADDR2, one per bank.

The example driver uses I2C commands that are compatible with SMBus, so it works with both I2C and SMBus
EEPROMs.

Initializing

As is the case with all driver classes, I2C client drivers also own an init() entry point. Initialization entails
allocating data structures, registering the driver with the I2C core, and hooking up with sysfs and the Linux
device model. This is done in Listing 8.2.

Listing 8.2. Initializing the EEPROM Driver

Code View:
/* Driver entry points */

static struct file_operations eep_fops = {

 .owner = THIS_MODULE,

 .llseek = eep_llseek,

 .read = eep_read,

 .ioctl = eep_ioctl,

 .open = eep_open,

 .release = eep_release,

 .write = eep_write,

};

static dev_t dev_number; /* Allotted Device Number */

static struct class *eep_class; /* Device class */

/* Per-device client data structure for each

 * memory bank supported by the driver

 */

struct eep_bank {

 struct i2c_client *client; /* I2C client for this bank */

 unsigned int addr; /* Slave address of this bank */

 unsigned short current_pointer; /* File pointer */

 int bank_number; /* Actual memory bank number */

 /* ... */ /* Spinlocks, data cache for

 slow devices,.. */

};

#define NUM_BANKS 2 /* Two supported banks */

#define BANK_SIZE 2048 /* Size of each bank */

struct ee_bank *ee_bank_list; /* List of private data

 structures, one per bank */

/*

 * Device Initialization

 */

int __init

eep_init(void)

{

 int err, i;

 /* Allocate the per-device data structure, ee_bank */

 ee_bank_list = kmalloc(sizeof(struct ee_bank)*NUM_BANKS,

 GFP_KERNEL);

 memset(ee_bank_list, 0, sizeof(struct ee_bank)*NUM_BANKS);

 /* Register and create the /dev interfaces to access the EEPROM

 banks. Refer back to Chapter 5, "Character Drivers" for

 more details */

 if (alloc_chrdev_region(&dev_number, 0,

 NUM_BANKS, "eep") < 0) {

 printk(KERN_DEBUG "Can't register device\n");

 return -1;

 }

 eep_class = class_create(THIS_MODULE, DEVICE_NAME);

 for (i=0; i < NUM_BANKS;i++) {

 /* Connect the file operations with cdev */

 cdev_init(&ee_bank[i].cdev, &ee_fops);

 /* Connect the major/minor number to the cdev */

 if (cdev_add(&ee_bank[i].cdev, (dev_number + i), 1)) {

 printk("Bad kmalloc\n");

 return 1;

 }

 class_device_create(eep_class, NULL, (dev_number + i),

 NULL, "eeprom%d", i);

 }

 /* Inform the I2C core about our existence. See the section

 "Probing the Device" for the definition of eep_driver */

 err = i2c_add_driver(&eep_driver);

 if (err) {

 printk("Registering I2C driver failed, errno is %d\n", err);

 return err;

 }

 printk("EEPROM Driver Initialized.\n");

 return 0;

}

Listing 8.2 initiates creation of the device nodes, but to complete their production, add the following to an
appropriate rule file under /etc/udev/rules.d/:

KERNEL:"eeprom[0-1]*", NAME="eep/%n"

This creates /dev/eep/0 and /dev/eep/1 in response to reception of the corresponding uevents from the kernel.
A user mode program that needs to read from the nth memory bank can then operate on /dev/eep/n.

Listing 8.3 implements the open() method for the EEPROM driver. The kernel calls eep_open() when an
application opens /dev/eep/X. eep_open() stores the per-device data structure in a private area so that it's

directly accessible from the rest of the driver methods.

Listing 8.3. Opening the EEPROM Driver

 int

eep_open(struct inode *inode, struct file *file)

{

 /* The EEPROM bank to be opened */

 n = MINOR(file->f_dentry->d_inode->i_rdev);

 file->private_data = (struct ee_bank *)ee_bank_list[n];

 /* Initialize the fields in ee_bank_list[n] such as

 size, slave address, and the current file pointer */

 /* ... */

}

Probing the Device

The I2C client driver, in partnership with the host controller driver and the I2C core, attaches itself to a slave
device as follows:

During initialization, it registers a probe() method, which the I2C core invokes when an associated host

controller is detected. In Listing 8.2, eep_init() registered eep_probe() by invoking i2c_add_driver():

static struct i2c_driver eep_driver =

{
 .driver = {

 .name = "EEP", /* Name */
 },

 .id = I2C_DRIVERID_EEP, /* ID */

 .attach_adapter = eep_probe, /* Probe Method */
 .detach_client = eep_detach, /* Detach Method */

};

i2c_add_driver(&eep_driver); `

The driver identifier, I2C_DRIVERID_EEP, should be unique for the device and should be defined in

include/linux/i2c-id.h.

1.

When the core calls the driver's probe() method signifying the presence of a host adapter, it, in turn,

invokes i2c_probe() with arguments specifying the addresses of the slave devices that the driver is

responsible for and an associated attach() routine.

2.

Listing 8.4 implements eep_probe(), the probe() method of the EEPROM driver. normal_i2c specifies the

EEPROM bank addresses and is populated as part of the i2c_client_address_data structure. Additional

fields in this structure can be used to request finer addressing control. You can ask the I2C core to ignore
a range of addresses using the ignore field. Or you may use the probe field to specify (adapter, slave
address) pairs if you want to bind a slave address to a particular host adapter. This will be useful, for
example, if your processor supports two I2C host adapters, and you have an EEPROM on bus 1 and a
temperature sensor on bus 2, both answering to the same slave address.

2.

The host controller walks the bus looking for the slave devices specified in Step 2. To do this, it generates
a bus transaction such as S SLAVE_ADDR Wr, where S is the start bit, SLAVE_ADDR is the associated 7-bit

slave address as specified in the device's datasheet, and Wr is the write command, as described in the
section "Bus Transactions." If a working slave device exists on the bus, it'll respond by sending an
acknowledgment bit ([A]).

3.

If the host adapter detects a slave in Step 3, the I2C core invokes the attach() routine supplied via the

third argument to i2c_probe() in Step 2. For the EEPROM driver, this routine is eep_attach(), which
registers a per-device client data structure, as shown in Listing 8.5. If your device expects an initial
programming sequence (for example, registers on an I2C Digital Visual Interface transmitter chip have to
be initialized before the chip can start functioning), perform those operations in this routine.

4.

Listing 8.4. Probing the Presence of EEPROM Banks

#include <linux/i2c.h>

/* The EEPROM has two memory banks having addresses SLAVE_ADDR1

 * and SLAVE_ADDR2, respectively

 */

static unsigned short normal_i2c[] = {

 SLAVE_ADDR1, SLAVE_ADDR2, I2C_CLIENT_END

};

static struct i2c_client_address_data addr_data = {

 .normal_i2c = normal_i2c,

 .probe = ignore,

 .ignore = ignore,

 .forces = ignore,

};

static int

eep_probe(struct i2c_adapter *adapter)

{

 /* The callback function eep_attach(), is shown

 * in Listing 8.5

 */

 return i2c_probe(adapter, &addr_data, eep_attach);

}

Listing 8.5. Attaching a Client

int

eep_attach(struct i2c_adapter *adapter, int address, int kind)

{

 static struct i2c_client *eep_client;

 eep_client = kmalloc(sizeof(*eep_client), GFP_KERNEL);

 eep_client->driver = &eep_driver; /* Registered in Listing 8.2 */

 eep_client->addr = address; /* Detected Address */

 eep_client->adapter = adapter; /* Host Adapter */

 eep_client->flags = 0;

 strlcpy(eep_client->name, "eep", I2C_NAME_SIZE);

 /* Populate fields in the associated per-device data structure */

 /* ... */

 /* Attach */

 i2c_attach_client(new_client);

}

Checking Adapter Capabilities

Each host adapter might be limited by a set of constraints. An adapter might not support all the commands that
Table 8.1 contains. For example, it might allow the SMBus read_word command but not the read_block

command. A client driver has to check whether a command is supported by the adapter before using it.

The I2C core provides two functions to do this:

i2c_check_functionality() checks whether a particular function is supported.1.

i2c_get_functionality() returns a mask containing all supported functions.2.

See include/linux/i2c.h for the list of possible functionalities.

Accessing the Device

To read data from the EEPROM, first glean information about its invocation thread from the private data field
associated with the device node. Next, use SMBus-compatible data access routines provided by the I2C core
(Table 8.1 shows the available functions) to read the data. Finally, send the data to user space and increment
the internal file pointer so that the next read()/write() operation starts from where the last one ended. These
steps are performed by Listing 8.6. The listing omits sanity and error checks for convenience.

Listing 8.6. Reading from the EEPROM

Code View:
ssize_t

eep_read(struct file *file, char *buf,

 size_t count, loff_t *ppos)

{

 int i, transferred, ret, my_buf[BANK_SIZE];

 /* Get the private client data structure for this bank */

 struct ee_bank *my_bank =

 (struct ee_bank *)file->private_data;

 /* Check whether the smbus_read_word() functionality is

 supported */

 if (i2c_check_functionality(my_bank->client,

 I2C_FUNC_SMBUS_READ_WORD_DATA)) {

 /* Read the data */

 while (transferred < count) {

 ret = i2c_smbus_read_word_data(my_bank->client,

 my_bank->current_pointer+i);

 my_buf[i++] = (u8)(ret & 0xFF);

 my_buf[i++] = (u8)(ret >> 8);

 transferred += 2;

 }

 /* Copy data to user space and increment the internal

 file pointer. Sanity checks are omitted for simplicity */

 copy_to_user(buffer, (void *)my_buf, transferred);

 my_bank->current_pointer += transferred;

 }

 return transferred;

}

Writing to the device is done similarly, except that an i2c_smbus_write_XXX() function is used instead.

Some EEPROM chips have a Radio Frequency Identification (RFID) transmitter to wirelessly transmit
stored information. This is used to automate supply-chain processes such as inventory monitoring and
asset tracking. Such EEPROMs usually implement safeguards via an access protection bank that controls
access permissions to the data banks. In such cases, the driver has to wiggle corresponding bits in the
access protection bank before it can operate on the data banks.

To access the EEPROM banks from user space, develop applications that operate on /dev/eep/n. To dump the
contents of the EEPROM banks, use od:

bash> od –a /dev/eep/0

0000000 S E R # dc4 ff soh R P nul nul nul nul nul nul nul

0000020 @ 1 3 R 1 1 5 3 Z J 1 V 1 L 4 6

0000040 5 1 0 H sp 1 S 2 8 8 8 7 J U 9 9

0000060 H 0 0 6 6 nul nul nul bs 3 8 L 5 0 0 3

0000100 Z J 1 N U B 4 6 8 6 V 7 nul nul nul nul

0000120 nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul
*

0000400

As an exercise, take a stab at modifying the EEPROM driver to create /sys interfaces to the EEPROM banks
rather than the /dev interfaces. You may reuse code from Listing 5.7, "Using Sysfs to Control the Parallel LED
Board," in Chapter 5 to help you in this endeavor.

More Methods

To obtain a fully functional driver, you need to add a few remaining entry points. These are hardly different from
those of normal character drivers discussed in Chapter 5, so the code listings are not shown:

To support the lseek() system call that assigns a new value to the internal file pointer, implement the

llseek() driver method. The internal file pointer stores state information about EEPROM access.

To verify data integrity, the EEPROM driver can support an ioctl() method to adjust and verify

checksums of stored data.

The poll() and fsync() methods are not relevant for the EEPROM.

If you choose to compile the driver as a module, you have to supply an exit() method to unregister the
device and clean up client-specific data structures. Unregistering the driver from the I2C core is a one-
liner:

i2c_del_driver(&eep_driver);

Device Example: Real Time Clock

Let's now take the example of an RTC chip connected to an embedded controller over the I2C bus. The
connection diagram is shown in Figure 8.3.

Figure 8.3. An I2C RTC on an embedded system.

Assume that the I2C slave address of the RTC is 0x60 and that its register space is organized as shown in Table

8.2.

Table 8.2. Register Layout on the I2C RTC

Register Name Description Offset

RTC_HOUR_REG Hour counter 0x0

RTC_MINUTE_REG Minute counter 0x1

RTC_SECOND_REG Second counter 0x2

RTC_STATUS_REG Flags and interrupt status 0x3

RTC_CONTROL_REG Enable/disable RTC 0x4

Let's base our driver for this chip on the EEPROM driver discussed previously. We will take the I2C client driver
architecture, slave registration, and I2C core functions for granted and implement only the code that
communicates with the RTC.

When the I2C core detects a device having the RTC's slave address (0x60) on the I2C bus, it invokes

myrtc_attach(). The invocation train is similar to that for eep_attach() in Listing 8.5. Assume that you have

to perform the following chip initializations in myrtc_attach():

Clear the RTC status register (RTC_STATUS_REG).1.

2.

1.

Start the RTC (if it is not already running) by turning on appropriate bits in the RTC control register
(RTC_CONTROL_REG).

2.

To do this, let's build an i2c_msg and generate I2C transactions on the bus using i2c_transfer(). This transfer
mechanism is exclusive to I2C and is not SMBus-compatible. To write to the two RTC registers referred to
previously, you have to build two i2c_msg messages. The first message sets the register offset. In our case, it's
3, the offset of RTC_STATUS_REG. The second message carries the desired number of bytes to the specified

offset. In this context, it ferries 2 bytes, one each to RTC_STATUS_REG and RTC_CONTROL_REG.

Code View:
#include <linux/i2c.h> /* For struct i2c_msg */

int
myrtc_attach(struct i2c_adapter *adapter, int addr, int kind)

{

 u8 buf[2];
 int offset = RTC_STATUS_REG; /* Status register lives here */

 struct i2c_msg rtc_msg[2];

 /* Write 1 byte of offset information to the RTC */

 rtc_msg[0].addr = addr; /* Slave address. In our case,
 this is 0x60 */
 rtc_msg[0].flags = I2C_M_WR; /* Write Command */

 rtc_msg[0].buf = &offset; /* Register offset for
 the next transaction */

 rtc_msg[0].len = 1; /* Offset is 1 byte long */

 /* Write 2 bytes of data (the contents of the status and
 control registers) at the offset programmed by the previous

 i2c_msg */
 rtc_msg[1].addr = addr; /* Slave address */
 rtc_msg[1].flags = I2C_M_WR; /* Write command */

 rtc_msg[1].buf = &buf[0]; /* Data to be written to control
 and status registers */

 rtc_msg[1].len = 2; /* Two register values */
 buf[0] = 0; /* Zero out the status register */

 buf[1] |= ENABLE_RTC; /* Turn on control register bits
 that start the RTC */

 /* Generate bus transactions corresponding to the two messages */

 i2c_transfer(adapter, rtc_msg, 2);

 /* ... */

 printk("My RTC Initialized\n");

}

Now that the RTC is initialized and ticking, you can glean the current time by reading the contents of
RTC_HOUR_REG, RTC_MINUTE_REG, and RTC_SECOND_REG. This is done as follows:

Code View:
#include <linux/rtc.h> /* For struct rtc_time */

int

myrtc_gettime(struct i2c_client *client, struct rtc_time *r_t)

{

 u8 buf[3]; /* Space to carry hour/minute/second */
 int offset = 0; /* Time-keeping registers start at offset 0 */

 struct i2c_msg rtc_msg[2];

 /* Write 1 byte of offset information to the RTC */

 rtc_msg[0].addr = addr; /* Slave address */

 rtc_msg[0].flags = 0; /* Write Command */
 rtc_msg[0].buf = &offset; /* Register offset for

 the next transaction */

 rtc_msg[0].len = 1; /* Offset is 1 byte long */

 /* Read current time by getting 3 bytes of data from offset 0
 (i.e., from RTC_HOUR_REG, RTC_MINUTE_REG, and RTC_SECOND_REG) */

 rtc_msg[1].addr = addr; /* Slave address */

 rtc_msg[1].flags = I2C_M_RD; /* Read command */
 rtc_msg[1].buf = &buf[0]; /* Data to be read from hour, minute

 and second registers */

 rtc_msg[1].len = 3; /* Three registers to read */

 /* Generate bus transactions corresponding to the above
 two messages */
 i2c_transfer(adapter, rtc_msg, 2);

 /* Read the time */
 r_t->tm_hour = BCD2BIN(buf[0]); /* Hour */

 r_t->tm_min = BCD2BIN(buf[1]); /* Minute */
 r_t->tm_sec = BCD2BIN(buf[2]); /* Second */

 return(0);
}

myrtc_gettime() implements the bus-specific bottom layer of the RTC driver. The top layer of the RTC driver
should conform to the kernel RTC API, as discussed in the section "RTC Subsystem" in Chapter 5. The
advantage of this scheme is that applications can run unchanged irrespective of whether your RTC is internal to
the South Bridge of a PC or externally connected to an embedded controller as in this example.

RTCs usually store time in Binary Coded Decimal (BCD), where each nibble represents a number between 0 and
9 (rather than between 0 and 15). The kernel provides a macro called BCD2BIN() to convert from BCD encoding

to decimal and BIN2BCD() to perform the reverse operation. myrtc_gettime() uses the former while reading

time from RTC registers.

Look at drivers/rtc/rtc-ds1307.c for an example RTC driver that handles the -Dallas/Maxim DS13XX series of I2C
RTC chips.

Being a 2-wire bus, the I2C bus does not have an interrupt request line that slave devices can assert, but some
I2C host adapters have the capability to interrupt the processor to signal completion of data-transfer requests.
This interrupt-driven operation is, however, transparent to I2C client drivers and is hidden inside the service
routines offered by the I2C core. Assuming that the I2C host controller that is part of the embedded SoC in
Figure 8.3 has the capability to interrupt the processor, the invocation of i2c_transfer() in myrtc_attach()

might be doing the following under the hood:

Build a transaction corresponding to rtc_msg[0] and write it to the bus using the services of the host

controller device driver.

Wait until the host controller asserts a transmit complete interrupt signaling that rtc_msg[0] is now on
the wire.

Inside the interrupt handler, look at the I2C host controller status register to see whether an
acknowledgment has been received from the RTC slave.

Return error if the host controller status and control registers indicate that all's not well.

Repeat the same for rtc_msg[1].

I2C-dev

Sometimes, when you need to enable support for a large number of slow I2C devices, it makes sense to drive
them wholly from user space. The I2C layer supports a driver called i2c-dev to achieve this. Fast forward to the
section "User Mode I2C" in Chapter 19 for an example that implements a user mode I2C driver using i2c-dev.

Hardware Monitoring Using LM-Sensors

The LM-Sensors project, hosted at www.lm-sensors.org, brings hardware-monitoring capabilities to Linux.
Several computer systems use sensor chips to monitor parameters such as temperature, power supply voltage,
and fan speed. Periodically tracking these parameters can be critical. A blown CPU fan can manifest in the form
of strange and random software problems. Imagine the consequences if the system is a medical grade device!

LM-Sensors comes to the rescue with device drivers for many sensor chips, a utility called sensors to generate a
health report, and a script called sensors-detect to scan your system and help you generate appropriate
configuration files.

Most chips that offer hardware monitoring interface to the CPU via I2C/SMBus. Device drivers for such devices
are normal I2C client drivers but reside in the drivers/hwmon/ directory, rather than drivers/i2c/chips/. An
example is National Semiconductor's LM87 chip, which can monitor multiple voltages, temperatures, and fans.
Have a look at drivers/hwmon/lm87.c for its driver implementation. I2C driver IDs from 1000 to 1999 are
reserved for sensor chips (look at include/linux/i2c-id.h).

Several sensor chips interface to the CPU via the ISA/LPC bus rather than I2C/SMBus. Others emit analog output
that reaches the CPU through an Analog-to-Digital Converter (ADC). Drivers for such chips share the
drivers/hwmon/ directory with I2C sensor drivers. An example of a non-I2C sensor driver is
drivers/hwmon/hdaps.c, the driver for the accelerometer present in several IBM/Lenovo laptops that we
discussed in Chapter 7, "Input Drivers." Another example of a non-I2C sensor is the Winbond 83627HF Super
I/O chip, which is driven by drivers/hwmon/w83627hf.c.

The Serial Peripheral Interface Bus

The Serial Peripheral Interface (SPI) bus is a serial master-slave interface similar to I2C and comes built in on
many microcontrollers. It uses four wires (compared to two on I2C): Serial CLocK (SCLK), Chip Select (CS),
Master Out Slave In (MOSI), and Master In Slave Out (MISO). MOSI is used for shifting data into the slave
device, and MISO is used for shifting data out of the slave device. Because the SPI bus has dedicated wires for
transmitting and receiving data, it can operate in full-duplex mode, unlike the I2C bus. The typical speed of
operation of SPI is in the low-megahertz range, unlike the mid-kilohertz range on I2C, so the former yields
higher throughput.

SPI peripherals available in the market today include Radio Frequency (RF) chips, smart card interfaces,
EEPROMs, RTCs, touch sensors, and ADCs.

The kernel provides a core API for exchanging messages over the SPI bus. A typical SPI client driver does the
following:

Registers probe() and remove() methods with the SPI core. Optionally registers suspend() and resume()

methods:

 #include <linux/spi/spi.h>

 static struct spi_driver myspi_driver = {
 .driver = {

 .name = "myspi",
 .bus = &spi_bus_type,
 .owner = THIS_MODULE,

 },
 .probe = myspidevice_probe,

 .remove = __devexit_p(myspidevice_remove),
 }

 spi_register_driver(&myspi_driver);

The SPI core creates an spi_device structure corresponding to this device and passes this as an
argument when it invokes the registered driver methods.

1.

Exchanges messages with the SPI device using access functions such as spi_sync() and spi_async().

The former waits for the operation to complete, whereas the latter asynchronously triggers invocation of a
registered callback routine when message transfer completes. These data access routines are invoked
from suitable places such as the SPI interrupt handler, a sysfs method, or a timer handler. The following
code snippet illustrates SPI message submission:

#include <linux/spi/spi.h>

struct spi_device *spi; /* Representation of a

 SPI device */
struct spi_transfer xfer; /* Contains transfer buffer

 details */

struct spi_message sm; /* Sequence of spi_transfer

 segments */
u8 *command_buffer; /* Data to be transferred */

2.

int len; /* Length of data to be

 transferred */

spi_message_init(&sm); /* Initialize spi_message */

xfer.tx_buf = command_buffer; /* Device-specific data */

xfer.len = len; /* Data length */
spi_message_add_tail(&xfer, &sm); /* Add the message */

spi_sync(spi, &sm); /* Blocking transfer request */

For an example SPI device, consider the ADS7846 touch-screen controller that we briefly discussed in Chapter
7. This driver does the following:

Registers probe(), remove(), suspend(), and resume() methods with the SPI core using

spi_register_driver().

1.

The probe() method registers the driver with the input subsystem using input_register_device() and
requests an IRQ using request_irq().

2.

The driver gathers touch coordinates from its interrupt handler using spi_async(). This function triggers

invocation of a registered callback routine when the SPI message transfer completes.

3.

The callback function in turn, reports touch coordinates and clicks via the input event interface,
/dev/input/eventX, using input_report_abs() and input_report_key(), as discussed in Chapter 7.
Applications such as X Windows and gpm seamlessly work with the event interface and respond to touch
input.

4.

A driver that wiggles I/O pins to get them to talk a protocol is called a bit-banging driver. For an example SPI
bit-banging driver, look at drivers/spi/spi_butterfly.c, which is a driver to talk to DataFlash chips that are
present on Butterfly boards built by Atmel around their AVR processor family. For this, connect your host
system's parallel port to the AVR Butterfly using a specially made dongle and use the spi_butterfly driver do the
bit banging. Look at Documentation/spi/butterfly for a detailed description of this driver.

Currently there is no support for user space SPI drivers à la i2c-dev. You only have the option of writing a kernel
driver to talk to your SPI device.

In the embedded world, you may come across solutions where the processor uses a companion chip that
integrates various functions. An example is the Freescale MC13783 Power Management and Audio
Component (PMAC) used in tandem with the ARM9-based i.MX27 controller. The PMAC integrates an
RTC, a battery charger, a touch-screen interface, an ADC module, and an audio codec. The processor
and the PMAC communicate over SPI. The SPI bus does not contain an interrupt line, so the PMAC has
the capability to externally interrupt the processor using a GPIO pin configured for this purpose.

The 1-Wire Bus

The 1-wire protocol developed by Dallas/Maxim uses a 1-wire (or w1) bus that carries both power and signal;
the return ground path is provided using some other means. It provides a simple way to interface with slow
devices by reducing space, cost, and complexity. An example device that works using this protocol is the ibutton
(www.ibutton.com), which is used for sensing temperature, carrying data, or holding unique IDs.

Another w1 chip that interfaces through a single port pin of an embedded controller is the DS2433 4kb 1-wire
EEPROM from Dallas/Maxim. The driver for this chip, drivers/w1/slaves/w1_ds2433.c, exports access to the
EEPROM via a sysfs node.

The main data structures associated with a w1 device driver are w1_family and w1_family_ops, both defined in

w1_family.h.

Debugging

To collect I2C-specific debugging messages, turn on a relevant combination of I2C Core debugging messages,
I2C Algorithm debugging messages, I2C Bus debugging messages, and I2C Chip debugging messages under
Device Drivers I2C Support in the kernel configuration menu. Similarly, for SPI debugging, turn on Debug

Support for SPI drivers under Device Drivers SPI Support

To understand the flow of I2C packets on the bus, connect an I2C bus analyzer to your board as we did while
running Listing 8.1. The lm-sensors package contains a tool called i2cdump that dumps register contents of
devices on the I2C bus.

There is a mailing list dedicated to Linux I2C at http://lists.lm-sensors.org/mailman/listinfo/i2c.

http://lists.lm-sensors.org/mailman/listinfo/i2c

Looking at the Sources

In the 2.4 kernel source tree, a single directory (drivers/i2c/) contained all the I2C/SMBus-related sources. The
I2C code in 2.6 kernels is organized hierarchically: The drivers/i2c/busses/ directory contains adapter drivers,
the drivers/i2c/algos/ directory has algorithm drivers, and the drivers/i2c/chips/ directory contains client
drivers. You can find client drivers in other regions of the source tree, too. The drivers/sound/ directory, for
example, includes drivers for audio chipsets that use an I2C control interface. Take a look inside the
Documentation/i2c/ directory for tips and more examples.

Kernel SPI service functions live in drivers/spi/spi.c. The SPI driver for the ADS7846 touch controller is
implemented in drivers/input/touchscreen/ads7846.c. The MTD subsystem discussed in Chapter 17, "Memory
Technology Devices," implements drivers for SPI flash chips. An example is
drivers/mtd/devices/mtd_dataflash.c, the driver to access Atmel DataFlash SPI chips.

The drivers/w1/ directory contains kernel support for the w1 protocol. Drivers for the host controller side of the
w1 interface live in drivers/w1/masters/, and drivers for w1 slaves reside in drivers/w1/slaves/.

Table 8.3 summarizes the main data structures used in this chapter and their location in the kernel tree. Table
8.4 lists the main kernel programming interfaces that you used in this chapter along with the location of their
definitions.

Table 8.3. Summary of Data Structures

Data Structure Location Description

i2c_driver include/linux/i2c.h Representation of an I2C driver

i2c_client_address_data include/linux/i2c.h Slave addresses that an I2C
client driver is responsible for

i2c_client include/linux/i2c.h Identifies a chip connected to an
I2C bus

i2c_msg include/linux/i2c.h Information pertaining to a
transaction that you want to
generate on the I2C bus

spi_driver include/linux/spi/spi.h Representation of an SPI driver

spi_device include/linux/spi/spi.h Representation of an SPI device

spi_transfer include/linux/spi/spi.h Details of an SPI transfer buffer

spi_message include/linux/spi/spi.h Sequence of spi_transfer

segments

w1_family drivers/w1/w1_family.h Representation of a w1 slave
driver

w1_family_ops drivers/w1/w1_family.h A w1 slave driver's entry points

Table 8.4. Summary of Kernel Programming Interfaces

Kernel Interface Location Description

i2c_add_driver() include/linux/i2c.h
drivers/i2c/i2c-core.c

Registers driver entry points
with the I2C core.

i2c_del_driver() drivers/i2c/i2c-core.c Removes a driver from the I2C
core.

i2c_probe() drivers/i2c/i2c-core.c Specifies the addresses of slave
devices that the driver is
responsible for and an
associated attach() routine to

be invoked if one of the specified
addresses is detected by the I2C
core.

i2c_attach_client() drivers/i2c/i2c-core.c Adds a new client to the list of
clients serviced by the
associated I2C host adapter.

i2c_detach_client() drivers/i2c/i2c-core.c Detaches an active client.
Usually done when the client
driver or the associated host
adapter unregisters.

i2c_check_functionality() include/linux/i2c.h Verifies whether a particular
function is supported by the host
adapter.

i2c_get_functionality() include/linux/i2c.h Obtains a mask containing all
functions supported by the host
adapter.

i2c_add_adapter() drivers/i2c/i2c-core.c Registers a host adapter.

i2c_del_adapter() drivers/i2c/i2c-core.c Unregisters a host adapter.

SMBus-compatible I2C data
access routines

drivers/i2c/i2c-core.c See Table 8.1.

i2c_transfer() drivers/i2c/i2c-core.c Sends an i2c_msg over the I2C
bus. This function is not SMBus-
compatible.

spi_register_driver() drivers/spi/spi.c Registers driver entry points
with the SPI core.

spi_unregister_driver() include/linux/spi/spi.h Unregisters an SPI driver.

spi_message_init() include/linux/spi/spi.h Initializes an SPI message.

spi_message_add_tail() include/linux/spi/spi.h Adds an SPI message to a
transfer list.

spi_sync() drivers/spi/spi.c Synchronously transfers data
over the SPI bus. This function
blocks until completion.

spi_async() include/linux/spi/spi.h Asynchronously transfers data
over the SPI bus using a
completion callback mechanism.

Chapter 9. PCMCIA and Compact Flash

In This Chapter

What's PCMCIA/CF?

258

Linux-PCMCIA Subsystem

260

Host Controller Drivers

262

PCMCIA Core
263

Driver Services

263

Client Drivers
264

Tying the Pieces Together

271

PCMCIA Storage
272

Serial PCMCIA
272

Debugging

273

Looking at the Sources

275

Today's popular technologies such as wireless and wired Ethernet, General Packet Radio Service
(GPRS), Global Positioning System (GPS), miniature storage, and modems are ubiquitous in the
form factor of PCMCIA (an acronym for Personal Computer Memory Card International Association)
or CF (Compact Flash) cards. Most laptops and many embedded devices support PCMCIA or CF
interfaces, thus instantly enabling them to take advantage of these technologies. On embedded
systems, PCMCIA/CF slots offer a technology upgrade path without the need to re-spin the board.
A cost-reduced version of an Internet-enabled device can, for example, use a PCMCIA dialup
modem, while a higher-end flavor can have WiFi.

The Linux kernel supports PCMCIA devices on a variety of architectures. In this chapter, let's
explore the support present in the kernel for PCMCIA/CF host adapters and client devices.

What's PCMCIA/CF?

PCMCIA is a 16-bit data-transfer interface specification originally used by memory cards. CF cards are smaller,
but compatible with PCMCIA, and are frequently used in handheld devices such as PDAs and digital cameras. CF
cards have only 50 pins but can be slipped into your laptop's 68-pin PCMCIA slot using a passive CF-to-PCMCIA
adapter. PCMCIA and CF have been confined to the laptop and handheld space and have not made inroads into
desktops and higher-end machines.

The PCMCIA specification has now grown to include support for higher speeds in the form of 32-bit CardBus
cards. The term PC Card is used while referring to either PCMCIA or CardBus devices. CardBus is closer to the
PCI bus, so the kernel has moved support for CardBus devices from the PCMCIA layer to the PCI layer. The
latest technology specification from the PCMCIA industry standards group is the ExpressCard, which is
compatible with PCI Express, a new bus technology based on PCI concepts. We look at CardBus and
ExpressCard when we discuss PCI in the next chapter.

PC cards come in three flavors in the increasing order of thickness: Type I (3.3mm), Type II (5mm), and Type
III (10.5mm).

Figure 9.1 shows PCMCIA bus connection on a laptop, and Figure 9.2 illustrates PCMCIA on an embedded device.
As you might have noticed, the PCMCIA host controller bridges the PCMCIA card with the system bus. Laptops
and their derivatives generally have a PCMCIA host controller chip connected to the PCI bus, while several
embedded controllers have a PCMCIA host controller built in to their silicon. The controller maps card memory
to host I/O and memory windows and routes interrupts generated by the card to a suitable processor interrupt
line.

Figure 9.1. PCMCIA on a laptop.

Figure 9.2. PCMCIA on an embedded system.

Chapter 9. PCMCIA and Compact Flash

In This Chapter

What's PCMCIA/CF?

258

Linux-PCMCIA Subsystem

260

Host Controller Drivers

262

PCMCIA Core
263

Driver Services

263

Client Drivers
264

Tying the Pieces Together

271

PCMCIA Storage
272

Serial PCMCIA
272

Debugging

273

Looking at the Sources

275

Today's popular technologies such as wireless and wired Ethernet, General Packet Radio Service
(GPRS), Global Positioning System (GPS), miniature storage, and modems are ubiquitous in the
form factor of PCMCIA (an acronym for Personal Computer Memory Card International Association)
or CF (Compact Flash) cards. Most laptops and many embedded devices support PCMCIA or CF
interfaces, thus instantly enabling them to take advantage of these technologies. On embedded
systems, PCMCIA/CF slots offer a technology upgrade path without the need to re-spin the board.
A cost-reduced version of an Internet-enabled device can, for example, use a PCMCIA dialup
modem, while a higher-end flavor can have WiFi.

The Linux kernel supports PCMCIA devices on a variety of architectures. In this chapter, let's
explore the support present in the kernel for PCMCIA/CF host adapters and client devices.

What's PCMCIA/CF?

PCMCIA is a 16-bit data-transfer interface specification originally used by memory cards. CF cards are smaller,
but compatible with PCMCIA, and are frequently used in handheld devices such as PDAs and digital cameras. CF
cards have only 50 pins but can be slipped into your laptop's 68-pin PCMCIA slot using a passive CF-to-PCMCIA
adapter. PCMCIA and CF have been confined to the laptop and handheld space and have not made inroads into
desktops and higher-end machines.

The PCMCIA specification has now grown to include support for higher speeds in the form of 32-bit CardBus
cards. The term PC Card is used while referring to either PCMCIA or CardBus devices. CardBus is closer to the
PCI bus, so the kernel has moved support for CardBus devices from the PCMCIA layer to the PCI layer. The
latest technology specification from the PCMCIA industry standards group is the ExpressCard, which is
compatible with PCI Express, a new bus technology based on PCI concepts. We look at CardBus and
ExpressCard when we discuss PCI in the next chapter.

PC cards come in three flavors in the increasing order of thickness: Type I (3.3mm), Type II (5mm), and Type
III (10.5mm).

Figure 9.1 shows PCMCIA bus connection on a laptop, and Figure 9.2 illustrates PCMCIA on an embedded device.
As you might have noticed, the PCMCIA host controller bridges the PCMCIA card with the system bus. Laptops
and their derivatives generally have a PCMCIA host controller chip connected to the PCI bus, while several
embedded controllers have a PCMCIA host controller built in to their silicon. The controller maps card memory
to host I/O and memory windows and routes interrupts generated by the card to a suitable processor interrupt
line.

Figure 9.1. PCMCIA on a laptop.

Figure 9.2. PCMCIA on an embedded system.

Linux-PCMCIA Subsystem

Linux-PCMCIA support is available on Intel-based laptops as well as on architectures such as ARM, MIPS, and
PowerPC. The PCMCIA subsystem consists of device drivers for PCMCIA host controllers, client drivers for
different cards, a daemon that aids hotplugging, user mode utilities, and a Card Services module that interacts
with all of these.

Figure 9.3 illustrates the interaction between the modules that constitute the Linux-PCMCIA subsystem.

Figure 9.3. The Linux-PCMCIA subsystem.

[View full size image]

The Old Linux-PCMCIA Subsystem

The Linux-PCMCIA subsystem has recently undergone an overhaul. To get PCMCIA working with
2.6.13 and newer kernels, you need the pcmciautils package
(http://kernel.org/pub/linux/utils/kernel/pcmcia/howto.html), which obsoletes the pcmcia-cs
package (http://pcmcia-cs.sourceforge.net) used with earlier kernels. Internal kernel
programming interfaces and data structures have also changed. Earlier kernels relied on a user
space daemon called cardmgr to support hotplugging, but the new PCMCIA implementation
handles hotplug using udev, just as other bus subsystems do. So with new setups, you don't need
cardmgr and should make sure that it is not started. There is a migration guide at
http://kernel.org/pub/linux/utils/kernel/pcmcia/cardmgr-to-pcmciautils.html.

Figure 9.3 contains the following components:

Host controller device drivers that implement low-level routines for communicating with the PCMCIA host
controller. Your handheld and laptop have different host controllers and, hence, use different host
controller drivers. Each PCMCIA slot that the host controller supports is called a socket.

PCMCIA client drivers (XX_cs in Figure 9.3) that respond to socket events such as card insertion and
ejection. This is the driver that you are most likely to implement when you attempt to Linux-enable a
PCMCIA card. The XX_cs driver usually works in tandem with a generic driver (XX in Figure 9.3) that is not
PCMCIA-specific. In relation to Figure 9.3, if your device is a PCMCIA IDE disk, XX is the IDE disk driver,
XX_cs is the ide_cs driver, XX-dependent layers are filesystem layers, and XX-applications are programs
that access data files. XX_cs configures the generic driver (XX) with resources such as IRQs, I/O base
addresses, and memory windows.

The PCMCIA core that provides services to host controller drivers and client drivers. The core provides an
infrastructure that makes driver implementations simpler and adds a level of indirection that renders client
drivers independent of host controllers. Irrespective of whether you are using your Bluetooth CF card on
an XScale-based handheld or an x86-based laptop, the same client drivers can be pressed into service.

A driver services module (ds) that offers registration interfaces and bus services to client drivers.

The pcmciautils package, which contains tools such as pccardctl that control the state of PCMCIA sockets
and select between different card-configuration schemes.

Figure 9.4 glues kernel modules on top of Figure 9.1 to illustrate how the Linux-PCMCIA subsystem interacts
with hardware on a PC-compatible system.

Figure 9.4. Relating PCMCIA driver components with PC hardware.

[View full size image]

http://kernel.org/pub/linux/utils/kernel/pcmcia/howto.html
http://pcmcia-cs.sourceforge.net
http://kernel.org/pub/linux/utils/kernel/pcmcia/cardmgr-to-pcmciautils.html

In the following sections, let's take a closer look at the components constituting the Linux-PCMCIA subsystem.
To better understand the role of these components and their interaction, we will insert a PCMCIA WiFi card into
a laptop and trace the code flow in the section "Tying the Pieces Together."

Host Controller Drivers

Whereas the generic card driver (XX) is responsible for handling interrupts generated by the card function (say,
receive interrupts when a PCMCIA network card receives data packets), the host controller driver is responsible
for handling bus-specific interrupts triggered by events such as card insertion and ejection.

Figure 9.2 shows the block diagram of an embedded device designed around an embedded controller that has
built-in PCMCIA support. Even if you are using a controller supported by the kernel PCMCIA layer, you might
need to tweak the host controller driver (for example, to configure GPIO lines used for detecting card insertion
events or switching power to the socket) depending on your board's design. If you are porting the kernel to a
StrongARM-based handheld, for example, tailor drivers/pcmcia/sa1100_assabet.c to suit your hardware.

This chapter does not cover the implementation of host controller device drivers.

PCMCIA Core

Card Services is the main constituent of the PCMCIA core. It offers a set of services to client drivers and host
controller drivers. It contains a kernel thread called pccardd that polls for socket-related events. Pccardd notifies
the Driver Services event handler (discussed in the next section) when the host controller reports events such
as card insertion and card removal.

Another component of the PCMCIA core is a library that manipulates the Card Information Structure (CIS) that
is part of PCMCIA cards. PCMCIA/CF cards have two memory spaces: Attribute memory and Common memory.
Attribute memory contains the CIS and card configuration registers. Attribute memory of a PCMCIA IDE disk, for
example, contains its CIS and registers that specify the sector count and the cylinder number. Common memory
in this case contains the memory array that holds disk data. The PCMCIA core offers CIS manipulation routines
such as pccard_get_first_tuple(), pccard_get_next_tuple(), and pccard_parse_tuple() to client drivers.
Listing 9.2 uses the assistance of some of these functions.

The PCMCIA core passes CIS information to user space via sysfs and udev. Utilities such as pccardctl, part of the
pcmciautils package, depend on sysfs and udev for their operation. This simplifies the earlier design approach
that relied on a custom infrastructure when these facilities were absent in the kernel.

Driver Services

Driver Services provides an infrastructure that offers the following:

A handler that catches event alerts dispatched by the pccardd kernel thread. The handler scans and
validates the card's CIS space and triggers the load of an appropriate client driver.

A layer that has the task of communicating with the kernel's bus core. To this end, Driver Services
implements the pcmcia_bus_type and related bus operations.

Service routines such as pcmcia_register_driver() that client drivers use to register themselves with
the PCMCIA core. The example driver in Listing 9.1 uses some of these routines.

Client Drivers

The client device driver (XX_cs in Figure 9.3) looks at the card's CIS space and configures the card depending
on the information it gathers.

Data Structures

Before proceeding to develop an example PCMCIA client driver, let's meet some related data structures:

A PCMCIA device is identified by the pcmcia_device_id structure defined in
include/linux/mod_devicetable.h:

struct pcmcia_device_id {
 /* ... */

 __u16 manf_id; /* Manufacturer ID */
 __u16 card_id; /* Card ID */

 __u8 func_id; /* Function ID */
 /* ... */

};

manf_id, card_id, and func_id hold the card's manufacturer ID, card ID, and function ID, respectively.
The PCMCIA core offers a macro called PCMCIA_DEVICE_MANF_CARD() that creates a pcmcia_device_id
structure from the manufacturer and card IDs supplied to it. Another kernel macro called
MODULE_DEVICE_TABLE() marks the supported pcmcia_device_ids in the module image so that the
module can be loaded on demand when the card is inserted and the PCMCIA subsystem gleans matching
manufacturer/card/function IDs from the card's CIS space. We explored this mechanism in the section
"Module Autoload" in Chapter 4, "Laying the Groundwork." This procedure is analogous to that used by
device drivers for two other popular I/O buses that support hotplugging: PCI and USB. Table 9.1 gives a
heads-up on the similarities between drivers for these three bus technologies. Don't worry if that is hard
to digest; we will have a detailed discussion on PCI and USB in the following chapters.

Table 9.1. Device IDs and Hotplug Methods for PCMCIA, PCI, and USB

 PCMCIA PCI USB

Device ID table
structure

pcmcia_device_id pci_device_id usb_device_id

Macro to create
a device ID

PCMCIA_DEVICE_MANF_CARD() PCI_DEVICE() USB_DEVICE()

Device
representation

struct pcmcia_device struct pci_dev struct usb_device

Driver
representation

struct pcmcia_driver struct pci_driver struct usb_driver

Hotplug
methods

probe() and remove() probe() and
remove()

probe() and
disconnect()

Hotplug event
detection

pccardd kthread PCI-family-
dependent

khubd kthread

1.

2.

PCMCIA client drivers need to associate their pcmcia_device_id table with their probe() and remove()

methods. This tie up is achieved by the pcmcia_driver structure:

struct pcmcia_driver {

 int (*probe)(struct pcmcia_device *dev); /* Probe

 method */

 void (*remove)(struct pcmcia_device *dev); /* Remove
 method */

 /* ... */

 struct pcmcia_device_id *id_table; /* Device ID
 table */

 /* ... */

};

2.

struct pcmcia_device internally represents a PCMCIA device and is defined as follows in

drivers/pcmcia/ds.h:

struct pcmcia_device {

 /* ... */
 io_req_t io; /* I/O attributes*/
 irq_req_t irq; /* IRQ settings */

 config_req_t conf; /* Configuration */
 /* ... */

 struct device dev; /* Connection to device model */
 /* ... */

};

3.

CIS manipulation routines use a tuple_t structure defined in include/pcmcia/cistpl.h to hold a CIS
information unit. A CISTPL_LONGLINK_MFC tuple type, for example, contains information related to a
multifunction card. For the full list of tuples and their descriptions, look at include/pcmcia/cistpl.h and
http://pcmcia-cs.sourceforge.net/ftp/doc/PCMCIA-PROG.html.

typedef struct tuple_t {
 /* ... */

 cisdata_t TupleCode; /* See
 include/pcmcia/cistpl.h */

 /* ... */
 cisdata_t DesiredTuple; /* Identity of the desired

 tuple */

 /* ... */
 cisdata_t *TupleData; /* Buffer space */

};

4.

The CIS contains configuration table entries for each configuration that the card supports.
cistpl_cftable_entry_t, defined in include/pcmcia/cistpl.h, holds such an entry:

typedef struct cistpl_cftable_entry_t {

 /* ... */

 cistpl_power_t vcc, vpp1, vpp2; /* Voltage level */
 cistpl_io_t io; /* I/O attributes */

 cistpl_irq_t irq; /* IRQ settings */

 cistpl_mem_t mem; /* Memory window */
 /* ... */

};

5.

6.

http://pcmcia-cs.sourceforge.net/ftp/doc/PCMCIA-PROG.html

cisparse_t, also defined in include/pcmcia/cistpl.h, holds a tuple parsed by the PCMCIA core:

typedef union cisparse_t {
 /* ... */

 cistpl_manfid_t manfid; /* Manf ID */

 /* ... */
 cistpl_cftable_entry_t cftable_entry; /* Configuration

 table entry */

 /* ... */
} cisparse_t;

6.

Device Example: PCMCIA Card

Let's develop a skeletal client device driver (because too many details will make it a loaded discussion) to learn
the workings of the PCMCIA subsystem. The implementation is general, so you may use it as a template
irrespective of whether your card implements networking, storage, or some other technology. Only the XX_cs
driver is implemented; the generic XX driver is assumed to be available off the shelf.

As alluded to earlier, PCMCIA drivers contain probe() and remove() methods to support hotplugging. Listing

9.1 registers the driver's probe() method, remove() method, and pcmcia_device_id table with the PCMCIA

core. XX_probe() gets invoked when the associated PCMCIA card is inserted, and XX_remove() is called when
the card is ejected.

Listing 9.1. Registering a Client Driver

Code View:
#include <pcmcia/ds.h> /* Definition of struct pcmcia_device */

static struct pcmcia_driver XX_cs_driver = {

 .owner = THIS_MODULE,

 .drv = {

 .name = "XX_cs", /* Name */

 },

 .probe = XX_probe, /* Probe */

 .remove = XX_remove, /* Release */

 .id_table = XX_ids, /* ID table */

 .suspend = XX_suspend, /* Power management */

 .resume = XX_resume, /* Power management */

};

#define XX_MANFUFACTURER_ID 0xABCD /* Device's manf_id */

#define XX_CARD_ID 0xCDEF /* Device's card_id */

/* Identity of supported cards */

static struct pcmcia_device_id XX_ids[] = {

 PCMCIA_DEVICE_MANF_CARD(XX_MANFUFACTURER_ID, XX_CARD_ID),

 PCMCIA_DEVICE_NULL,

};

MODULE_DEVICE_TABLE(pcmcia, XX_ids); /* For module autoload */

/* Initialization */

static int __init

init_XX_cs(void)

{

 return pcmcia_register_driver(&XX_cs_driver);

}

/* Probe Method */

static int

XX_probe(struct pcmcia_device *link)

{

 /* Populate the pcmcia_device structure allotted for this card by

 the core. First fill in general information */

 /* ... */

 /* Fill in attributes related to I/O windows and

 interrupt levels */

 XX_config(link); /* See Listing 9.2 */

}

Listing 9.2 shows the routine that configures the generic device driver (XX) with resource information such as
I/O and memory window base addresses. After this step, data flow to and from the PCMCIA card passes through
XX and is transparent to the rest of the layers. Any interrupts generated by the PCMCIA card, such as those
related to data reception or transmit completion for network cards, are handled by the interrupt handler that is
part of XX. Listing 9.2 is loosely based on drivers/net/wireless/airo_cs.c, the client driver for the Cisco Aironet
4500 and 4800 series of PCMCIA WiFi cards. The listing uses the services of the PCMCIA core to do the
following:

Obtain a suitable configuration table entry tuple from the card's CIS

Parse the tuple

Glean card configuration information such as I/O base addresses and power settings from the parsed tuple

Request allocation of an interrupt line

It then configures the chipset-specific driver (XX) with the information previously obtained.

Listing 9.2. Configuring the Generic Device Driver

Code View:
#include <pcmcia/cistpl.h>

#include <pcmcia/ds.h>

#include <pcmcia/cs.h>

#include <pcmcia/cisreg.h>

/* This makes the XX device available to the system. XX_config()

 is based on airo_config(), defined in

 drivers/net/wireless/airo_cs.c */

static int

XX_config(struct pcmcia_device *link)

{

 tuple_t tuple;

 cisparse_t parse;

 u_char buf[64];

 /* Populate a tuple_t structure with the identity of the desired

 tuple. In this case, we're looking for a configuration table

 entry */

 tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY;

 tuple.Attributes = 0;

 tuple.TupleData = buf;

 tuple.TupleDataMax = sizeof(buf);

 /* Walk the CIS for a matching tuple and glean card configuration

 information such as I/O window base addresses */

 /* Get first tuple */

 CS_CHECK(GetFirstTuple, pcmcia_get_first_tuple(link, &tuple));

 while (1){

 cistpl_cftable_entry_t dflt = {0};

 cistpl_cftable_entry_t *cfg = &(parse.cftable_entry);

 /* Read a configuration tuple from the card's CIS space */

 if (pcmcia_get_tuple_data(link, &tuple) != 0 ||

 pcmcia_parse_tuple(link, &tuple, &parse) != 0) {

 goto next_entry;

 }

 /* We have a matching tuple! */

 /* Configure power settings in the pcmcia_device based on

 what was found in the parsed tuple entry */

 if (cfg->vpp1.present & (1<<CISTPL_POWER_VNOM))

 link->conf.Vpp = cfg->vpp1.param[CISTPL_POWER_VNOM]/10000;

 /* ... */

 /* Configure I/O window settings in the pcmcia_device based on

 what was found in the parsed tuple entry */

 if ((cfg->io.nwin > 0) || (dflt.io.nwin > 0)) {

 cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &dflt.io;

 /* ... */

 if (!(io->flags & CISTPL_IO_8BIT)) {

 link->io.Attributes1 = IO_DATA_PATH_WIDTH_16;

 }

 link->io.BasePort1 = io->win[0].base;

 /* ... */

 }

 /* ... */

 break;

 next_entry:

 CS_CHECK(GetNextTuple, pcmcia_get_next_tuple(link, &tuple);

 }

 /* Allocate IRQ */

 if (link->conf.Attributes & CONF_ENABLE_IRQ) {

 CS_CHECK(RequestIRQ, pcmcia_request_irq(link, &link->irq));

 }

 /* ... */

 /* Invoke init_XX_card(), which is part of the generic

 XX driver (so, not shown in this listing), and pass

 the I/O base and IRQ information obtained above */

 init_XX_card(link->irq.AssignedIRQ, link->io.BasePort1,

 1, &handle_to_dev(link));

 /* The chip-specific (form factor independent) driver is ready

 to take responsibility of this card from now on! */

}

Tying the Pieces Together

As you saw in Figure 9.3, the PCMCIA layer consists of various components. The data-flow path between the
components can sometimes get complicated. Let's trace the code path from the time you insert a PCMCIA card
until an application starts transferring data to the card. Assume that a Cisco Aironet PCMCIA card is inserted
onto a laptop having an 82365-compatible PCMCIA host controller:

1. The PCMCIA host controller driver (drivers/pcmcia/yenta_socket.c) detects the insertion event via its
interrupt service routine and makes note of it using suitable data structures.

2. The pccardd kernel thread that is part of Card Services (drivers/pcmcia/cs.c) sleeps on a wait queue until
the host controller driver wakes it up when it detects the card insertion in Step 1.

3. Card Services dispatches an insertion event to Driver Services (drivers/pcmcia/ds.c). This triggers
execution of the event handler registered by Driver Services during initialization.

4. Driver Services validates the card's CIS space, determines information about the inserted device such as
its manufacturer ID and card ID, and registers the device with the kernel. The appropriate client device
driver (drivers/net/wireless/airo_cs.c) is then loaded. Revisit our previous discussion on
MODULE_DEVICE_TABLE() to see how this is accomplished.

5. The client driver (airo_cs.c) loaded in Step 4 initializes and registers itself using
pcmcia_register_driver(), as shown in Listing 9.1. This registration interface internally sets the bus
type of the device to pcmcia_bus_type. PCMCIA bus operations such as probe() and remove(), defined by

Driver Services (ds.c), are also internally registered.

6. The kernel invokes the bus probe() operation registered by Driver Services in Step 5. This in turn, invokes

the probe() method owned by the matching client driver (airo_probe()), also registered in Step 5. The
client probe() routine populates settings, such as I/O windows and interrupt lines, and configures the

generic chipset-specific driver (drivers/net/wireless/airo.c), as shown in Listing 9.2.

7. The chipset driver (airo.c) creates a network interface (ethX) and is responsible for normal operation from
this point onward. It's this driver that handles interrupts generated by the card in response to packet
reception and transmit completion. The form factor of the device (for example, whether it's a PCMCIA or a
PCI card) is transparent to the chipset driver as well as to the applications that operate over ethX.

PCMCIA Storage

Today's PCMCIA/CF storage support densities in the gigabyte realm. The storage cards come in different flavors:

Miniature IDE disk drives or microdrives. These are tiny versions of mechanical hard drives that use
magnetic media. Their data transfer rates are typically higher than solid state memory devices, but IDE
drives have spin-up and seek latencies before data can be transferred. The IDE Card Services driver
ide_cs, in conjunction with legacy IDE drivers, is used to communicate with such memory cards.

Solid-state memory cards that emulate IDE. Such cards have no moving parts and are usually based on
flash memory, which is transparent to the operating system because of the IDE emulation. Because these
drives are effectively IDE-based, the same IDE Card Services driver (ide_cs) can be used to talk to them.

Memory cards that use flash memory, but without IDE emulation. The memory_cs Card Services driver
provides block and character interfaces over such cards. The block interface is used to put a filesystem
onto card memory, whereas the character interface is used to access raw data. You may also use
memory_cs to read the attribute memory space of any PCMCIA card.

Serial PCMCIA

Many networking technologies such as General Packet Radio Service (GPRS), Global System for Mobile
Communications (GSM), Global Positioning System (GPS), and Bluetooth use a serial transport mechanism to
communicate with host systems. In this section, let's find out how the PCMCIA layer handles cards that feature
such technologies. Note that this section is only to help you understand the bus interface part of GPRS, GSM,
and Bluetooth cards having a PCMCIA/CF form factor. The technologies themselves are discussed in detail in
Chapter 16, "Linux Without Wires."

The generic serial Card Services driver, serial_cs, allows the rest of the operating system to see the PCMCIA/CF
card as a serial device. The first unused serial device, /dev/ttySX, gets allotted to the card. serial_cs thus
emulates a serial port over GPRS, GSM, and GPS cards. It also allows Bluetooth PCMCIA/CF cards that use a
serial transport to transfer Host Control Interface (HCI) packets to Bluetooth protocol layers.

Figure 9.5 illustrates how kernel modules implementing different networking technologies interact with serial_cs
to communicate with their respective cards.

Figure 9.5. Networking with PCMCIA/CF cards that use serial transport.

[View full size image]

The Point-to-Point Protocol (PPP) allows networking protocols such as TCP/IP to run over a serial link. In the
context of Figure 9.5, PPP gets TCP/IP applications running over GPRS and GSM dialup. The PPP daemon, pppd,
attaches over virtual serial ports emulated by serial_cs. The PPP kernel modules—ppp_generic, ppp_async, and
slhc—have to be loaded for pppd to work. Invoke pppd as follows:

bash> pppd ttySX call connection-script

where connection-script is a file containing command sequences that pppd exchanges with the service provider
to establish a link. The connection script depends on the particular card that is being used. A GPRS card would
need a context string to be sent as part of the connection script, whereas a GSM card might need an exchange
of passwords. An example connection script is described in the section "GPRS" in Chapter 16.

Debugging

To effectively debug PCMCIA/CF client drivers, you need to see debug messages emitted by the PCMCIA core.
For this, enable CONFIG_PCMCIA_DEBUG (Bus options PCCARD support Enable PCCARD debugging)

during kernel configuration. Verbosity levels of the debug output can be controlled either via the
pcmcia_core.pc_debug kernel command-line argument or using the pc_debug module insertion parameter.

Information about PC Card client drivers is available in the process filesystem entry, /proc/bus/pccard/drivers.
Look at /sys/bus/pcmcia/devices/* for card-specific information such as manufacturer and card IDs. Take a look
inside /proc/bus/pci/ to know more about your PCMCIA host controller if your system uses a PCI-to-PCMCIA
bridge. /proc/interrupts lists IRQs active on your system, including those used by the PCMCIA layer.

There is a mailing list dedicated to Linux-PCMCIA at http://lists.infradead.org/mailman/listinfo/linux-pcmcia.

http://lists.infradead.org/mailman/listinfo/linux-pcmcia

Looking at the Sources

In the Linux source tree, the drivers/pcmcia/ directory contains the sources for Card Services, Driver Services,
and host controller drivers. Look at drivers/pcmcia/yenta_socket.c for the host controller driver that runs on
many x86-based laptops. Header files present in include/pcmcia/ contain PCMCIA-related structure definitions.

Client drivers live alongside other drivers belonging to the associated device class. So, you will find drivers for
PCMCIA networking cards inside drivers/net/pcmcia/. The client driver for PCMCIA memory devices that emulate
IDE is drivers/ide/legacy/ ide-cs.c. See drivers/serial/serial_cs.c for the client driver used by PCMCIA modems.

Table 9.2 summarizes the main data structures used in this chapter and their location in the kernel tree. Table
9.3 lists the main kernel programming interfaces that you used in this chapter along with the location of their
definitions.

Table 9.2. Summary of Data Structures

Data Structure Location Description

pcmcia_device_id include/linux/mod_devicetable.h Identity of a PCMCIA card.

pcmcia_device include/pcmcia/ds.h Representation of a PCMCIA
device.

pcmcia_driver include/pcmcia/ds.h Representation of a PCMCIA
client driver.

tuple_t include/pcmcia/cistpl.h CIS manipulation routines use a
tuple_t structure to hold

information.

cistpl_cftable_entry_t include/pcmcia/cistpl.h Configuration table entry in the
CIS space.

cisparse_t include/pcmcia/cistpl.h A parsed CIS tuple.

Table 9.3. Summary of Kernel Programming Interfaces

Kernel Interface Location Description

pcmcia_register_driver() drivers/pcmcia/ds.c Registers a driver with the
PCMCIA core

pcmcia_unregister_driver() drivers/pcmcia/ds.c Unregisters a driver from the
PCMCIA core

pcmcia_get_first_tuple()

pcmcia_get_tuple_data()

pcmcia_parse_tuple()

include/pcmcia/cistpl.h
drivers/pcmcia/cistpl.c

Library routines to manipulate
CIS space

pcmcia_request_irq() drivers/pcmcia/pcmcia_resource.c Gets an IRQ assigned for a
PCMCIA card

Chapter 10. Peripheral Component Interconnect

In This Chapter

The PCI Family

278

Addressing and Identification

281

Accessing PCI Regions

285

Direct Memory Access
288

Device Example: Ethernet-Modem
Card

292

Debugging

308

Looking at the Sources
308

Peripheral Component Interconnect (PCI) is an omnipresent I/O backbone. Whether you are
backing up data on a storage server, capturing video from your desktop, or surfing the web from
your laptop, PCI might be serving you in some avatar or the other. PCI, and form factors adapted
or derived from PCI such as Mini PCI, CardBus, PCI Extended, PCI Express, PCI Express Mini Card,
and Express Card have become de facto peripheral connection technologies on today's computers.

The PCI Family

PCI is a high-speed bus used for communication between the CPU and I/O devices. The PCI specification enables
transfer of 32 bits of data in parallel at 33MHz or 66MHz, yielding a peak throughput of 266MBps.

CardBus is a derivative of PCI and has the form factor of a PC Card. CardBus cards are also 32-bits wide and run
at 33MHz. Even though CardBus and PCMCIA cards use the same 68-pin connectors, CardBus devices support
32 data lines compared to 16 for PCMCIA by multiplexing address and data lines as done in the PCI bus.

Mini PCI, also a 33MHz 32-bit bus, is another adaptation of PCI found in small-footprint computers such as
laptops. A PCI card can talk via a Mini PCI slot using a compatible connector.

An extension to PCI called PCI Extended (or PCI-X) expands the bus width to 64 bits, frequency to 133MHz, and
the throughput to about 1GBps. PCI-X 2.0 is the current version of the standard.

PCI Express (PCIe or PCI-E) is the present generation of the PCI family. Unlike the parallel PCI bus, PCIe uses a
serial protocol to transfer data. PCIe supports a maximum of 32 serial links. Each PCIe link (in the commonly
used version 1.1 of the specification) yields a throughput of 250MBps in each transfer direction, thus producing
a maximum PCIe data rate of 8GBps in each direction. PCIe 2.0 is the current version of the standard and
supports higher data rates.

Serial communication is faster and cheaper than parallel data transfer due to the absence of factors such as
signal interference, so the industry trend is to move from parallel buses to serial technologies. PCIe and its
adaptations aim to replace PCI and its derivatives, and this shift is also part of the methodology change from
parallel to serial communication. Several I/O interfaces discussed in this book, such as RS-232, USB, FireWire,
SATA, Ethernet, Fibre Channel, and InfiniBand, are serial communication architectures.

The CardBus equivalent in the PCIe family is the Express Card. Express Cards directly connect to the system bus
via a PCIe link or USB 2.0 (discussed in the next chapter), and circumvent middlemen such as CardBus
controllers. Mini PCI's cousin in the PCIe family is PCI Express Mini Card.

Recent laptops support Express Card slots instead of (or in addition to) CardBus, and PCI Express Mini Card
slots in place of Mini PCI. The former two have smaller footprints and higher speeds compared to the latter two.

Table 10.1 summarizes the important relatives of PCI. From the kernel's perspective, all these technologies are
compatible with one another. A kernel PCI driver will work with all related technologies mentioned previously;
so even though we base example code in this chapter on a CardBus card, the concepts apply to other PCI
derivatives, too.

Table 10.1. PCI's Siblings, Children, and Cousins

Bus Name Characteristics Form Factor

PCI 32-bit bus at 33MHz or 66MHz;
yields up to 266MBps.

Internal slot in desktops and
servers.

Mini PCI 32-bit bus at 33MHz. Internal slot in laptops.

CardBus 32-bit bus at 33MHz. External PC card slot in laptops.
Compatible with PCI.

PCI Extended (PCI-X) 64-bit bus at 133 MHz, yielding
up to 1GBps.

Internal slot in desktops and
servers. Wider than PCI, but a
PCI card can be plugged into a
PCI-X slot.

PCI Express (PCIe) 250MBps per PCIe link in each
transfer direction, yielding a
maximum throughput of 8GBps
in each direction.

Replaces the internal PCI slot in
newer systems. PCIe is a serial
protocol unlike native PCI, which
is parallel.

PCI Express Mini Card 250MBps in each direction if the
interface is based on a PCIe link;
60MBps if the interface is based
on USB 2.0.

Replaces Mini PCI as the internal
slot in newer laptops. Smaller
form factor than Mini PCI.

Solutions based on the PCI family are available for a vast spectrum of hardware domains:

Bus Name Characteristics Form Factor

Express Card 250MBps in each direction if the
interface is based on a PCIe link;
60MBps if the interface is based
on USB 2.0.

Thin external slot in newer
laptops that replaces CardBus.
Interfaces with the system bus
via PCIe or USB 2.0.

Solutions based on the PCI family are available for a vast spectrum of hardware domains:

Networking technologies such as Gigabit Ethernet, WiFi, ATM, Token Ring, and ISDN.

Host adapters for storage technologies, such as SCSI.

Host controllers for I/O buses such as USB, FireWire, IDE, I2C, and PCMCIA. On PC-compatible systems,
these host controllers function as bridges between the PCI controller on the South Bridge and the bus
technology they source. Verify this by running lspci (discussed later).

Graphics, video streaming, and data capture.

Serial port and parallel port cards.

Sound cards.

Devices such as Watchdogs, EDAC-capable memory controllers, and game ports.

For the driver developer, the PCI family offers an attractive advantage: a system of automatic device
configuration. Unlike drivers for the older ISA generation, PCI drivers need not implement complex probing
logic. During boot, the BIOS-type boot firmware (or the kernel itself if so configured) walks the PCI bus and
assigns resources such as interrupt levels and I/O base addresses. The device driver gleans this assignment by
peeking at a memory region called the PCI configuration space. PCI devices possess 256 bytes of configuration
memory. The top 64 bytes of the configuration space is standardized and holds registers that contain details
such as the status, interrupt line, and I/O base addresses. PCIe and PCI-X 2.0 offer an extended configuration
space of 4KB. We will learn how to operate on the PCI configuration space later.

Figure 10.1 shows PCI in a PC-compatible system. Components integrated into the South Bridge such as
controller silicon for USB, IDE, I2C, LPC, and Ethernet reside off the PCI bus. Some of these controllers contain
an internal PCI-to-PCI bridge to source a dedicated PCI bus for the respective I/O technology. The South Bridge
additionally contains an external PCI bus to connect I/O peripherals such as CardBus controllers and WiFi
chipsets. Figure 10.1 also shows PCI address tuples corresponding to each connected subsystem. This will get
clearer when we learn about PCI addressing next.

Figure 10.1. PCI inside a PC South Bridge.

Express Card 250MBps in each direction if the
interface is based on a PCIe link;
60MBps if the interface is based
on USB 2.0.

Thin external slot in newer
laptops that replaces CardBus.
Interfaces with the system bus
via PCIe or USB 2.0.

Solutions based on the PCI family are available for a vast spectrum of hardware domains:

Networking technologies such as Gigabit Ethernet, WiFi, ATM, Token Ring, and ISDN.

Host adapters for storage technologies, such as SCSI.

Host controllers for I/O buses such as USB, FireWire, IDE, I2C, and PCMCIA. On PC-compatible systems,
these host controllers function as bridges between the PCI controller on the South Bridge and the bus
technology they source. Verify this by running lspci (discussed later).

Graphics, video streaming, and data capture.

Serial port and parallel port cards.

Sound cards.

Devices such as Watchdogs, EDAC-capable memory controllers, and game ports.

For the driver developer, the PCI family offers an attractive advantage: a system of automatic device
configuration. Unlike drivers for the older ISA generation, PCI drivers need not implement complex probing
logic. During boot, the BIOS-type boot firmware (or the kernel itself if so configured) walks the PCI bus and
assigns resources such as interrupt levels and I/O base addresses. The device driver gleans this assignment by
peeking at a memory region called the PCI configuration space. PCI devices possess 256 bytes of configuration
memory. The top 64 bytes of the configuration space is standardized and holds registers that contain details
such as the status, interrupt line, and I/O base addresses. PCIe and PCI-X 2.0 offer an extended configuration
space of 4KB. We will learn how to operate on the PCI configuration space later.

Figure 10.1 shows PCI in a PC-compatible system. Components integrated into the South Bridge such as
controller silicon for USB, IDE, I2C, LPC, and Ethernet reside off the PCI bus. Some of these controllers contain
an internal PCI-to-PCI bridge to source a dedicated PCI bus for the respective I/O technology. The South Bridge
additionally contains an external PCI bus to connect I/O peripherals such as CardBus controllers and WiFi
chipsets. Figure 10.1 also shows PCI address tuples corresponding to each connected subsystem. This will get
clearer when we learn about PCI addressing next.

Figure 10.1. PCI inside a PC South Bridge.

Chapter 10. Peripheral Component Interconnect

In This Chapter

The PCI Family

278

Addressing and Identification

281

Accessing PCI Regions

285

Direct Memory Access
288

Device Example: Ethernet-Modem
Card

292

Debugging

308

Looking at the Sources
308

Peripheral Component Interconnect (PCI) is an omnipresent I/O backbone. Whether you are
backing up data on a storage server, capturing video from your desktop, or surfing the web from
your laptop, PCI might be serving you in some avatar or the other. PCI, and form factors adapted
or derived from PCI such as Mini PCI, CardBus, PCI Extended, PCI Express, PCI Express Mini Card,
and Express Card have become de facto peripheral connection technologies on today's computers.

The PCI Family

PCI is a high-speed bus used for communication between the CPU and I/O devices. The PCI specification enables
transfer of 32 bits of data in parallel at 33MHz or 66MHz, yielding a peak throughput of 266MBps.

CardBus is a derivative of PCI and has the form factor of a PC Card. CardBus cards are also 32-bits wide and run
at 33MHz. Even though CardBus and PCMCIA cards use the same 68-pin connectors, CardBus devices support
32 data lines compared to 16 for PCMCIA by multiplexing address and data lines as done in the PCI bus.

Mini PCI, also a 33MHz 32-bit bus, is another adaptation of PCI found in small-footprint computers such as
laptops. A PCI card can talk via a Mini PCI slot using a compatible connector.

An extension to PCI called PCI Extended (or PCI-X) expands the bus width to 64 bits, frequency to 133MHz, and
the throughput to about 1GBps. PCI-X 2.0 is the current version of the standard.

PCI Express (PCIe or PCI-E) is the present generation of the PCI family. Unlike the parallel PCI bus, PCIe uses a
serial protocol to transfer data. PCIe supports a maximum of 32 serial links. Each PCIe link (in the commonly
used version 1.1 of the specification) yields a throughput of 250MBps in each transfer direction, thus producing
a maximum PCIe data rate of 8GBps in each direction. PCIe 2.0 is the current version of the standard and
supports higher data rates.

Serial communication is faster and cheaper than parallel data transfer due to the absence of factors such as
signal interference, so the industry trend is to move from parallel buses to serial technologies. PCIe and its
adaptations aim to replace PCI and its derivatives, and this shift is also part of the methodology change from
parallel to serial communication. Several I/O interfaces discussed in this book, such as RS-232, USB, FireWire,
SATA, Ethernet, Fibre Channel, and InfiniBand, are serial communication architectures.

The CardBus equivalent in the PCIe family is the Express Card. Express Cards directly connect to the system bus
via a PCIe link or USB 2.0 (discussed in the next chapter), and circumvent middlemen such as CardBus
controllers. Mini PCI's cousin in the PCIe family is PCI Express Mini Card.

Recent laptops support Express Card slots instead of (or in addition to) CardBus, and PCI Express Mini Card
slots in place of Mini PCI. The former two have smaller footprints and higher speeds compared to the latter two.

Table 10.1 summarizes the important relatives of PCI. From the kernel's perspective, all these technologies are
compatible with one another. A kernel PCI driver will work with all related technologies mentioned previously;
so even though we base example code in this chapter on a CardBus card, the concepts apply to other PCI
derivatives, too.

Table 10.1. PCI's Siblings, Children, and Cousins

Bus Name Characteristics Form Factor

PCI 32-bit bus at 33MHz or 66MHz;
yields up to 266MBps.

Internal slot in desktops and
servers.

Mini PCI 32-bit bus at 33MHz. Internal slot in laptops.

CardBus 32-bit bus at 33MHz. External PC card slot in laptops.
Compatible with PCI.

PCI Extended (PCI-X) 64-bit bus at 133 MHz, yielding
up to 1GBps.

Internal slot in desktops and
servers. Wider than PCI, but a
PCI card can be plugged into a
PCI-X slot.

PCI Express (PCIe) 250MBps per PCIe link in each
transfer direction, yielding a
maximum throughput of 8GBps
in each direction.

Replaces the internal PCI slot in
newer systems. PCIe is a serial
protocol unlike native PCI, which
is parallel.

PCI Express Mini Card 250MBps in each direction if the
interface is based on a PCIe link;
60MBps if the interface is based
on USB 2.0.

Replaces Mini PCI as the internal
slot in newer laptops. Smaller
form factor than Mini PCI.

Solutions based on the PCI family are available for a vast spectrum of hardware domains:

Bus Name Characteristics Form Factor

Express Card 250MBps in each direction if the
interface is based on a PCIe link;
60MBps if the interface is based
on USB 2.0.

Thin external slot in newer
laptops that replaces CardBus.
Interfaces with the system bus
via PCIe or USB 2.0.

Solutions based on the PCI family are available for a vast spectrum of hardware domains:

Networking technologies such as Gigabit Ethernet, WiFi, ATM, Token Ring, and ISDN.

Host adapters for storage technologies, such as SCSI.

Host controllers for I/O buses such as USB, FireWire, IDE, I2C, and PCMCIA. On PC-compatible systems,
these host controllers function as bridges between the PCI controller on the South Bridge and the bus
technology they source. Verify this by running lspci (discussed later).

Graphics, video streaming, and data capture.

Serial port and parallel port cards.

Sound cards.

Devices such as Watchdogs, EDAC-capable memory controllers, and game ports.

For the driver developer, the PCI family offers an attractive advantage: a system of automatic device
configuration. Unlike drivers for the older ISA generation, PCI drivers need not implement complex probing
logic. During boot, the BIOS-type boot firmware (or the kernel itself if so configured) walks the PCI bus and
assigns resources such as interrupt levels and I/O base addresses. The device driver gleans this assignment by
peeking at a memory region called the PCI configuration space. PCI devices possess 256 bytes of configuration
memory. The top 64 bytes of the configuration space is standardized and holds registers that contain details
such as the status, interrupt line, and I/O base addresses. PCIe and PCI-X 2.0 offer an extended configuration
space of 4KB. We will learn how to operate on the PCI configuration space later.

Figure 10.1 shows PCI in a PC-compatible system. Components integrated into the South Bridge such as
controller silicon for USB, IDE, I2C, LPC, and Ethernet reside off the PCI bus. Some of these controllers contain
an internal PCI-to-PCI bridge to source a dedicated PCI bus for the respective I/O technology. The South Bridge
additionally contains an external PCI bus to connect I/O peripherals such as CardBus controllers and WiFi
chipsets. Figure 10.1 also shows PCI address tuples corresponding to each connected subsystem. This will get
clearer when we learn about PCI addressing next.

Figure 10.1. PCI inside a PC South Bridge.

Express Card 250MBps in each direction if the
interface is based on a PCIe link;
60MBps if the interface is based
on USB 2.0.

Thin external slot in newer
laptops that replaces CardBus.
Interfaces with the system bus
via PCIe or USB 2.0.

Solutions based on the PCI family are available for a vast spectrum of hardware domains:

Networking technologies such as Gigabit Ethernet, WiFi, ATM, Token Ring, and ISDN.

Host adapters for storage technologies, such as SCSI.

Host controllers for I/O buses such as USB, FireWire, IDE, I2C, and PCMCIA. On PC-compatible systems,
these host controllers function as bridges between the PCI controller on the South Bridge and the bus
technology they source. Verify this by running lspci (discussed later).

Graphics, video streaming, and data capture.

Serial port and parallel port cards.

Sound cards.

Devices such as Watchdogs, EDAC-capable memory controllers, and game ports.

For the driver developer, the PCI family offers an attractive advantage: a system of automatic device
configuration. Unlike drivers for the older ISA generation, PCI drivers need not implement complex probing
logic. During boot, the BIOS-type boot firmware (or the kernel itself if so configured) walks the PCI bus and
assigns resources such as interrupt levels and I/O base addresses. The device driver gleans this assignment by
peeking at a memory region called the PCI configuration space. PCI devices possess 256 bytes of configuration
memory. The top 64 bytes of the configuration space is standardized and holds registers that contain details
such as the status, interrupt line, and I/O base addresses. PCIe and PCI-X 2.0 offer an extended configuration
space of 4KB. We will learn how to operate on the PCI configuration space later.

Figure 10.1 shows PCI in a PC-compatible system. Components integrated into the South Bridge such as
controller silicon for USB, IDE, I2C, LPC, and Ethernet reside off the PCI bus. Some of these controllers contain
an internal PCI-to-PCI bridge to source a dedicated PCI bus for the respective I/O technology. The South Bridge
additionally contains an external PCI bus to connect I/O peripherals such as CardBus controllers and WiFi
chipsets. Figure 10.1 also shows PCI address tuples corresponding to each connected subsystem. This will get
clearer when we learn about PCI addressing next.

Figure 10.1. PCI inside a PC South Bridge.

Addressing and Identification

PCI devices are addressed using bus, device, and function numbers, and they are identified via vendorIDs,
deviceIDs, and class codes. Let's learn these concepts with the help of the lspci utility that is part of the PCI
Utilities package downloadable from http://mj.ucw.cz/pciutils.shtml.

Assume that you're using a Xircom Ethernet-Modem multifunction CardBus card on a Pentium-class laptop
served by a Texas Instruments PCI4510 CardBus controller, as shown in Figure 10.1. Run lspci:

Code View:
bash>lspci

00:00.0 Host bridge: Intel Corporation 82852/82855 GM/GME/PM/GMV Processor to I/O
Controller (rev 02)

...

02:00.0 CardBus bridge: Texas Instruments PCI4510 PC card Cardbus Controller (rev 03)
...

03:00.0 Ethernet controller: Xircom Cardbus Ethernet 10/100 (rev 03)
03:00.1 Serial controller: Xircom Cardbus Ethernet + 56k Modem (rev 03)

Consider the tuple (XX:YY.Z) at the beginning of each entry in the preceding output. XX stands for the PCI bus
number. A PCI domain can host up to 256 buses. In the laptop used previously, the CardBus bridge is connected
to PCI bus 2. This bridge sources another PCI bus numbered 3 that hosts the Xircom card.

YY is the PCI device number. Each bus can connect to a maximum of 32 PCI devices. Each device can, in turn,

implement up to eight functions represented by Z. The Xircom card can simultaneously perform two functions.
Thus, 03:00.0 addresses the Ethernet function of the card, while 03:00.1 corresponds to its modem

communication function. Issue lspci –t to elicit a tree-like layout of the PCI buses and devices on your
system:

bash> lspci –t

-[0000:00]-+-00.0

 +-00.1
 +-00.3

 +-02.0

 +-02.1
 +-1d.0

 +-1d.1

 +-1d.2

 +-1d.7
 +-1e.0-[0000:02-05]--+-[0000:03]-+-00.0

 | | \-00.1

 | \-[0000:02]-+-00.0
 | +-00.1

 | +-01.0

 | \-02.0

 +-1f.0

As you can see from the preceding output (and in Figure 10.1), to walk the PCI bus and reach the Xircom
modem (03:00.01) or Ethernet controller (03:00.0), you have to start from your PCI domain (labeled 0000 in

http://mj.ucw.cz/pciutils.shtml

the preceding output), traverse a PCI-to-PCI bridge (00:1e.0), and then cross a PCI-to-CardBus host controller

(02:0.0). The sysfs representation of the PCI subsystem mirrors this layout:

bash> ls /sys/devices/pci0000:00/0000:00:1e.0/0000:02:00.0/0000:03:00.0/

...

net:eth2 Ethernet
...

bash> ls /sys/devices/pci0000:00/0000:00:1e.0/0000:02:00.0/0000:03:00.1/

...

tty:ttyS1 Modem

...

As you saw earlier, PCI devices possess a 256-byte memory region that holds configuration registers. This space
is the key to identify the make and capabilities of PCI cards. Let's take a peek inside the configuration spaces of
the CardBus controller and the Xircom dual-function card previously used. The Xircom card has two
configuration spaces, one per supported function:

Code View:
bash> lspci –x

00:00.0 Host bridge: Intel Corporation 82852/82855 GM/GME/PM/GMV Processor to I/O

Controller (rev 02)
00: 86 80 80 35 06 01 90 20 02 00 00 06 00 00 80 00

10: 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
20: 00 00 00 00 00 00 00 00 00 00 00 00 14 10 5c 05

30: 00 00 00 00 40 00 00 00 00 00 00 00 00 00 00 00
...
02:00.0 CardBus bridge: Texas Instruments PCI4510 PC card Cardbus Controller (rev 03)

00: 4c 10 44 ac 07 00 10 02 03 00 07 06 20 a8 82 00
10: 00 00 00 b0 a0 00 00 22 02 03 04 b0 00 00 00 f0

20: 00 f0 ff f1 00 00 00 d2 00 f0 ff d3 00 30 00 00
30: fc 30 00 00 00 34 00 00 fc 34 00 00 0b 01 00 05

...
03:00.0 Ethernet controller: Xircom Cardbus Ethernet 10/100 (rev 03)

00: 5d 11 03 00 07 00 10 02 03 00 00 02 00 40 80 00
10: 01 30 00 00 00 00 00 d2 00 08 00 d2 00 00 00 00
20: 00 00 00 00 00 00 00 00 07 01 00 00 5d 11 81 11

30: 00 00 00 00 dc 00 00 00 00 00 00 00 0b 01 14 28
03:00.1 Serial controller: Xircom Cardbus Ethernet + 56k Modem (rev 03)

00: 5d 11 03 01 03 00 10 02 03 02 00 07 00 00 80 00
10: 81 30 00 00 00 10 00 d2 00 18 00 d2 00 00 00 00

20: 00 00 00 00 00 00 00 00 07 02 00 00 5d 11 81 11

30: 00 00 00 00 dc 00 00 00 00 00 00 00 0b 01 00 00

PCI registers are little-endian, so factor that while interpreting the preceding output. You may also dump PCI
configuration regions via sysfs. So, to look at the configuration space of the Ethernet function of the Xircom
card, do this:

Code View:
bash> od -x /sys/devices/pci0000:00/0000:00:1e.0/0000:02:00.0/0000:03:00.1/config

0000000 115d 0003 0007 0210 0003 0200 4000 0080

0000020 3001 0000 0000 d200 0800 d200 0000 0000

0000040 0000 0000 0000 0000 0107 0000 115d 1181

...

Table 10.2 explains some of the values shown in the preceding dump. The first two bytes contain the vendor ID,
which identifies the company that manufactured the card. PCI vendor IDs are maintained and assigned globally.
(Point your browser to www.pcidatabase.com for a database.) As you can decipher from the preceding output,
Intel, Texas Instruments, and Xircom (now acquired by Intel) own vendor IDs of 0x8086, 0x104C, and 0x115D,
respectively. The next two bytes are specific to the functionality of the card and constitute its device ID. From
the preceding output, the Ethernet functionality of the Xircom card owns a device ID of 0x0003, while the

modem answers to a device ID of 0x0103. PCI cards additionally possess subvendor and subdevice IDs (see

words at offsets 44 and 46 in the preceding dump) to further pinpoint their identity.

Table 10.2. PCI Configuration Space Semantics

Configuration Space Offset Semantics Values from the Dump Output
for the Xircom Card

0 Vendor ID 0x115D

2 Device ID 0x0003

10 Class code 0x0200

16 to 39 Base address register 0
(BAR 0) to BAR5

0x3001...0000

44 Subvendor ID 0x115D

46 Subdevice ID 0x1181

Ten bytes into the configuration space lies the code that describes the class of the device. PCI bridges have a
class code starting with 0x06, network devices possess a class code beginning with 0x02, and communication
devices own a class code commencing with 0x07. Thus, in the preceding example, the CardBus bridge, the

Ethernet card, and the serial modem own class codes of 0x0607, 0x0200, and 0x0700, respectively. You can find
class code definitions in include/linux/pci_ids.h.

PCI drivers register the vendor IDs, device IDs, and class codes that they support with the PCI subsystem.
Using this database, the PCI subsystem binds an inserted card to the appropriate device driver after gleaning its
identity from its configuration space. We will see how this is done when we implement an example driver later.

Accessing PCI Regions

PCI devices contain three addressable regions: configuration space, I/O ports, and device memory. Let's learn
how to access these memory regions from a device driver.

Configuration Space

The kernel offers a set of six functions that your driver can use to operate on PCI configuration space:

pci_read_config_[byte|word|dword](struct pci_dev *pdev,

 int offset, int *value);
and

pci_write_config_[byte|word|dword](struct pci_dev *pdev,

 int offset, int value);

In the argument list, struct pci_dev is the PCI device structure, and offset is the byte position in the
configuration space that you want to access. For read functions, value is a pointer to a supplied data buffer,

and for write routines, it contains the data to be written.

Let's consider some examples:

To decipher the IRQ number assigned to a card function, use the following:

unsigned char irq;

pci_read_config_byte(pdev, PCI_INTERRUPT_LINE, &irq);

As per the PCI specification, offset 60 inside the PCI configuration space holds the IRQ number assigned to
the card. All configuration register offsets are expressively defined in include/linux/pci_regs.h, so use
PCI_INTERRUPT_LINE rather than 60 to specify this offset. Similarly, to read the PCI status register (two
bytes at offset six in the configuration space), do this:

unsigned short status;
pci_read_config_word(pdev, PCI_STATUS, &status);

Only the first 64 bytes of the configuration space are standardized. The device manufacturer defines
desired semantics to the rest. The Xircom card used earlier, assigns four bytes at offset 64 for power
management purposes. To disable power management, the Xircom CardBus driver,
drivers/net/tulip/xircom_cb.c, does this:

#define PCI_POWERMGMT 0x40

pci_write_config_dword(pdev, PCI_POWERMGMT, 0x0000);

I/O and Memory

PCI cards have up to six I/O or memory regions. I/O regions contain registers, and memory regions hold data.
Video cards, for example, have I/O spaces that accommodate control registers and memory regions that map to
frame buffers. Not all cards have addressable memory regions, however. The semantics of I/O and memory
spaces are hardware-dependent and can be obtained from the device data sheet.

Like for configuration memory, the kernel offers a set of helpers to operate on I/O and memory regions of PCI
devices:

Code View:
unsigned long pci_resource_[start|len|end|flags] (struct pci_dev *pdev, int bar);

To operate on an I/O region such as the device control registers of a PCI video card, the driver needs to do the
following:

1. Get the I/O base address from the appropriate base address register (bar) in the configuration space:

unsigned long io_base = pci_resource_start(pdev, bar);

This assumes that the device control registers for this card are mapped to the memory region associated
with bar, whose value can range from 0 through 5, as shown in Table 10.2.

2. Mark this region as being spoken for, using the kernel's request_region() regulatory mechanism

discussed in Chapter 5, "Character Drivers":

request_region(io_base, length, "my_driver");

Here, length is the size of the control register space and my_driver identifies the region's owner. Look for
the entry containing my_driver in /proc/ioports to spot this memory region.

You may instead use the wrapper function pci_request_region(), defined in drivers/pci/pci.c.

3. Add the register's offset obtained from the data-sheet, to the base address gleaned in Step 1. Operate on
this address using the inb() and outb() family of functions discussed in Chapter 5:

/* Read */
register_data = inl(io_base + REGISTER_OFFSET);
/* Use */
/* ... */
/* Write */
outl(register_data, iobase + REGISTER_OFFSET);

To operate on a memory region such as the frame buffer on the above PCI video card, follow these steps:

1. Get the base address, length, and flags associated with the memory region:

unsigned long mmio_base = pci_resource_start(pdev, bar);
unsigned long mmio_length = pci_resource_length(pdev, bar);
unsigned long mmio_flags = pci_resource_flags(pdev, bar);

This assumes that this memory is mapped to the base address register, bar.

2. Mark ownership of this region using the kernel's request_mem_region() regulatory mechanism:

request_mem_region(mmio_base, mmio_length, "my_driver");

You may instead use the wrapper function pci_request_region(), mentioned previously.

3. Obtain CPU access to the device memory obtained in Step 1. Certain memory regions, such as the ones
that hold registers, need to guard against side effects, so they are marked as not being prefetchable (or
cacheable) by the CPU. Other regions, such as the one used in this example, can be cached. Depending on
the access flag, use the appropriate function to obtain kernel virtual addresses corresponding to the
mapped region:

void __iomem *buffer;
if (flags & IORESOURCE_CACHEABLE) {
 buffer = ioremap(mmio_base, mmio_length);
} else {
 buffer = ioremap_nocache(mmio_base, mmio_length);
}

To be safe, and to avoid performing the preceding checks, use the services of pci_iomap() defined in

lib/iomap.c instead:

buffer = pci_iomap(pdev, bar, mmio_length);

Direct Memory Access

Direct Memory Access (DMA) is the capability to transfer data from a peripheral to main memory without the
CPU's intervention. DMA boosts the performance of peripherals manyfold, because it doesn't burn CPU cycles to
move data. PCI networking cards and IDE disk drives are common examples of peripherals relying on DMA for
data transfer.

DMA is initiated by a DMA master. The PC motherboard has a DMA controller on the South Bridge that can
master the I/O bus and initiate DMA to or from a peripheral. This is usually the case for legacy ISA cards.
However, buses such as PCI can master the bus and initiate DMA transfers. CardBus cards are similar to PCI and
also support DMA mastering. PCMCIA devices, on the other hand, do not support DMA mastering, but the
PCMCIA controller, which is usually wired to a PCI bus, might have DMA mastering capabilities.

The issue of cache coherency is synonymous with DMA. For optimum performance, processors cache recently
accessed bytes, so data passing between the CPU and main memory streams through the processor cache.
During DMA, however, data travels directly between the DMA controller and main memory and, hence, bypasses
the processor cache. This evasion has the potential to introduce inconsistencies because the processor might
work on stale data living in its cache. Some architectures automatically synchronize the cache with main
memory using a technique called bus snooping. Many others rely on software to achieve coherency, however.
We will learn how to perform coherent DMA operations after introducing a few more topics.

DMA can occur synchronously or asynchronously. An example of the former is DMA from a system frame buffer
to an LCD controller. A user application writes pixel data to a DMA-mapped frame buffer via /dev/fbX, while the
LCD controller uses DMA to collect this data synchronously at timed intervals. We discuss more about this in
Chapter 12, "Video Drivers." An example of asynchronous DMA is the transmit and receive of data frames
between the CPU and a network card discussed in Chapter 15, "Network Interface Cards."

System memory regions that are the source or destination of DMA transfers are called DMA buffers. If a bus
interface has addressing limitations, that'll affect the memory range that can hold DMA buffers. So, DMA buffers
suitable for a 24-bit bus such as ISA can live only in the bottom 16MB of system memory called ZONE_DMA (see

the section "Allocating Memory" in Chapter 2, "A Peek Inside the Kernel"). PCI buses are 32-bits wide by
default, so you won't usually face such limitations on 32-bit platforms. To inform the kernel about any special
needs of DMA-able buffers, use the following:

dma_set_mask(struct device *dev, u64 mask);

If this function returns success, you may DMA to any address that is mask bits in length. For example, the e1000

PCI-X Gigabit Ethernet driver (drivers/net/e1000/e1000_main.c) does the following:

if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {

 /* System supports 64-bit DMA */
 pci_using_dac = 1;

} else {

 /* See if 32-bit DMA is supported */

 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
 /* No, let's abort */

 E1000_ERR("No usable DMA configuration, aborting\n");

 return err;
 }

 /* 32-bit DMA */

 pci_using_dac = 0;

}

I/O devices view DMA buffers through the lens of the bus controller and any intervening I/O memory
management unit (IOMMU). Because of this, I/O devices work with bus addresses, rather than physical or kernel
virtual addresses. So, when you inform a PCI card about the location of a DMA buffer, you have to let it know
the buffer's bus address. DMA service routines map the kernel virtual address of DMA buffers to bus addresses
so that both the device and the CPU can access the buffers. Bus addresses are of type dma_addr_t, defined in

include/asm-your-arch/types.h.

There are a couple more concepts worth knowing about DMA. One is the idea of bounce buffers. Bounce buffers
reside in DMA-able regions and are used as temporary memory when DMA is requested to/from non-DMA-able
memory regions. An example is DMA to an address higher than 4GB from a 32-bit PCI peripheral when there is
no intervening IOMMU. Data is first transferred to a bounce buffer and then copied to the final destination. The
second concept is a flavor of DMA called scatter-gather. When data to be DMA'ed is spread over discontinuous
regions, scatter-gather capability enables the hardware to gather contents of the scattered buffers at one go.
The reverse occurs when data is DMA'ed from the card to buffers scattered in memory. Scatter-gather capability
boosts performance by eliminating the need to service multiple DMA requests.

The kernel features a healthy API that masks many of the internal details of configuring DMA. This API gets
simpler if you are writing a driver for a PCI card that supports bus mastering. (Most PCI cards do.) PCI DMA
routines are essentially wrappers around the generic DMA service routines and are defined in include/asm-
generic/pci-dma-compat.h. In this chapter, we use only the PCI DMA API.

The kernel provides two classes of DMA service routines to PCI drivers:

Consistent (or coherent) DMA access methods. These routines guarantee data coherency in the face of
DMA activity. If both the PCI device and the CPU are likely to frequently operate on a DMA buffer,
consistency is crucial, so use the consistent API. The trade-off is a degree of performance penalty. To
obtain a consistent DMA buffer, call this service routine:

void *pci_alloc_consistent(struct pci_dev *pdev,
 size_t size,

 dma_addr_t *dma_handle);

This function allocates a DMA buffer, generates its bus address, and returns the associated kernel virtual
address. The first two arguments respectively hold the PCI device structure (which is discussed later) and
the size of the requested DMA buffer. The third argument, dma_handle, is a pointer to the bus address
that the function call generates. The following snippet allocates and frees a consistent DMA buffer:

/* Allocate */

void *vaddr = pci_alloc_consistent(pdev, size,
 &dma_handle);

/* Use */

/* ... */
/* Free */

pci_free_consistent(pdev, size, vaddr, dma_handle);

1.

Streaming DMA access methods. These routines do not guarantee consistency and are faster as a result.
They are useful when there is not much need for shared access between the CPU and the I/O device.
When a streamed buffer has been mapped for device access, the driver has to explicitly unmap (or sync) it
before the CPU can reliably operate on it. There are two families of streaming access routines:
pci_[map|unmap|dma_sync]_single() and pci_[map|unmap|dma_sync]_sg().

The first function family maps, unmaps, and synchronizes a single preallocated DMA buffer.
pci_map_single() is prototyped as follows:

dma_addr_t pci_map_single(struct pci_dev *pdev, void *ptr,

2.

 size_t size, int direction);

The first three arguments respectively hold the PCI device structure, the kernel virtual address of a
preallocated DMA buffer, and the size of the supplied buffer. The fourth argument, direction, can be one
of the following: PCI_DMA_BIDIRECTION, PCI_DMA_TODEVICE, PCI_DMA_FROMDEVICE, or PCI_DMA_NONE. The

names are self-explanatory, but the first option is expensive, and the last is for debugging. We discuss
streamed DMA mapping further when we develop an example driver later.

The second function family maps, unmaps, and synchronizes a scatter-gather list of DMA buffers.
pci_map_sg() is prototyped as follows:

int pci_map_sg(struct pci_dev *pdev,

 struct scatterlist *sgl,

 int num_entries, int direction);

The scattered list is specified using the second argument, struct scatterlist, defined in include/asm-

your-arch/scatterlist.h. num_entries is the number of entries in the scatterlist. The first and last
arguments are the same as that described for pci_map_single(). The function returns the number of

mapped entries:

num_mapped = pci_map_sg(pdev, sgl, num_entries,
 PCI_DMA_TODEVICE);
for (i=0; i<num_mapped; i++) {

 /* sg_dma_address(&sgl[i]) returns the bus address
 of this entry */

 /* sg_dma_len(&sgl[i]) returns the length of this region
 */

}

Let's summarize the characteristics of coherent and streaming DMA to help you decide their suitability for your
usage scenario:

Coherent mappings are simple to code but expensive to use. Streaming mappings have the reverse
characteristic.

Coherent mappings are preferred when both the CPU and the I/O device need to frequently manipulate
the DMA buffer. This is usually the case for synchronous DMA. An example is the frame buffer driver
mentioned previously, where each DMA operates on the same buffer. Because the CPU and the video
controller are constantly accessing the frame buffer, it makes sense to use coherent mappings in this
situation.

Use streaming mappings when the I/O device owns the buffer for long durations. Streamed DMA is
common for asynchronous operation when each DMA operates on a different buffer. An example is a
network driver, where the buffers that carry transmit packets are mapped and unmapped on-the-fly.

DMA descriptors are good candidates for coherent mapping. DMA descriptors contain metadata about DMA
buffers such as their address and length and are frequently accessed by both the CPU and the device.
Mapping descriptors on-the-fly is expensive because that entails frequent unmappings and remappings (or
sync operations).

Device Example: Ethernet-Modem Card

Armed with the knowledge acquired so far, let's venture to write a skeletal device driver for a fictitious Ethernet-
Modem dual-function CardBus card and see how it can be used for networking on a LAN and for establishing a
dialup connection to an Internet service provider. You will essentially need one device driver per supported
function. Assuming you already have a serial driver (we learned to write serial drivers in Chapter 6, "Serial
Drivers") and an Ethernet driver (we will learn to implement network drivers in Chapter 15) that support the
chipsets used on the card, let's tinker with those drivers and get them to work with the CardBus interface. The
example here is generic but is loosely based on the kernel driver for the Xircom card that we used previously.
The Ethernet and modem portions of the Xircom driver live separately in drivers/net/tulip/xircom_cb.c and
drivers/serial/8250_pci.c, respectively.

Initializing and Probing

PCI drivers use an array of pci_device_id structures defined in include/linux/mod_devicetable.h to describe
the identity of the cards they support:

struct pci_device_id {
 __u32 vendor, device; /* Vendor and Device IDs */

 __u32 subvendor, subdevice; /* Subvendor and Subdevice IDs */
 __u32 class, classmask; /* Class and class mask */

 kernel_ulong_t driver_data; /* Private data */
};

The semantics of the first six fields in pci_device_id conform to the PCI parlance discussed previously. The last
field driver_data is private to the driver and is commonly used to co-relate configuration information if the
driver supports multiple cards.

The Ethernet-Modem card has a device ID and a configuration space corresponding to each of its two functions.
Because the two card functions are unconnected, you need separate PCI drivers to handle them. The
drivers/net/ directory is a good place to hold the Ethernet driver, and drivers/serial/ is the right location to place
its serial counterpart. The Ethernet driver in Listing 10.1 supports the network function and announces a set of
associated IDs in its pci_device_id table. The serial driver in Listing 10.2 is similar, except that it's responsible
for the modem function. The associated class codes and class masks are left unstated by both drivers because
the vendor ID/device ID combination itself uniquely identifies their functionality.

The PCI subsystem provides macros such as PCI_DEVICE() and PCI_DEVICE_CLASS() to ease the creation of the

pci_device_id table. PCI_DEVICE(), for example, creates a pci_device_id element from the specified vendor
ID and device ID. So you may rewrite network_device_pci_table in Listing 10.1 as follows:

struct pci_device_id network_driver_pci_table[] __devinitdata = {
 {PCI_DEVICE(MY_VENDOR_ID, MY_DEVICE_ID_NET)

 .driver_data = (unsigned long)network_driver_private_data},

 {0},

};

The MODULE_DEVICE_TABLE() macro in Listing 10.1 and Listing 10.2 marks the pci_device_id table in the

module image. This information loads the module on demand when the CardBus card is inserted. We explored
this mechanism in the section "Module Autoload" in Chapter 4, "Laying the Groundwork," and used it in the
context of pcmcia_device_id in Chapter 9, "PCMCIA and Compact Flash."

When the PCI hotplug layer senses the presence of a card with properties matching the ones announced by the

pci_device_id table of a driver, it invokes the probe() method belonging to that driver. This gives an

opportunity to the driver to claim the card. Obviously, PCI drivers have to associate their pci_device_id table

with their probe() method. This tie up is achieved by the pci_driver structure that drivers register with the
PCI subsystem during initialization. To perform this registration, drivers call pci_register_driver().

Listing 10.1. Registering the Network Function

Code View:
#include <linux/pci.h>

#define MY_VENDOR_ID 0xABCD

#define MY_DEVICE_ID_NET 0xEF01

/* The set of PCI cards that this driver supports. Only a single

 entry in our case. Look at include/linux/mod_devicetable.h for

 the definition of pci_device_id */

struct pci_device_id network_driver_pci_table[] __devinitdata = {

{

 { MY_VENDOR_ID, /* Interface chip manufacturer ID */

 MY_DEVICE_ID_NET, /* Device ID for the network

 function */

 PCI_ANY_ID, /* Subvendor ID wild card */

 PCI_ANY_ID, /* Subdevice ID wild card */

 0, 0, /* class and classmask are

 unspecified */

 network_driver_private_data /* Use this to co-relate

 configuration information if the

 driver supports multiple

 cards. Can be an enumerated type. */

 }, {0},

};

/* struct pci_driver is defined in include/linux/pci.h */

struct pci_driver network_pci_driver = {

 .name = "ntwrk", /* Unique name */

 .probe = net_driver_probe, /* See Listing 10.3 */

 .remove = __devexit_p(net_driver_remove),/* See Listing 10.3 */

 .id_table = network_driver_pci_table, /* See above */

 /* suspend() and resume() methods that implement power

 management are not used by this driver */

};

/* Ethernet driver initialization */

static int __init

network_driver_init(void)

{

 pci_register_driver(&network_pci_driver);

 return 0;

}

/* Ethernet driver exit */

static void __exit

network_driver_exit(void)

{

 pci_unregister_driver(&network_pci_driver);

}

module_init(network_driver_init);

module_exit(network_driver_exit);

MODULE_DEVICE_TABLE(pci, network_driver_pci_table);

Listing 10.2. Registering the Modem Function

Code View:
#include <linux/pci.h>

#define MY_VENDOR_ID 0xABCD

#define MY_DEVICE_ID_MDM 0xEF02

/* The set of PCI cards that this driver supports */

struct pci_device_id modem_driver_pci_table[] __devinitdata = {

{

 { MY_VENDOR_ID, /* Interface chip manufacturer ID */

 MY_DEVICE_ID_MDM, /* Device ID for the modem

 function */

 PCI_ANY_ID, /* Subvendor ID wild card */

 PCI_ANY_ID, /* Subdevice ID wild card */

 0, 0, /* class and classmask are

 unspecified */

 modem_driver_private_data /* Use this to co-relate

 configuration information if the driver

 supports multiple cards. Can be an

 enumerated type. */

 }, {0},

};

struct pci_driver modem_pci_driver = {

 .name = "mdm", /* Unique name */

 .probe = modem_driver_probe, /* See Listing 10.4 */

 .remove = __devexit_p(modem_driver_remove),/* See Listing 10.4 */

 .id_table = modem_driver_pci_table, /* See above */

 /* suspend() and resume() methods that implement power

 management are not used by this driver */

};

/* Modem driver initialization */

static int __init

modem_driver_init(void)

{

 pci_register_driver(&modem_pci_driver);

 return 0;

}

/* Modem driver exit */

static void __exit

modem_driver_exit(void)

{

 pci_unregister_driver(&modem_pci_driver);

}

module_init(modem_driver_init);

module_exit(modem_driver_exit);

MODULE_DEVICE_TABLE(pci, modem_driver_pci_table);

Listing 10.3 implements the probe() method for the network function. This

Enables the PCI device

Discovers resource information such as I/O base addresses and IRQ

Allocates and populates a networking data structure associated with this device

Registers itself with the kernel networking layer

Listing 10.4 performs similar work for the modem function. In this case, the driver registers with the kernel
serial layer instead of the networking layer.

Listings 10.3 and 10.4 also implement remove() methods, which are invoked when the CardBus card is ejected
or when the driver module is unloaded. remove() is the reverse of probe(); it frees resources and unregisters

the driver from relevant subsystems. The __devexit_p() macro that Listing 10.1 uses to declare the remove()
method discards the supplied function at compile time if you haven't enabled hotplug support and if the driver is
not a dynamically loadable module.

The PCI subsystem calls probe() with two arguments:

A pointer to pci_dev, the data structure that describes this PCI device. This structure, defined in
include/linux/pci.h, is maintained by the PCI subsystem for each PCI device on your system.

1.

A pointer to pci_device_id, the entry in the driver's pci_device_id table that matches the information
found in the configuration space of the inserted card.

2.

Listing 10.3. Probing the Network Function

Code View:
#include <linux/pci.h>

unsigned long ioaddr;

/* Probe method */

static int __devinit

net_driver_probe(struct pci_dev *pdev,

 const struct pci_device_id *id)

{

 /* The net_device structure is defined in include/linux/netdevice.h.

 See Chapter 15, "Network Interface Cards", for the description */

 struct net_device *net_dev;

 /* Ask low-level PCI code to enable I/O and memory regions for

 this device. Look up the IRQ for the device that the PCI

 subsystem allotted when it walked the bus */

 pci_enable_device(pdev);

 /* Use this device in bus mastering mode, since the network

 function of this card is capable of DMA */

 pci_set_master(pdev);

 /* Allocate an Ethernet interface and fill in generic values in

 the net_dev structure. prv_data is the private driver data

 structure that contains buffers, locks, and so on. This is

 left undefined. Wait until Chapter 15 for more on

 alloc_etherdev() */

 net_dev = alloc_etherdev(sizeof(struct prv_data));

 /* Populate net_dev with your network device driver methods */

 net_dev->hard_start_xmit = &mydevice_xmit; /* See Listing 10.6 */

 /* More net_dev initializations */

 /* ... */

 /* Get the I/O address for this PCI region. All card registers

 specified in Table 10.3 are assumed to be in bar 0 */

 ioaddr = pci_resource_start(pdev, 0);

 /* Claim a 128-byte I/O region */

 request_region(ioaddr, 128, "ntwrk");

 /* Fill in resource information obtained from the PCI layer */

 net_dev->base_addr = ioaddr;

 net_dev->irq = pdev->irq;

 /* ... */

 /* Setup DMA. Defined in Listing 10.5 */

 dma_descriptor_setup(pdev);

 /* Register the driver with the network layer. This will allot

 an unused ethX interface */

 register_netdev(net_dev);

 /* ... */

}

/* Remove method */

static void __devexit

net_driver_remove(struct pci_dev *pdev)

{

 /* Free transmit and receive DMA buffers.

 Defined in Listing 10.5 */

 dma_descriptor_release(pdev);

 /* Release memory regions */

 /* ... */

 /* Unregister from the networking layer */

 unregister_netdev(dev);

 free_netdev(dev);

 /* ... */

}

Listing 10.4. Probing the Modem Function

Code View:
/* Probe method */

static int __devinit

modem_driver_probe(struct pci_dev *pdev,

 const struct pci_device_id *id)

{

 struct uart_port port; /* See Chapter 6, "Serial Drivers" */

 /* Ask low-level PCI code to enable I/O and memory regions

 for this PCI device */

 pci_enable_device(pdev);

 /* Get the PCI IRQ and I/O address to be used and populate the

 uart_port structure (see Chapter 6) with these resources. Look at

 include/linux/pci.h for helper functions */

 /* ... */

 /* Register this information with the serial layer and get an

 unused ttySX port allotted to the card. Look at Chapter 6 for

 more on serial drivers */

 serial8250_register_port(&port);

 /* ... */

}

/* Remove method */

static void __devexit

modem_driver_remove(struct pci_dev *dev)

{

 /* Unregister the port from the serial layer */

 serial8250_unregister_port(&port);

 /* Disable device */

 pci_disable_device(dev);

}

To recap, let's trace the code path from the time you insert the Ethernet-Modem CardBus card until you are
allotted a network interface (ethX) and a serial port (/dev/ttySX):

For each supported CardBus function, the corresponding driver initialization routine registers a
pci_device_id table of supported cards and a probe() routine. This is shown in Listing 10.1 and Listing
10.2.

1.

2.

The PCI hotplug layer detects card insertion and gleans the vendor ID and device ID of each device
function from the card's PCI configuration space.

2.

Because the IDs match with those registered by the card's Ethernet and serial drivers, the corresponding
probe() methods are invoked. This results in the invocation of net_driver_probe() and

modem_driver_probe() described respectively in Listing 10.3 and Listing 10.4.

3.

The probe() methods configure the Ethernet and modem portions of the PCI driver with resource

information. This leads to the allocation of a networking interface (ethX) and a serial port (ttySX) to the
card. From this point on, application data flows over these interfaces.

4.

Data Transfer

The network function belonging to the sample CardBus device uses the following strategy for data transfer: The
card expects the device driver to supply it with an array of two receive DMA descriptors and an array of two
transmit DMA descriptors. Each DMA descriptor contains the address of an associated data buffer, its length,
and a control word. You can use the control word to tell the device whether the descriptor contains valid data.
For a transmit descriptor, you may also program it to request an interrupt after data transmission. The card
looks for a valid descriptor and DMA's data to/from the associated data buffer. To suit this elementary scheme,
the example driver uses only the coherent DMA interface. The driver coherently allocates a large buffer that
holds the descriptors and their associated data buffers. The receive and transmit buffers are 1536 bytes long to
match the maximum transmission unit (MTU) of Ethernet frames. The descriptors and buffers are pictorially
shown in Figure 10.2. The top 24 bytes of each array in the figure hold two 12-byte DMA descriptors, and the
rest of the memory is occupied by two 1536-byte DMA buffers. The 12-byte descriptor layout shown in the
figure is assumed to match the format specified in the card's data sheet.

Figure 10.2. DMA descriptors and buffers for the CardBus device.

Table 10.3 shows the register layout of the card's network function.

Table 10.3. Register Layout of the Card's Network Function

Register Name Description Offset into I/O Space

DMA_RX_REGISTER Holds the bus address of the receive DMA
descriptor array (dma_bus_rx)

0x0

DMA_TX_REGISTER Holds the bus address of the transmit DMA
descriptor array (dma_bus_tx)

0x4

CONTROL_REGISTER Control word that commands the card to initiate
DMA, stop DMA, and so on

0x8

Listing 10.5. Setting Up DMA Descriptors and Buffers

Code View:
/* Device-specific data structure for the Ethernet Function */

struct device_data {

 struct pci_dev *pdev; /* The PCI Device structure */

 struct net_device *ndev; /* The Net Device structure */

 void *dma_buffer_rx; /* Kernel virtual address of the

 receive descriptor */

 dma_addr_t dma_bus_rx; /* Bus address of the receive

 descriptor */

 void *dma_buffer_tx; /* Kernel virtual address of the

 transmit descriptor */

 dma_addr_t dma_bus_tx; /* Bus address of the transmit

 descriptor */

 /* ... */

 spin_lock_t device_lock; /* Serialize */

} *mydev_data;

/* On-card registers related to DMA */

#define DMA_RX_REGISTER_OFFSET 0x0 /* Offset of the register

 holding the bus address

 of the RX descriptor */

#define DMA_TX_REGISTER_OFFSET 0x4 /* Offset of the register

 holding the bus address

 of the TX descriptor */

#define CONTROL_REGISTER 0x8 /* Offset of the control

 register */

/* Control Register Defines */

#define INITIATE_XMIT 0x1

/* Descriptor control word definitions */

#define FREE_FLAG 0x1 /* Free Descriptor */

#define INTERRUPT_FLAG 0x2 /* Assert interrupt after DMA */

/* Invoked from Listing 10.3 */

static void

dma_descriptor_setup(struct pci_dev *pdev)

{

 /* Allocate receive DMA descriptors and buffers */

 mydev_data->dma_buffer_rx =

 pci_alloc_consistent(pdev, 3096, &mydev_data->dma_bus_rx);

 /* Fill the two receive descriptors as shown in Figure 10.2 */

 /* RX descriptor 1 */

 mydev_data->dma_buffer_rx[0] = cpu_to_le32((unsigned long)

 (mydev_data->dma_bus_rx + 24)); /* Buffer address */

 mydev_data->dma_buffer_rx[1] = 1536; /* Buffer length */

 mydev_data->dma_buffer_rx[2] = FREE_FLAG; /* Descriptor is free */

 /* RX descriptor 2 */

 mydev_data->dma_buffer_rx[3] = cpu_to_le32((unsigned long)

 (mydev_data->dma_bus_rx + 1560)); /* Buffer address */

 mydev_data->dma_buffer_rx[4] = 1536; /* Buffer length */

 mydev_data->dma_buffer_rx[5] = FREE_FLAG; /* Descriptor is free */

 wmb(); /* Write Memory Barrier */

 /* Write the address of the receive descriptor to the appropriate

 register in the card. The I/O base address, ioaddr, was populated

 in Listing 10.3 */

 outl(cpu_to_le32((unsigned long)mydev_data->dma_bus_rx),

 ioaddr + DMA_RX_REGISTER_OFFSET);

 /* Allocate transmit DMA descriptors and buffers */

 mydev_data->dma_buffer_tx =

 pci_alloc_consistent(pdev, 3096, &mydev_data->dma_bus_tx);

 /* Fill the two transmit descriptors as shown in Figure 10.2 */

 /* TX descriptor 1 */

 mydev_data->dma_buffer_tx[0] = cpu_to_le32((unsigned long)

 (mydev_data->dma_bus_tx + 24)); /* Buffer address */

 mydev_data->dma_buffer_tx[1] = 1536; /* Buffer length */

 /* Valid descriptor. Generate an interrupt

 after completing the DMA */

 mydev_data->dma_buffer_tx[2] = (FREE_FLAG | INTERRUPT_FLAG);

 /* TX descriptor 2 */

 mydev_data->dma_buffer_tx[3] = cpu_to_le32((unsigned long)

 (mydev_data->dma_bus_tx + 1560)); /* Buffer address */

 mydev_data->dma_buffer_tx[4] = 1536; /* Buffer length */

 mydev_data->dma_buffer_tx[5] = (FREE_FLAG | INTERRUPT_FLAG);

 wmb(); /* Write Memory Barrier */

 /* Write the address of the transmit descriptor to the appropriate

 register in the card. The I/O base, ioaddr, was populated in

 Listing 10.3 */

 outl(cpu_to_le32((unsigned long)mydev_data->dma_bus_tx),

 ioaddr + DMA_TX_REGISTER_OFFSET);

}

/* Invoked from Listing 10.3 */

static void

dma_descriptor_release(struct pci_dev *pdev)

{

 pci_free_consistent(pdev, 3096, mydev_data->dma_bus_tx);

 pci_free_consistent(pdev, 3096, mydev_data->dma_bus_rx);

}

Listing 10.5 enforces a write barrier by calling wmb() to prevent the CPU from reordering the outl() before

populating the DMA descriptor. On an x86 processor, wmb() reduces to a NOP because Intel CPUs enforce writes
in program order. When writing the DMA descriptor address to the card and when populating the buffer's bus
address inside the DMA descriptor, the driver converts the native byte order to PCI little-endian format using
cpu_to_le32(). On Intel CPUs, this again has no effect because both PCI and Intel processors communicate in

little-endian. On several other architectures, for example, an ARM9 CPU running in the big-endian mode, both
wmb() and cpu_to_le32() assume significance.

Now that you have the descriptors and buffers mapped and ready to go, it's time to look at how data is
exchanged between the system and the CardBus device, as shown in Listing 10.6. We won't dwell on the
network interfaces and networking data structures because Chapter 15 is devoted to doing that.

Listing 10.6. Receiving and Transmitting Data

Code View:
/* The interrupt handler */

static irqreturn_t

mydevice_interrupt(int irq, void *devid)

{

 struct sk_buff *skb;

 /* ... */

 /* If this is a receive interrupt, collect the packet and pass it

 on to higher layers. Look at the control word in each RX DMA

 descriptor to figure out whether it contains data. Assume for

 convenience that the first RX descriptor was used by the card

 to DMA this received packet */

 packet_size = mydev_data->dma_buffer_rx[1];

 /* In real world drivers, the sk_buff is pre-allocated, stream-

 mapped, and supplied to the card after setting the FREE_FLAG

 during device open(). The received data is directly

 DMA'ed to this sk_buff instead of the memcpy() performed here,

 as you will learn in Chapter 15. The card clears the FREE_FLAG

 before the DMA */

 skb = dev_alloc_skb(packet_size); /* See Figure 15.2 of Chapter 15 */

 skb->dev = mydev_data->ndev; /* Owner network device */

 memcpy(skb, mydev_data->dma_buffer_rx[24], packet_size);

 /* Pass the received data to higher-layer protocols */

 skb_put(skb, packet_size);

 netif_rx(skb);

 /* ... */

 /* Make the descriptor available to the card again */

 mydev_data->dma_buffer_rx[2] |= FREE_FLAG;

}

/* This function is registered in Listing 10.3 and is called from

 the networking layer. More on network device interfaces in

 Chapter 15 */

static int

mydevice_xmit(struct sk_buff *skb, struct net_device *dev)

{

 /* Use a valid TX descriptor. Look at Figure 10.2 */

 /* Locking has been omitted for simplicity */

 if (mydev_data->dma_buffer_tx[2] & FREE_FLAG) {

 /* Use first TX descriptor */

 /* In the real world, DMA occurs directly from the sk_buff as

 you will learn later on! */

 memcpy(mydev_data->dma_buffer_tx[24], skb->data, skb->len);

 mydev_data->dma_buffer_tx[1] = skb->len;

 mydev_data->dma_buffer_tx[2] &= ~FREE_FLAG;

 mydev_data->dma_buffer_tx[2] |= INTERRUPT_FLAG;

 } else if (mydev_data->dma_buffer[5] & FREE_FLAG) {

 /* Use second TX descriptor */

 memcpy(mydev_data->dma_buffer_tx[1560], skb->data, skb->len);

 mydev_data->dma_buffer_tx[4] = skb->len;

 mydev_data->dma_buffer_tx[5] &= ~FREE_FLAG;

 mydev_data->dma_buffer_tx[5] |= INTERRUPT_FLAG;

 } else {

 return –EIO; /* Signal error to the caller */

 }

 wmb(); /* Don't reorder writes across this barrier */

 /* Ask the card to initiate DMA. ioaddr is defined

 in Listing 10.3 */

 outl(INITIATE_XMIT, ioaddr + CONTROL_REGISTER);

}

When the CardBus device receives an Ethernet packet, it DMAs it to a free RX descriptor and interrupts the CPU.
The interrupt handler mydevice_interrupt() collects the packet from the receive DMA buffer, copies it to a
networking data structure (sk_buff), and passes it on to higher protocol layers.

The transmit routine my_device_xmit() is responsible for initiating DMA in the reverse direction. It DMAs

transmit packets to card memory. For this, my_device_xmit() chooses a TX DMA descriptor that is unused by

the card (or whose FREE_FLAG is set) and uses the associated transmit buffer for data transfer. FREE_FLAG is
cleared soon after, signaling that the descriptor now belongs to the card. The descriptor is released in the
interrupt handler (FREE_FLAG is set again) when the card asserts an interrupt after completing the transmit (not

shown in Listing 10.6).

This example driver uses a simplified buffer management scheme that is not performance-sensitive. High-speed
network drivers implement a more elaborate plan that employs a combination of coherent and streaming DMA
mappings. They maintain linked lists of transmit and receive descriptors and implement free and in-use pools
for buffer management. Their receive and transmit data structures look like this:

Code View:
/* Ring of receive buffers */

struct rx_list {

 void *dma_buffer_rx; /* Kernel virtual address of the
 transmit descriptor */

 dma_addr_t dma_bus_rx; /* Bus address of the transmit

 descriptor */
 unsigned int size; /* Buffer size */

 struct list_head next_desc; /* Pointer to the next element */
 struct sk_buff *skb; /* Network Packet */

 dma_addr_t sk_bus; /* Bus address of network packet */
} *rxlist;

/* Ring of transmit buffers */
struct tx_list {

 void *dma_buffer_tx; /* Kernel virtual address of the
 receive descriptor */

 dma_addr_t dma_bus_tx; /* Bus address of the transmit
 descriptor */

 unsigned int size; /* Buffer size */
 struct list_head next_desc; /* Pointer to the next element */

 struct sk_buff *skb; /* Network Packet */
 dma_addr_t sk_bus; /* Bus address of network packet */

} *txlist;

The receive and transmit DMA descriptors (rxlist->dma_buffer_rx and txlist->dma_buffer_tx) are mapped

coherently as done in Listing 10.5. The payload buffers (rxlist->skb->data and txlist->skb->data) are,
however, mapped using streaming DMA. The receive buffers are preallocated and stream mapped into a free
pool during device open, while the transmit buffers are mapped on-the-fly. This avoids the extra data copy
performed by mydevice_interrupt() from the coherently mapped receive DMA buffer to the network buffer

(and the extra copy done by mydevice_xmit() in the reverse direction).

Code View:
/* Preallocating/replenishing receive buffers. Also see the section, "Buffer

 Management and Concurrency Control" in Chapter 15 */

/* ... */

struct sk_buff *skb = dev_alloc_skb();
skb_reserve(skb, NET_IP_ALIGN);

/* Map using streaming DMA */

rxlist->sk_bus = pci_map_single(pdev, rxlist->skb->data,
 rxlist->skb->len, PCI_DMA_TODEVICE);

/* Allocate a DMA descriptor and populate it with the address mapped

 above. Add the descriptor to the receive descriptor ring */

/* ... */

Debugging

Enable Bus Options PCI Support PCI Debugging in the kernel configuration menu to ask the PCI core to
emit debug messages. Explore /proc/bus/pci/devices and /sys/devices/pciX:Y/ for information about PCI devices
on your system such as the CardBus Ethernet-Modem card discussed in this chapter. /proc/interrupts lists IRQs
active on your system, including those used by the PCI layer.

As you saw, lspci gleans information about all PCI buses and devices on your system. You may also use it to
dump the configuration space of PCI cards.

A PCI bus analyzer can help debug low-level problems and tune performance.

Looking at the Sources

PCI core and bus access routines live in drivers/pci/. To obtain a list of helper routines offered by the PCI
subsystem, search for EXPORT_SYMBOL inside this directory. For definitions and prototypes related to the PCI
layer, look at include/linux/pci*.h.

You can spot several PCI device drivers in subdirectories under drivers/net/, drivers/scsi/, and drivers/video/. To
locate all PCI drivers, recursively grep the drivers/ tree for pci_register_driver().

If you do not find a good starting point to develop a custom PCI network driver, begin with the skeletal PCI
network driver drivers/net/pci-skeleton.c. For a brief tutorial on PCI programming, look at
Documentation/pci.txt. For a description of the PCI DMA API, read Documentation/DMA-mapping.txt.

Table 10.4 summarizes the main data structures used in this chapter. Table 10.5 lists the main kernel
programming interfaces that you used in this chapter along with the location of their definitions.

Table 10.4. Summary of Data Structures

Data Structure Location Description

pci_dev include/linux/pci.h Representation of a PCI device

pci_driver include/linux/pci.h Representation of a PCI driver

pci_device_id include/linux/mod_devicetable.h Identity of a PCI card

dma_addr_t include/asm-your-arch/types.h Bus address of a DMA buffer

scatterlist include/asm-your-arch/scatterlist.h Scatter-gather list of DMA
buffers

sk_buff include/linux/skbuff.h Main networking data structure
(see Chapter 15 for more
explanations)

Table 10.5. Summary of Kernel Programming Interfaces

Kernel Interface Location Description

pci_read_config_byte()

pci_read_config_word()

pci_read_config_dword()
pci_write_config_byte()

pci_write_config_word()

pci_write_config_dword()

include/linux/pci.h
drivers/pci/access.c

Routines to operate on the PCI
configuration space.

pci_resource_start()

pci_resource_len()

pci_resource_end()
pci_resource_flags()

include/linux/pci.h These routines operate on PCI
I/O and memory regions to
obtain the base address, length,
end address, and control flags.

pci_request_region() drivers/pci/pci.c Reserves PCI I/O or memory
regions.

Kernel Interface Location Description

ioremap()

ioremap_nocache()
pci_iomap()

include/asm-your-
arch/io.h

arch/your-
arch/mm/ioremap.c

lib/iomap.c

Obtains CPU access to device
memory.

pci_set_dma_mask() drivers/pci/pci.c If this function returns success,
you may DMA to any address
within the mask specified as
argument.

pci_alloc_consistent() include/asm-
generic/pci-dma-
compat.h include/asm-
your-arch/dma-
mapping.h

Obtains a cache-coherent DMA
buffermapping.

pci_free_consistent() include/asm-
generic/pci-dma-
compat.h include/asm-
your-arch/dma-
mapping.h

Unmaps a cache-coherent DMA
buffer.

pci_map_single() include/asm-
generic/pci-dma-
compat.h include/asm-
your-arch/dma-
mapping.h

Obtains a streaming DMA buffer
mapping.

pci_unmap_single() include/asm-
generic/pci-dma-
compat.h include/asm-
your-arch/dma-
mapping.h

Unmaps a streaming DMA buffer.

pci_dma_sync_single() include/asm-
generic/pci-dma-
compat.h include/asm-
your-arch/dma-
mapping.h

Synchronizes a streaming DMA
buffer so that the CPU can
reliably operate on it.

pci_map_sg()

pci_unmap_sg()
pci_dma_sync_sg()

include/asm-
generic/pci-dma-
compat.h include/asm-
your-arch/dma-
mapping.h

Maps/unmaps/synchronizes a
scatter-gather list of streaming
DMA buffers.

pci_register_driver() include/linux/pci.h
drivers/pci/pci-driver.c

Registers a driver with the PCI
core.

pci_unregister_driver() drivers/pci/pci-driver.c Unregisters a driver from the PCI
core.

pci_enable_device() drivers/pci/pci.c Asks low-level PCI code to
enable I/O and memory regions
for this device.

ioremap()

ioremap_nocache()
pci_iomap()

include/asm-your-
arch/io.h

arch/your-
arch/mm/ioremap.c

lib/iomap.c

Obtains CPU access to device
memory.

pci_set_dma_mask() drivers/pci/pci.c If this function returns success,
you may DMA to any address
within the mask specified as
argument.

pci_alloc_consistent() include/asm-
generic/pci-dma-
compat.h include/asm-
your-arch/dma-
mapping.h

Obtains a cache-coherent DMA
buffermapping.

pci_free_consistent() include/asm-
generic/pci-dma-
compat.h include/asm-
your-arch/dma-
mapping.h

Unmaps a cache-coherent DMA
buffer.

pci_map_single() include/asm-
generic/pci-dma-
compat.h include/asm-
your-arch/dma-
mapping.h

Obtains a streaming DMA buffer
mapping.

pci_unmap_single() include/asm-
generic/pci-dma-
compat.h include/asm-
your-arch/dma-
mapping.h

Unmaps a streaming DMA buffer.

pci_dma_sync_single() include/asm-
generic/pci-dma-
compat.h include/asm-
your-arch/dma-
mapping.h

Synchronizes a streaming DMA
buffer so that the CPU can
reliably operate on it.

pci_map_sg()

pci_unmap_sg()
pci_dma_sync_sg()

include/asm-
generic/pci-dma-
compat.h include/asm-
your-arch/dma-
mapping.h

Maps/unmaps/synchronizes a
scatter-gather list of streaming
DMA buffers.

pci_register_driver() include/linux/pci.h
drivers/pci/pci-driver.c

Registers a driver with the PCI
core.

pci_unregister_driver() drivers/pci/pci-driver.c Unregisters a driver from the PCI
core.

pci_enable_device() drivers/pci/pci.c Asks low-level PCI code to
enable I/O and memory regions
for this device.

Kernel Interface Location Description

pci_disable_device() drivers/pci/pci.c Reverse of
pci_enable_device().

pci_set_master() drivers/pci/pci.c Sets the device in DMA bus-
mastering mode.

pci_disable_device() drivers/pci/pci.c Reverse of
pci_enable_device().

pci_set_master() drivers/pci/pci.c Sets the device in DMA bus-
mastering mode.

Chapter 11. Universal Serial Bus

In This Chapter

USB Architecture

312

Linux-USB Subsystem

317

Driver Data Structures

317

Enumeration
324

Device Example: Telemetry Card

324

Class Drivers
338

Gadget Drivers

348

Debugging
349

Looking at the Sources
351

Universal serial bus (USB) is the de facto external bus in today's computers. USB, with its support
for hotplugging, generic class drivers, and versatile data-transfer modes, is the usual route in the
consumer electronics space to bring a diverse spectrum of technologies to computer systems. Its
sweeping popularity and the accompanying economics of volume have played a part in fueling the
adoption and acceptance of computer peripheral technologies around the world.

USB Architecture

USB is a master-slave protocol where a host controller communicates with client devices. Figure 11.1 shows
USB in the PC environment. The USB host controller is part of the South Bridge chipset and communicates with
the processor over the PCI bus.

Figure 11.1. USB in the PC environment.

Figure 11.2 illustrates USB on an embedded device. The SoC in the figure has built-in USB controller silicon that
supports four buses and three modes of operation:

Bus 1 runs in host mode and is wired to an A-type receptacle via a USB transceiver (see the sidebar "USB
Receptacles and Transceivers"). You can connect a USB pen drive or a keyboard to this port.

Bus 2 also functions in host mode but the associated transceiver is connected to an internal USB device
rather than to a receptacle. Examples of internal USB devices are biometric scanners, cryptographic
engines, printers, Disk-On-Chips (DOCs), touch controllers, and telemetry cards.

Bus 3 runs in device mode and is wired to a B-type receptacle through a transceiver. The B-type
receptacle connects to a host computer via a B-to-A cable. In this mode, the embedded device functions
as, for example, a USB pen drive, and exports a storage partition to the outside world. Embedded devices
such as MP3 players and cell phones are more likely than PC systems to be at the device side of USB, so
many embedded SoCs support a USB device controller in addition to a host controller.

Bus 4 is driven by an On-The-Go (OTG) controller. You can use this port, for example, to either connect a
pen drive to your system or to turn your system into a pen drive and connect it to a host. Unlike buses 1

to 3, bus 4 uses an intelligent transceiver that exchanges control information with the processor over I2C.
The transceiver is wired to a Mini-AB OTG receptacle. If two embedded devices support OTG, they can
directly communicate without the intervention of a host computer.

Figure 11.2. USB on an embedded system.

[View full size image]

Most of this chapter is written from the perspective of a system residing at the host-side of USB. We briefly look
at the device function in the section "Gadget Drivers." Mainstream host controller drivers (HCDs) are already
available, so in this chapter we further confine ourselves to drivers for USB devices (also called client drivers).

USB Receptacles and Transceivers

USB hosts use four-pin A-type rectangular receptacles, whereas USB devices connect via four-pin
B-type square receptacles. In both cases, the four pins are differential data signals D+ and D-, a
voltage line VBUS, and ground. VBUS is used to supply power from USB hosts to USB devices.
VBUS is thus pulled high on an A connector but receives power on a B connector. USB OTG
controllers connect to five-pin Mini-AB rectangular receptacles having a smaller form factor. Four
of the Mini-AB pins are identical to what we discussed previously; the fifth is an ID pin used to
detect whether the connected peripheral is a host or a device.

The same transceiver chip (such as TUSB1105 from Texas Instruments) can be used on USB hosts
and devices. You may thus choose to use the same transceiver part on buses 1 through 3 in Figure
11.2. OTG requires a special-purpose transceiver chip (such as ISP1301 from Philips
Semiconductors), however.

Bus Speeds

USB supports three operational speeds. The original USB 1.0 specification supports 1.5MBps, referred to as low-
speed USB. USB 1.1, the next version of the specification, handles 12MBps, called full-speed USB. The current
level of the specification is USB 2.0, which supports 480MBps, or high-speed USB. USB 2.0 is backward-
compatible with the earlier versions of the specification. Peripherals such as USB keyboards and mice are
examples of low-speed devices, and USB storage drives are examples of full-speed and high-speed devices.
Today's PC systems are USB 2.0-compliant and allow all three target speeds, but some embedded controllers
adhere to USB 1.1 and support only full-speed and low-speed modes of operation.

Host Controllers

USB host controllers conform to one of a few standards:

Universal Host Controller Interface (UHCI): The UHCI specification was initiated by Intel, so your PC
is likely to have this controller if it's Intel-based.

Open Host Controller Interface (OHCI): The OHCI specification originated from companies such as
Compaq and Microsoft. An OHCI-compatible controller has more intelligence built in to hardware than
UHCI, so an OHCI HCD is relatively simpler than a UHCI HCD.

Enhanced Host Controller Interface (EHCI): This is the host controller that supports high-speed USB
2.0 devices. EHCI controllers usually have either a UHCI or OHCI companion controller to handle slower
devices.

USB OTG controllers: They are getting increasingly popular in embedded microcontrollers. With OTG
support, each communicating end can act as a dual-role device (DRD). By initiating a dialog using the
Host Negotiation Protocol (HNP), a DRD can switch itself to host mode or device mode based on the
desired functionality.

In addition to these mainstream USB host controllers, Linux supports a few more controllers. An example is the
HCD for the ISP116x chip.

Host controllers have a built-in hardware component called the root hub. The root hub is a virtual hub that
sources USB ports. The ports, in turn, can connect to external or internal physical hubs and source more ports,

yielding a tree topology.

Transfer Types

Data exchange with a USB device can be one of four types:

Control transfers, used to carry configuration and control information

Bulk transfers that ferry large quantities of time-insensitive data

Interrupt transfers that exchange small quantities of time-sensitive data

Isochronous transfers for real-time data at predictable bit rates

A USB storage drive, for example, uses control transfers to issue disk access commands and bulk transfers to
exchange data. A keyboard uses interrupt transfers to carry key strokes within predictable delays. A device that
needs to stream audio data in real time uses isochronous transfers. The responsibilities of the four transfer
types for USB Bluetooth devices are discussed in the section "Device Example: USB Adapter" in Chapter 16,
"Linux Without Wires."

Addressing

Each addressable unit in a USB device is called an endpoint. The address assigned to an endpoint is called an
endpoint address. Each endpoint address has an associated data transfer type. If an endpoint is responsible for
bulk data transfer, for example, it's called a bulk endpoint. Endpoint address 0 is used exclusively for device
configuration. A control pipe is attached to this endpoint for device enumeration (see the section
"Enumeration").

An endpoint can be associated with upstream or downstream data transfer. Data arriving upstream from a
device is called an IN transfer, whereas data flowing downstream to a device is an OUT transfer. IN and OUT

transfers own separate address spaces. So, you can have a bulk IN endpoint and a bulk OUT endpoint answering
to the same address.

USB resembles I2C on some counts and PCI on others as summarized in Table 11.1. USB's device addressing is
similar to I2C, while it supports hotplugging like PCI. USB device addresses, like standard I2C, do not consume a
portion of the CPU's address space. Rather, they reside in a private space ranging from 1 to 127.

Table 11.1. USB's Similarities with I2C and PCI

USB's similarities with I2C:

USB and I2C are master-slave protocols.

Device addresses reside in a private 7-bit space.

Device-resident memory is not mapped to the CPU's memory or I/O space, so it
does not consume CPU resources.

USB's similarities with PCI:

Devices can be hotplugged.

Device driver architecture resembles PCI drivers. Both classes of drivers own
probe()/disconnect()[1] methods and ID tables identifying the devices they

support.

Supports high speeds. Slower than PCI, however. See Table 10.1 in Chapter 10,
"Peripheral Component Interconnect," for the speeds supported by different
members of the PCI family.

USB host controllers, like PCI controllers, usually have built-in DMA engines that can
master the bus.

Supports multifunction devices. USB supports interface descriptors per function.
Each PCI device function has its own device ID and configuration space.

[1] disconnect() is called remove() in PCI parlance.

Chapter 11. Universal Serial Bus

In This Chapter

USB Architecture

312

Linux-USB Subsystem

317

Driver Data Structures

317

Enumeration
324

Device Example: Telemetry Card

324

Class Drivers
338

Gadget Drivers

348

Debugging
349

Looking at the Sources
351

Universal serial bus (USB) is the de facto external bus in today's computers. USB, with its support
for hotplugging, generic class drivers, and versatile data-transfer modes, is the usual route in the
consumer electronics space to bring a diverse spectrum of technologies to computer systems. Its
sweeping popularity and the accompanying economics of volume have played a part in fueling the
adoption and acceptance of computer peripheral technologies around the world.

USB Architecture

USB is a master-slave protocol where a host controller communicates with client devices. Figure 11.1 shows
USB in the PC environment. The USB host controller is part of the South Bridge chipset and communicates with
the processor over the PCI bus.

Figure 11.1. USB in the PC environment.

Figure 11.2 illustrates USB on an embedded device. The SoC in the figure has built-in USB controller silicon that
supports four buses and three modes of operation:

Bus 1 runs in host mode and is wired to an A-type receptacle via a USB transceiver (see the sidebar "USB
Receptacles and Transceivers"). You can connect a USB pen drive or a keyboard to this port.

Bus 2 also functions in host mode but the associated transceiver is connected to an internal USB device
rather than to a receptacle. Examples of internal USB devices are biometric scanners, cryptographic
engines, printers, Disk-On-Chips (DOCs), touch controllers, and telemetry cards.

Bus 3 runs in device mode and is wired to a B-type receptacle through a transceiver. The B-type
receptacle connects to a host computer via a B-to-A cable. In this mode, the embedded device functions
as, for example, a USB pen drive, and exports a storage partition to the outside world. Embedded devices
such as MP3 players and cell phones are more likely than PC systems to be at the device side of USB, so
many embedded SoCs support a USB device controller in addition to a host controller.

Bus 4 is driven by an On-The-Go (OTG) controller. You can use this port, for example, to either connect a
pen drive to your system or to turn your system into a pen drive and connect it to a host. Unlike buses 1

to 3, bus 4 uses an intelligent transceiver that exchanges control information with the processor over I2C.
The transceiver is wired to a Mini-AB OTG receptacle. If two embedded devices support OTG, they can
directly communicate without the intervention of a host computer.

Figure 11.2. USB on an embedded system.

[View full size image]

Most of this chapter is written from the perspective of a system residing at the host-side of USB. We briefly look
at the device function in the section "Gadget Drivers." Mainstream host controller drivers (HCDs) are already
available, so in this chapter we further confine ourselves to drivers for USB devices (also called client drivers).

USB Receptacles and Transceivers

USB hosts use four-pin A-type rectangular receptacles, whereas USB devices connect via four-pin
B-type square receptacles. In both cases, the four pins are differential data signals D+ and D-, a
voltage line VBUS, and ground. VBUS is used to supply power from USB hosts to USB devices.
VBUS is thus pulled high on an A connector but receives power on a B connector. USB OTG
controllers connect to five-pin Mini-AB rectangular receptacles having a smaller form factor. Four
of the Mini-AB pins are identical to what we discussed previously; the fifth is an ID pin used to
detect whether the connected peripheral is a host or a device.

The same transceiver chip (such as TUSB1105 from Texas Instruments) can be used on USB hosts
and devices. You may thus choose to use the same transceiver part on buses 1 through 3 in Figure
11.2. OTG requires a special-purpose transceiver chip (such as ISP1301 from Philips
Semiconductors), however.

Bus Speeds

USB supports three operational speeds. The original USB 1.0 specification supports 1.5MBps, referred to as low-
speed USB. USB 1.1, the next version of the specification, handles 12MBps, called full-speed USB. The current
level of the specification is USB 2.0, which supports 480MBps, or high-speed USB. USB 2.0 is backward-
compatible with the earlier versions of the specification. Peripherals such as USB keyboards and mice are
examples of low-speed devices, and USB storage drives are examples of full-speed and high-speed devices.
Today's PC systems are USB 2.0-compliant and allow all three target speeds, but some embedded controllers
adhere to USB 1.1 and support only full-speed and low-speed modes of operation.

Host Controllers

USB host controllers conform to one of a few standards:

Universal Host Controller Interface (UHCI): The UHCI specification was initiated by Intel, so your PC
is likely to have this controller if it's Intel-based.

Open Host Controller Interface (OHCI): The OHCI specification originated from companies such as
Compaq and Microsoft. An OHCI-compatible controller has more intelligence built in to hardware than
UHCI, so an OHCI HCD is relatively simpler than a UHCI HCD.

Enhanced Host Controller Interface (EHCI): This is the host controller that supports high-speed USB
2.0 devices. EHCI controllers usually have either a UHCI or OHCI companion controller to handle slower
devices.

USB OTG controllers: They are getting increasingly popular in embedded microcontrollers. With OTG
support, each communicating end can act as a dual-role device (DRD). By initiating a dialog using the
Host Negotiation Protocol (HNP), a DRD can switch itself to host mode or device mode based on the
desired functionality.

In addition to these mainstream USB host controllers, Linux supports a few more controllers. An example is the
HCD for the ISP116x chip.

Host controllers have a built-in hardware component called the root hub. The root hub is a virtual hub that
sources USB ports. The ports, in turn, can connect to external or internal physical hubs and source more ports,

yielding a tree topology.

Transfer Types

Data exchange with a USB device can be one of four types:

Control transfers, used to carry configuration and control information

Bulk transfers that ferry large quantities of time-insensitive data

Interrupt transfers that exchange small quantities of time-sensitive data

Isochronous transfers for real-time data at predictable bit rates

A USB storage drive, for example, uses control transfers to issue disk access commands and bulk transfers to
exchange data. A keyboard uses interrupt transfers to carry key strokes within predictable delays. A device that
needs to stream audio data in real time uses isochronous transfers. The responsibilities of the four transfer
types for USB Bluetooth devices are discussed in the section "Device Example: USB Adapter" in Chapter 16,
"Linux Without Wires."

Addressing

Each addressable unit in a USB device is called an endpoint. The address assigned to an endpoint is called an
endpoint address. Each endpoint address has an associated data transfer type. If an endpoint is responsible for
bulk data transfer, for example, it's called a bulk endpoint. Endpoint address 0 is used exclusively for device
configuration. A control pipe is attached to this endpoint for device enumeration (see the section
"Enumeration").

An endpoint can be associated with upstream or downstream data transfer. Data arriving upstream from a
device is called an IN transfer, whereas data flowing downstream to a device is an OUT transfer. IN and OUT

transfers own separate address spaces. So, you can have a bulk IN endpoint and a bulk OUT endpoint answering
to the same address.

USB resembles I2C on some counts and PCI on others as summarized in Table 11.1. USB's device addressing is
similar to I2C, while it supports hotplugging like PCI. USB device addresses, like standard I2C, do not consume a
portion of the CPU's address space. Rather, they reside in a private space ranging from 1 to 127.

Table 11.1. USB's Similarities with I2C and PCI

USB's similarities with I2C:

USB and I2C are master-slave protocols.

Device addresses reside in a private 7-bit space.

Device-resident memory is not mapped to the CPU's memory or I/O space, so it
does not consume CPU resources.

USB's similarities with PCI:

Devices can be hotplugged.

Device driver architecture resembles PCI drivers. Both classes of drivers own
probe()/disconnect()[1] methods and ID tables identifying the devices they

support.

Supports high speeds. Slower than PCI, however. See Table 10.1 in Chapter 10,
"Peripheral Component Interconnect," for the speeds supported by different
members of the PCI family.

USB host controllers, like PCI controllers, usually have built-in DMA engines that can
master the bus.

Supports multifunction devices. USB supports interface descriptors per function.
Each PCI device function has its own device ID and configuration space.

[1] disconnect() is called remove() in PCI parlance.

Linux-USB Subsystem

Look at Figure 11.3 to understand the architecture of the Linux-USB subsystem. The constituent pieces of the
subsystem are as follows:

The USB core. Like the core layers of driver subsystems that you saw in previous chapters, the USB core is
a code base consisting of routines and structures available to HCDs and client drivers. The core also
provides a level of indirection that renders client drivers independent of host controllers.

HCDs that drive different host controllers.

A hub driver for the root hub (and physical hubs) and a helper kernel thread khubd that monitors all ports
connected to the hub. Detecting port status changes and configuring hotplugged devices is time-
consuming and is best accomplished using a helper thread for reasons you learned in Chapter 3, "Kernel
Facilities." The khubd thread is asleep by default. The hub driver wakes khubd whenever it detects a
status change on a USB port connected to it.

Device drivers for USB client devices.

The USB filesystem usbfs that lets you drive USB devices from user space. We discuss user mode USB
drivers in Chapter 19, "Drivers in User Space."

Figure 11.3. The Linux-USB subsystem.

[View full size image]

For end-to-end operation, the USB subsystem calls on various other kernel layers for assistance. To support
USB mass storage devices, for example, the USB subsystem works in tandem with SCSI drivers, as shown in
Figure 11.3. To drive USB-Bluetooth keyboards, the stakeholders are fourfold: the USB subsystem, the
Bluetooth layer, the input subsystem, and the tty layer.

Driver Data Structures

When you write a USB client driver, you have to work with several data structures. Let's look at the important
ones.

The usb_device Structure

Each device driver subsystem relies on a special-purpose data structure to internally represent a device. The
usb_device structure is to the USB subsystem, what pci_dev is to the PCI layer, and what net_device is to the

network driver layer. usb_device is defined in include/linux/usb.h as follows:

struct usb_device {

 /* ... */

 enum usb_device_state state; /* Configured, Not Attached, etc */
 enum usb_device_speed speed; /* High/full/low (or error) */

 /* ... */

 struct usb_device *parent; /* Our hub, unless we're the root */
 /* ... */

 struct usb_device_descriptor descriptor; /* Descriptor */
 struct usb_host_config *config; /* All of the configs */
 struct usb_host_config *actconfig; /* The active config */

 /* ... */
 int maxchild; /* No: of ports if hub */

 struct usb_device *children[USB_MAXCHILDREN]; /* Child devices */
 /* ... */

};

We use this structure when we develop an example driver for a USB telemetry card later.

USB Request Blocks

USB Request Block (URB) is the centerpiece of the USB data transfer mechanism. A URB is to the USB stack,
what an sk_buff (discussed in Chapter 15, "Network Interface Cards") is to the networking stack.

Let's take a peek inside a URB. The following definition is from include/linux/usb.h, omitting fields not of
particular interest to device drivers:

Code View:
struct urb

{
 struct kref kref; /* Reference count of the URB */

 /* ... */

 struct usb_device *dev; /* (in) pointer to associated

 device */
 unsigned int pipe; /* (in) pipe information */

 int status; /* (return) non-ISO status */

 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
 void *transfer_buffer; /* (in) associated data buffer */

 dma_addr_t transfer_dma; /* (in) dma addr for

 transfer_buffer */

 int transfer_buffer_length; /* (in) data buffer length */

 /* ... */

 unsigned char *setup_packet; /* (in) setup packet */

 /* ... */
 int interval; /* (modify) transfer interval

 (INT/ISO) */

 /* ... */
 void *context; /* (in) context for completion */

 usb_complete_t complete; /* (in) completion routine */

 /* ... */
};

There are three steps to using a URB: create, populate, and submit. To create a URB, use usb_alloc_urb().

This function allocates and zeros-out URB memory, initializes a kobject associated with the URB, and initializes a
spinlock to protect the URB.

To populate a URB, use the following helper routines offered by the USB core:

void usb_fill_[control|int|bulk]_urb(
 struct urb *urb, /* URB pointer */
 struct usb_device *usb_dev, /* USB device structure */

 unsigned int pipe, /* Pipe encoding */
 unsigned char *setup_packet, /* For Control URBs only! */

 void *transfer_buffer, /* Buffer for I/O */
 int buffer_length, /* I/O buffer length */

 usb_complete_t completion_fn, /* Callback routine */
 void *context, /* For use by completion_fn */

 int interval); /* For Interrupt URBs only! */

The semantics of the previous routines will get clearer when we develop the example driver later on. These
helper routines are available to control, interrupt, and bulk URBs but not to isochronous ones.

To submit a URB for data transfer, use usb_submit_urb(). URB submission is asynchronous. The
usb_fill_[control|int|bulk]_urb() functions listed previously take the address of a callback function as

argument. The callback routine executes after the URB submission completes and accomplishes things such as
checking submission status and freeing the data-transfer buffer.

The USB core also offers wrapper interfaces that provide a façade of synchronous URB submission:

int usb_[control|interrupt|bulk]_msg(struct usb_device *usb_dev,

 unsigned int pipe, ...);

usb_bulk_msg (), for example, builds a bulk URB, submits it, and blocks until the operation completes. You

don't have to supply a callback function because a generic completion routine serves that purpose. You don't
need to explicitly create and populate the URB either, because usb_bulk_msg() does that for you at no

additional cost. We will use this interface in our example driver.

usb_free_urb() is used to free a reference to a completed URB, whereas usb_unlink_urb() cancels a pending

URB operation.

As mentioned in the section "Sysfs, Kobjects, and Device Classes" in Chapter 4, "Laying the Groundwork," a
URB contains a kref object to track references to it. usb_submit_urb() increments the reference count using

kref_get(). usb_free_urb() decrements the reference count using kref_put() and performs the free

operation only if there are no remaining references.

A URB is associated with an abstraction called a pipe, which we discuss next.

Pipes

A pipe is an integer encoding of a combination of the following:

The endpoint address

The direction of data transfer (IN or OUT)

The type of data transfer (control, interrupt, bulk, or isochronous)

A pipe is the address element of each USB data transfer and is an important field in the URB structure. To help
populate this field, the USB core provides the following helper macros:

usb_[rcv|snd][ctrl|int|bulk|isoc]pipe(struct usb_device *usb_dev,

 __u8 endpointAddress);

where usb_dev is a pointer to the associated usb_device structure, and endpointAddress is the assigned

endpoint address between 1 and 127. To create a bulk pipe in the OUT direction, for example, call
usb_sndbulkpipe(). For a control pipe in the IN direction, invoke usb_rcvctrlpipe().

While referring to a URB, it's often qualified by the transfer type of the associated pipe. If a URB is attached to a
bulk pipe, for example, it's called a bulk URB.

Descriptor Structures

The USB specification defines a series of descriptors to hold information about a device. The Linux-USB core
defines data structures corresponding to each descriptor. Descriptors are of four types:

Device descriptors contain general information such as the product ID and vendor ID of the device.
usb_device_descriptor is the structure corresponding to device descriptors.

Configuration descriptors are used to describe different configuration modes such as bus-powered and
self-powered operation. usb_config_descriptor is the data structure associated with configuration
descriptors.

Interface descriptors allow USB devices to support multiple functions. usb_interface_descriptor defines

interface descriptors.

Endpoint descriptors carry information associated with the final endpoints of a device.
usb_endpoint_descriptor is the structure in question.

These descriptor formats are defined in Chapter 9 of the USB specification, whereas the matching structures are

defined in include/linux/usb/ch9.h. Listing 11.1 shows the hierarchical topology of the descriptors and prints all
endpoint addresses associated with a USB device. To this end, it traverses the tree consisting of the four types
of descriptors described previously. The following is the output generated by Listing 11.1 for a USB CD drive:

Endpoint Address = 1
Endpoint Address = 82

Endpoint Address = 83

The first address belongs to a bulk IN endpoint, the second address is owned by a bulk OUT endpoint, and the

third addresses an interrupt IN endpoint.

There are more data structures associated with USB client drivers, such as usb_device_id, usb_driver, and

usb_class_driver. We will meet them when we do hands-on development in the section "Device Example:

Telemetry Card."

Listing 11.1. Print All USB Endpoint Addresses on a Device

[View full size image]

Enumeration

The life of a hotplugged USB device starts with a process called enumeration by which the host learns about the
device's capabilities and configures it. The hub driver is the component in the Linux-USB subsystem responsible
for enumeration. Let's look at the sequence of steps that achieve device enumeration when you plug in a USB
pen drive into a host computer:

1. The root hub reports a change in the port's current due to the device attachment. The hub driver detects
this status change, called a USB_PORT_STAT_C_CONNECTION in Linux-USB terminology, and awakens khubd.

2. Khubd deciphers the identity of the USB port subjected to the status change. In this case, it's the port
where you plugged in the pen drive.

3. Next, khubd chooses a device address between 1 and 127 and assigns it to the pen drive's bulk endpoint
using a control URB attached to endpoint 0.

4. Khubd uses the above control URB attached to endpoint 0 to obtain the device descriptor from the pen
drive. It then requests the device's configuration descriptors and selects a suitable one. In the case of the
pen drive, only a single configuration descriptor is on offer.

5. Khubd requests the USB core to bind a matching client driver to the inserted device.

When enumeration is complete and the device is bound to a driver, khubd invokes the associated client driver's
probe() method. In this case, khubd calls storage_probe() defined in drivers/usb/storage/usb.c. From this

point on, the mass storage driver is responsible for normal device operation.

Device Example: Telemetry Card

Now that you know the basics of Linux-USB, it's time to look at an example device. Consider a system equipped
with a telemetry card connected to the processor via internal USB, as shown in bus 2 of Figure 11.2. The card
acquires data from a remote device and ferries it to the processor over USB. An example telemetry card is a
medical-grade board that monitors or programs an implanted device.

Let's assume that our example telemetry card has the following endpoints having the semantics described in
Table 11.2:

A control endpoint attached to an on-card configuration register

A bulk IN endpoint that passes remote telemetry information collected by the card to the processor

A bulk OUT endpoint that transfers data in the reverse direction

Table 11.2. Register Space in the Telemetry Card

Register Associated Endpoint

Telemetry Configuration Register Control endpoint 0 (register offset 0xA).

Telemetry Data-In Register Bulk IN endpoint. The endpoint address is

assigned during device enumeration.

Telemetry Data-Out Register Bulk OUT endpoint. The endpoint address is
assigned during device enumeration.

Let's build a minimal driver for this card partly based on the USB skeleton driver, drivers/usb/usb-skeleton.c.

Because PCMCIA, PCI, and USB devices have similar characteristics such as hotplug support, some driver
methods and data structures belonging to these subsystems resemble each other. This is especially true for the
portions responsible for initializing and probing. As we progress through the telemetry driver and notice
parallels with what we learned for PCI drivers in Chapter 10, we will pause and take note.

Initializing and Probing

Like PCI and PCMCIA drivers, USB drivers have probe()/disconnect()[2] methods to support hotplugging, and
a table that contains the identity of devices they support. A USB device is identified by the usb_device_id

structure defined in include/linux/mod_devicetable.h. You may recall from the previous chapter that the
pci_device_id structure, also defined in the same header file, identifies PCI devices.

[2] disconnect() is called remove() in PCI and PCMCIA parlance.

struct usb_device_id {

 /* ... */
 __u16 idVendor; /* Vendor ID */

 __u16 idProduct; /* Device ID */

 /* ... */

 __u8 bDeviceClass; /* Device class */
 __u8 bDeviceSubClass; /* Device subclass */

 __u8 bDeviceProtocol; /* Device protocol */

 /* ... */
};

idVendor and idProduct, respectively, hold the manufacturer ID and product ID, whereas bDeviceClass,
bDeviceSubClass, and bDeviceProtocol categorize the device based on its functionality. This classification,

determined by the USB specification, allows implementation of generic client drivers as discussed in the section
"Class Drivers" later.

Listing 11.2 implements the telemetry driver's initialization routine, usb_tele_init(), which calls on

usb_register() to register its usb_driver structure with the USB core. As shown in the listing, usb_driver

ties the driver's probe() method, disconnect() method, and usb_device_id table together. usb_driver is
similar to pci_driver, except that the disconnect() method in the former is named remove() in the latter.

Listing 11.2. Initializing the Driver

Code View:
#define USB_TELE_VENDOR_ID 0xABCD /* Manufacturer's Vendor ID */

#define USB_TELE_PRODUCT_ID 0xCDEF /* Device's Product ID */

/* USB ID Table specifying the devices that this driver supports */

static struct usb_device_id tele_ids[] = {

 { USB_DEVICE(USB_TELE_VENDOR_ID, USB_TELE_PRODUCT_ID) },

 { } /* Terminate */

};

MODULE_DEVICE_TABLE(usb, tele_ids);

/* The usb_driver structure for this driver */

static struct usb_driver tele_driver

{

 .name = "tele", /* Unique name */

 .probe = tele_probe, /* See Listing 11.3 */

 .disconnect = tele_disconnect, /* See Listing 11.3 */

 .id_table = tele_ids, /* See above */

};

/* Module Initialization */

static int __init

usb_tele_init(void)

{

 /* Register with the USB core */

 result = usb_register(&tele_driver);

 /* ... */

 return 0;

}

/* Module Exit */

static void __exit

usb_tele_exit(void)

{

 /* Unregister from the USB core */

 usb_deregister(&tele_driver);

 return;

}

module_init(usb_tele_init);

module_exit(usb_tele_exit);

The USB_DEVICE() macro creates a usb_device_id from the vendor and product IDs supplied to it. This is

analogous to the PCI_DEVICE() macro discussed in the previous chapter. The MODULE_DEVICE_TABLE() macro

marks tele_ids in the module image so that the module can be loaded on demand if the card is hotplugged.
This is again similar to what we discussed for PCMCIA and PCI devices in the previous two chapters.

When the USB core detects a device with properties matching the ones declared in the usb_device_id table

belonging to a client driver, it invokes the probe() method registered by that driver. When the device is
unplugged or if the module is unloaded, the USB core invokes the driver's disconnect() method.

Listing 11.3 implements the probe() and disconnect() methods of the telemetry driver. It starts by defining a
device-specific structure, tele_device_t, which contains the following fields:

A pointer to the associated usb_device.

A pointer to the usb_interface. Revisit Listing 11.1 to see this structure in use.

A control URB (ctrl_urb) to communicate with the telemetry configuration register, and a ctrl_req to
formulate programming requests to this register. These fields are described in the next section "Accessing
Registers."

The card has a bulk IN endpoint through which you can glean the collected telemetry information.
Associated with this endpoint are three fields: bulk_in_addr, which holds the endpoint address;

bulk_in_buf, which stores received data; and bulk_in_len, which contains the size of the receive data
buffer.

The card has a bulk OUT endpoint to facilitate downstream data transfer. tele_device_t has a field called

bulk_out_addr to store the address of this endpoint. There are fewer data structures in the OUT direction
because in this simple case we use a synchronous URB submission interface that hides several
implementation details.

Khubd invokes the card's probe() method, tele_probe(), soon after enumeration. tele_probe() performs

three tasks:

1. Allocates memory for the device-specific structure, tele_device_t.

2. Initializes the following fields in tele_device_t related to the device's bulk endpoints: bulk_in_buf,

bulk_in_len, bulk_in_addr, and bulk_out_addr. For this, it uses the data collected by the hub driver

during enumeration. This data is available in descriptor structures discussed in the section "Descriptor
Structures."

3. Exports the character device /dev/tele to user space. Applications operate over /dev/tele to exchange data
with the telemetry card. tele_probe() invokes usb_register_dev() and supplies it the file_operations

that form the underlying pillars of the /dev/tele interface via the usb_class_driver structure.

The address of the device-specific structure allocated in Step 1 has to be saved so that other methods can
access it. To achieve this, the telemetry driver uses a threefold strategy depending on the function arguments
available to various driver routines. To save this structure pointer between the probe() and open() invocation

threads, the driver uses the device's driver_data field via the pair of functions, usb_set_intfdata() and
usb_get_intfdata(). To save the address of the structure pointer between the open() thread and other entry

points, open() stores it in the /dev/tele's file->private_data field. This is because the kernel supplies these

char entry points with /dev/tele's inode pointer as argument rather than the usb_interface pointer. To glean
the address of the device-specific structure from URB callback functions, the associated submission threads use
the URB's context field as the storage area. Look at Listings 11.3, 11.4, and 11.5 to see these mechanisms in
action.

All USB character devices answer to major number 180. If you enable CONFIG_USB_DYNAMIC_MINORS during
kernel configuration, the USB core dynamically selects a minor number from the available pool. This behavior is
similar to registering misc drivers after specifying MISC_DYNAMIC_MINOR in the miscdevice structure (as
discussed in the section "Misc Drivers" in Chapter 5, "Character Drivers"). If you choose not to enable
CONFIG_USB_DYNAMIC_MINORS, the USB subsystem selects an available minor number starting at the minor base
set in the usb_class_driver structure.

Listing 11.3. Probing and Disconnecting

Code View:
/* Device-specific structure */

typedef struct {

 struct usb_device *usbdev; /* Device representation */

 struct usb_interface *interface; /* Interface representation*/

 struct urb *ctrl_urb; /* Control URB for

 register access */

 struct usb_ctrlrequest ctrl_req; /* Control request

 as per the spec */

 unsigned char *bulk_in_buf; /* Receive data buffer */

 size_t bulk_in_len; /* Receive buffer size */

 __u8 bulk_in_addr; /* IN endpoint address */

 __u8 bulk_out_addr; /* OUT endpoint address */

 /* ... */ /* Locks, waitqueues,

 statistics.. */

} tele_device_t;

#define TELE_MINOR_BASE 0xAB /* Assigned by the Linux-USB

 subsystem maintainer */

/* Conventional char driver entry points.

 See Chapter 5, "Character Drivers." */

static struct file_operations tele_fops =

{

 .owner = THIS_MODULE, /* Owner */

 .read = tele_read, /* Read method */

 .write = tele_write, /* Write method */

 .ioctl = tele_ioctl, /* Ioctl method */

 .open = tele_open, /* Open method */

 .release = tele_release, /* Close method */

};

static struct usb_class_driver tele_class = {

 .name = "tele",

 .fops = &tele_fops, /* Connect with /dev/tele */

 .minor_base = TELE_MINOR_BASE, /* Minor number start */

};

/* The probe() method is invoked by khubd after device

 enumeration. The first argument, interface, contains information

 gleaned during the enumeration process. id is the entry in the

 driver's usb_device_id table that matches the values read from

 the telemetry card. tele_probe() is based on skel_probe()

 defined in drivers/usb/usb-skeleton.c */

static int

tele_probe(struct usb_interface *interface,

 const struct usb_device_id *id)

{

 struct usb_host_interface *iface_desc;

 struct usb_endpoint_descriptor *endpoint;

 tele_device_t *tele_device;

 int retval = -ENOMEM;

 /* Allocate the device-specific structure */

 tele_device = kzalloc(sizeof(tele_device_t), GFP_KERNEL);

 /* Fill the usb_device and usb_interface */

 tele_device->usbdev =

 usb_get_dev(interface_to_usbdev(interface));

 tele_device->interface = interface;

 /* Set up endpoint information from the data gleaned

 during device enumeration */

 iface_desc = interface->cur_altsetting;

 for (int i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {

 endpoint = &iface_desc->endpoint[i].desc;

 if (!tele_device->bulk_in_addr &&

 usb_endpoint_is_bulk_in(endpoint)) {

 /* Bulk IN endpoint */

 tele_device->bulk_in_len =

 le16_to_cpu(endpoint->wMaxPacketSize);

 tele_device->bulk_in_addr = endpoint->bEndpointAddress;

 tele_device->bulk_in_buf =

 kmalloc(tele_device->bulk_in_len, GFP_KERNEL);

 }

 if (!tele_device->bulk_out_addr &&

 usb_endpoint_is_bulk_out(endpoint)) {

 /* Bulk OUT endpoint */

 tele_device->bulk_out_addr = endpoint->bEndpointAddress;

 }

 }

 if (!(tele_device->bulk_in_addr && tele_device->bulk_out_addr)) {

 return retval;

 }

 /* Attach the device-specific structure to this interface.

 We will retrieve it from tele_open() */

 usb_set_intfdata(interface, tele_device);

 /* Register the device */

 retval = usb_register_dev(interface, &tele_class);

 if (retval) {

 usb_set_intfdata(interface, NULL);

 return retval;

 }

 printk("Telemetry device now attached to /dev/tele\n");

 return 0;

}

/* Disconnect method. Called when the device is unplugged or when the module is

 unloaded */

static void

tele_disconnect(struct usb_interface *interface)

{

 tele_device_t *tele_device;

 /* ... */

 /* Reverse of usb_set_intfdata() invoked from tele_probe() */

 tele_device = usb_get_intfdata(interface);

 /* Zero out interface data */

 usb_set_intfdata(interface, NULL);

 /* Release /dev/tele */

 usb_deregister_dev(interface, &tele_class);

 /* NULL the interface. In the real world, protect this

 operation using locks */

 tele_device->interface = NULL;

 /* ... */

}

Accessing Registers

The open() method initializes the on-card telemetry configuration register when an application opens /dev/tele.

To set the contents of this register, tele_open() submits a control URB attached to the default endpoint 0.

When you submit a control URB, you have to supply an associated control request. The structure that sends a
control request to a USB device has to conform to Chapter 9 of the USB specification and is defined as follows in
include/linux/usb/ch9.h:

struct usb_ctrlrequest {

 __u8 bRequestType;

 __u8 bRequest;

 __le16 wValue;

 __le16 wIndex;

 __le16 wLength;
} __attribute__ ((packed));

Let's take a look at the components that make up a usb_ctrlrequest. The bRequest field identifies the control
request. bRequestType qualifies the request by encoding the data transfer direction, the request category, and

whether the recipient is a device, interface, endpoint, or something else. bRequest can either belong to a set of

standard values or be vendor-defined. In our example, the bRequest for writing to the telemetry configuration
register is a vendor-defined one. wValue holds the data to be written to the register, wIndex is the desired

offset into the register space, and wLength is the number of bytes to be transferred.

Listing 11.4 implements tele_open(). Its main task is to program the telemetry configuration register with

appropriate values. Before browsing the listing, revisit the tele_device_t structure defined in Listing 11.3

focusing on two fields: ctrl_urb and ctrl_req. The former is a control URB for communicating with the

configuration register, whereas the latter is the associated usb_ctrlrequest.

To program the telemetry configuration register, tele_open() does the following:

1. Allocates a control URB to prepare for the register write.

2. Creates a usb_ctrlrequest and populates it with the request identifier, request type, register offset, and
the value to be programmed.

3. Creates a control pipe attached to endpoint 0 of the telemetry card to carry the control URB.

4. Because tele_open() submits the URB asynchronously, it needs to wait for the associated callback
function to finish before returning to its caller. To this end, tele_open() calls on the kernel's completion

API for assistance using init_completion(). Step 7 calls the matching wait_for_completion() that waits
until the callback function invokes complete(). We discussed the completion API in the section

"Completion Interface" in Chapter 3.

5. Initializes fields in the control URB using usb_fill_control_urb(). This includes the usb_ctrlrequest

populated in Step 2.

6. Submits the URB to the USB core using usb_submit_urb().

7. Waits until the callback function signals that the register programming is complete.

8. Returns the status.

Listing 11.4. Initialize the Telemetry Configuration Register

Code View:
/* Offset of the Telemetry configuration register

 within the on-card register space */

#define TELEMETRY_CONFIG_REG_OFFSET 0x0A

/* Value to program in the configuration register */

#define TELEMETRY_CONFIG_REG_VALUE 0xBC

/* The vendor-defined bRequest for programming the

 configuration register */

#define TELEMETRY_REQUEST_WRITE 0x0D

/* The vendor-defined bRequestType */

#define TELEMETRY_REQUEST_WRITE_REGISTER 0x0E

/* Open method */

static int

tele_open(struct inode *inode, struct file *file)

{

 struct completion tele_config_done;

 tele_device_t *tele_device;

 void *tele_ctrl_context;

 char *tmp;

 __le16 tele_config_index = TELEMETRY_CONFIG_REG_OFFSET;

 unsigned int tele_ctrl_pipe;

 struct usb_interface *interface;

 /* Obtain the pointer to the device-specific structure.

 We saved it using usb_set_intfdata() in tele_probe() */

 interface = usb_find_interface(&tele_driver, iminor(inode));

 tele_device = usb_get_intfdata(interface);

 /* Allocate a URB for the control transfer */

 tele_device->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);

 if (!tele_device->ctrl_urb) {

 return -EIO;

 }

 /* Populate the Control Request */

 tele_device->ctrl_req.bRequestType = TELEMETRY_REQUEST_WRITE;

 tele_device->ctrl_req.bRequest =

 TELEMETRY_REQUEST_WRITE_REGISTER;

 tele_device->ctrl_req.wValue =

 cpu_to_le16(TELEMETRY_CONFIG_REG_VALUE);

 tele_device->ctrl_req.wIndex =

 cpu_to_le16p(&tele_config_index);

 tele_device->ctrl_req.wLength = cpu_to_le16(1);

 tele_device->ctrl_urb->transfer_buffer_length = 1;

 tmp = kmalloc(1, GFP_KERNEL);

 *tmp = TELEMETRY_CONFIG_REG_VALUE;

 /* Create a control pipe attached to endpoint 0 */

 tele_ctrl_pipe = usb_sndctrlpipe(tele_device->usbdev, 0);

 /* Initialize the completion mechanism */

 init_completion(&tele_config_done);

 /* Set URB context. The context is part of the URB that is passed

 to the callback function as an argument. In this case, the

 context is the completion structure, tele_config_done */

 tele_ctrl_context = (void *)&tele_config_done;

 /* Initialize the fields in the control URB */

 usb_fill_control_urb(tele_device->ctrl_urb, tele_device->usbdev,

 tele_ctrl_pipe,

 (char *) &tele_device->ctrl_req,

 tmp, 1, tele_ctrl_callback,

 tele_ctrl_context);

 /* Submit the URB */

 usb_submit_urb(tele_device->ctrl_urb, GFP_ATOMIC);

 /* Wait until the callback returns indicating that the telemetry

 configuration register has been successfully initialized */

 wait_for_completion(&tele_config_done);

 /* Release our reference to the URB */

 usb_free_urb(urb);

 kfree(tmp);

 /* Save the device-specific object to the file's private_data

 so that you can directly retrieve it from other entry points

 such as tele_read() and tele_write() */

 file->private_data = tele_device;

 /* Return the URB transfer status */

 return(tele_device->ctrl_urb->status);

}

/* Callback function */

static void

tele_ctrl_callback(struct urb *urb)

{

 complete((struct completion *)urb->context);

}

You can render tele_open() simpler using usb_control_msg(), a blocking version of usb_submit_urb() that

internally hides synchronization and callback details for control URBs. We preferred the asynchronous approach
for learning purposes.

Data Transfer

Listing 11.5 implements the read() and write() entry points of the telemetry driver. These methods perform
the real work when an application reads or writes to /dev/tele. tele_read() performs synchronous URB
submission because the calling process wants to block until telemetry data is available. tele_write(), however,

uses asynchronous submission and returns to the calling thread without waiting for a confirmation that the data
accepted by the driver has been successfully transferred to the device.

Because asynchronous transfers go hand in hand with a callback routine, Listing 11.5 implements
tele_write_callback(). This routine examines urb->status to decipher the submission status. It also frees

the transfer buffer allocated by tele_write().

Listing 11.5. Data Exchange with the Telemetry Card

Code View:
/* Read entry point */

static ssize_t

tele_read(struct file *file, char *buffer,

 size_t count, loff_t *ppos)

{

 int retval, bytes_read;

 tele_device_t *tele_device;

 /* Get the address of tele_device */

 tele_device = (tele_device_t *)file->private_data;

 /* ... */

 /* Synchronous read */

 retval = usb_bulk_msg(tele_device->usbdev, /* usb_device */

 usb_rcvbulkpipe(tele_device->usbdev,

 tele_device->bulk_in_addr), /* Pipe */

 tele_device->bulk_in_buf, /* Read buffer */

 min(tele_device->bulk_in_len, count), /* Bytes to read */

 &bytes_read, /* Bytes read */

 5000); /* Timeout in 5 sec */

 /* Copy telemetry data to user space */

 if (!retval) {

 if (copy_to_user(buffer, tele_device->bulk_in_buf,

 bytes_read)) {

 return -EFAULT;

 } else {

 return bytes_read;

 }

 }

 return retval;

}

/* Write entry point */

static ssize_t

tele_write(struct file *file, const char *buffer,

 size_t write_count, loff_t *ppos)

{

 char *tele_buf = NULL;

 struct urb *urb = NULL;

 tele_device_t *tele_device;

 /* Get the address of tele_device */

 tele_device = (tele_device_t *)file->private_data;

 /* ... */

 /* Allocate a bulk URB */

 urb = usb_alloc_urb(0, GFP_KERNEL);

 if (!urb) {

 return -ENOMEM;

 }

 /* Allocate a DMA-consistent transfer buffer and copy in

 data from user space. On return, tele_buf contains

 the buffer's CPU address, while urb->transfer_dma

 contains the DMA address */

 tele_buf = usb_buffer_alloc(tele_dev->usbdev, write_count,

 GFP_KERNEL, &urb->transfer_dma);

 if (copy_from_user(tele_buf, buffer, write_count)) {

 usb_buffer_free(tele_device->usbdev, write_count,

 tele_buf, urb->transfer_dma);

 usb_free_urb(urb);

 return -EFAULT

 }

 /* Populate bulk URB fields */

 usb_fill_bulk_urb(urb, tele_device->usbdev,

 usb_sndbulkpipe(tele_device->usbdev,

 tele_device->bulk_out_addr),

 tele_buf, write_count, tele_write_callback,

 tele_device);

 /* urb->transfer_dma is valid, so preferably utilize

 that for data transfer */

 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;

 /* Submit URB asynchronously */

 usb_submit_urb(urb, GFP_KERNEL);

 /* Release URB reference */

 usb_free_urb(urb);

 return(write_count);

}

/* Write callback */

static void

tele_write_callback(struct urb *urb)

{

 tele_device_t *tele_device;

 /* Get the address of tele_device */

 tele_device = (tele_device_t *)urb->context;

 /* urb->status contains the submission status. It's 0 if

 successful. Resubmit the URB in case of errors other than

 -ENOENT, -ECONNRESET, and -ESHUTDOWN */

 /* ... */

 /* Free the transfer buffer. usb_buffer_free() is the

 release-counterpart of usb_buffer_alloc() called

 from tele_write() */

 usb_buffer_free(urb->dev, urb->transfer_buffer_length,

 urb->transfer_buffer, urb->transfer_dma);

}

Class Drivers

The USB specification introduces the concept of device classes and describes the functionality of each class
driver. Examples of standard device classes include mass storage, networking, hubs, serial converters, audio,
video, imaging, modems, printers, and human interface devices (HIDs). Class drivers are generic and let you
plug and play a wide array of cards without the need for developing and installing drivers for every single
device. The Linux-USB subsystem includes support for major class drivers.

Each USB device has a class and a subclass code. The mass storage class (0x08), for example, supports
subclasses such as compact disc (0x02), tape (0x03), and solid-state storage (0x06). As you saw previously,

device drivers populate the usb_device_id structure with the classes and subclasses they support. You can

glean a device's class and subclass information by looking at the "I:" lines in the /proc/bus/usb/devices output.

Let's take a look at some important class drivers.

Mass Storage

In USB parlance, mass storage refers to USB hard disks, pen drives, CD-ROMs, floppy drives, and similar
storage devices. USB mass storage devices adhere to the Small Computer System Interface (SCSI) protocol to
communicate with host systems. Block access to USB storage devices is hence routed through the kernel's SCSI
subsystem. Figure 11.4 provides you an overview of the interaction between USB storage and SCSI subsystems.
As shown in the figure, the SCSI subsystem is architected into three layers:

Top-level drivers for devices such as disks (sd.c) and CD-ROMs (sr.c)1.

A middle-level layer that scans the bus, configures devices, and glues top-level drivers to low-level drivers2.

Low-level SCSI adapter drivers3.

Figure 11.4. USB mass storage and SCSI.

[View full size image]

The mass storage driver registers itself as a virtual SCSI adapter. The virtual adapter communicates upstream
via SCSI commands and downstream using URBs. A USB disk appears to higher layers as a SCSI device
attached to this virtual adapter.

To better understand the interactions between the USB and SCSI layers, let's implement a modification to the
USB mass storage driver. The usbfs node /proc/bus/usb/devices, contains the properties and connection details
of all USB devices attached to the system. The "T:" line in the /proc/bus/usb/devices output, for example,
contains the bus number, the device's depth from the root hub, operational speed, and so on. The "P:" line
contains the vendor ID, product ID, and revision number of the device. All the information available in
/proc/bus/usb/devices is managed by the USB subsystem, but there is one piece missing that is under the
jurisdiction of the SCSI subsystem. The /dev node name associated with the USB storage device (sd[a-z][1-9]

for disks and sr[0-9] for CD-ROMs) is not available in /proc/bus/usb/devices. To overcome this limitation, let's
add an "N:" line that displays the /dev node name associated with the device. Listing 11.6 shows the necessary
code changes in the form of a source patch to the 2.6.23.1 kernel tree.

Listing 11.6. Adding a Disk's /dev Name to usbfs

Code View:
include/scsi/scsi_host.h:

struct Scsi_Host {

 /* ... */

 void *shost_data;

+ char snam[8]; /* /dev node name for this disk */

 /* ... */

};

drivers/usb/storage/usb.h:

struct us_data {

 /* ... */

+ char magic[4];

};

include/linux/usb.h:

struct usb_interface {

 /* ... */

+ void *private_data;

};

drivers/usb/storage/usb.c:

static int storage_probe(struct usb_interface *intf,

 const struct usb_device_id *id)

{

 /* ... */

 memset(us, 0, sizeof(struct us_data));

+ intf->private_data = (void *) us;

+ strncpy(us->magic, "disk", 4);

 mutex_init(&(us->dev_mutex));

 /* ... */

}

drivers/scsi/sd.c:

static int sd_probe(struct device *dev)

{

 /* ... */

 add_disk(gd);

+ memset(sdp->host->snam,0, sizeof(sdp->host->snam));

+ strncpy(sdp->host->snam, gd->disk_name, 3);

 sdev_printk(KERN_NOTICE, sdp, "Attached scsi %sdisk %s\n",

 sdp->removable ? "removable " : "", gd->disk_name);

 /* ... */

}

drivers/scsi/sr.c:

static int sr_probe(struct device *dev)

{

 /* ... */

 add_disk(disk);

+ memset(sdev->host->snam,0, sizeof(sdev->host->snam));

+ strncpy(sdev->host->snam, cd->cdi.name, 3);

 sdev_printk(KERN_DEBUG, sdev, "Attached scsi CD-ROM %s\n",

 cd->cdi.name);

 /* ... */

}

drivers/usb/core/devices.c:

 /* ... */

 #include <asm/uaccess.h>

+ #include <scsi/scsi_host.h>

+ #include "../storage/usb.h"

static ssize_t usb_device_dump(char __user **buffer, size_t *nbytes,

 loff_t *skip_bytes, loff_t *file_offset,

 struct usb_device *usbdev,

 struct usb_bus *bus, int level,

 int index, int count)

{

 /* ... */

 ssize_t total_written = 0;

+ struct us_data *us_d;

+ struct Scsi_Host *s_h;

 /* ... */

 data_end = pages_start + sprintf(pages_start, format_topo,

 bus->busnum, level,

 parent_devnum,

 index, count, usbdev->devnum,

 speed, usbdev->maxchild);

+ /* Assume this device supports only one interface */

+ us_d = (struct us_data *)

+ (usbdev->actconfig->interface[0]->private_data);

+

+ if ((us_d) && (!strncmp(us_d->magic, "disk", 4))) {

+ s_h = (struct Scsi_Host *) container_of((void *)us_d,

+ struct Scsi_Host,

+ hostdata);

+ data_end += sprintf(data_end, "N: ");

+ data_end += sprintf(data_end, "Device=%.100s",s_h->snam);

+ if (!strncmp(s_h->snam, "sr", 2)) {

+ data_end += sprintf(data_end, " (CDROM)\n");

+ } else if (!strncmp(s_h->snam, "sd", 2)) {

+ data_end += sprintf(data_end, " (Disk)\n");

+ }

+ }

 /* ... */

}

To understand Listing 11.6, let's first trace the code flow, continuing from where we left off in the section
"Enumeration." In that section, we inserted a USB pen drive and followed the execution train until the invocation
of storage_probe(), the probe() method of the mass storage driver. Moving further:

1. storage_probe() registers a virtual SCSI adapter by calling scsi_add_host(), supplying a private data

structure called us_data as argument. scsi_add_host() returns a Scsi_Host structure for this virtual

adapter, with space at the end for us_data.

2. It starts a kernel thread called usb-storage to handle all SCSI commands queued to the virtual adapter.

3. It schedules a kernel thread called usb-stor-scan that requests the SCSI middle-level layer to scan the bus
for attached devices.

4. The device scan initiated in Step 3 discovers the presence of the inserted pen drive and binds the upper-
level SCSI disk driver (sd.c) to the device. This results in the invocation of the SCSI disk driver's probe
method, sd_probe().

5. The sd driver allocates a /dev/sd* node to the disk. From this point on, applications use this interface to
access the USB disk. The SCSI subsystem queues disk commands to the virtual adapter, which the usb-
storage kernel thread handles using appropriate URBs.

Now that you know the basics, let's dissect Listing 11.6, looking at the data structure additions first. The listing
adds a snam field to the Scsi_Host structure to hold the associated SCSI /dev name that we are interested in. It
also adds a private field to the usb_interface structure to associate each USB interface with its us_data.

Because us_data is relevant only for storage devices, we need to ensure the validity of the private field of a
USB interface before accessing it as us_data. For this, Listing 11.6 adds a magic string, "disk," to us_data.

The usbfs modification in Listing 11.6 (to drivers/usb/core/devices.c) pulls out the us_data associated with each
interface via the private data field of its usb_interface. It then latches on to the associated Scsi_Host using

the container_of() function, because as you saw in Step 1 previously, usb_data is glued to the end of the
corresponding Scsi_Host. As you further saw in Step 5, Scsi_Host contains the /dev node names that the sd

and sr drivers populate. Usbfs stitches together an "N:" line using this information.

The following is the /proc/bus/usb/devices output after integrating the changes in Listing 11.6 and attaching a
PNY USB pen drive, an Addonics CD-ROM drive, and a Seagate hard disk to a laptop via a USB hub. The "N:"
lines announce the identity of the /dev node corresponding to each device:

Code View:
bash> cat /proc/bus/usb/devices

...
T: Bus=04 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=480 MxCh= 0

N: Device=sda(Disk)

D: Ver= 2.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS=64 #Cfgs= 1
P: Vendor=154b ProdID=0002 Rev= 1.00

S: Manufacturer=PNY

S: Product=USB 2.0 FD
S: SerialNumber=6E5C07005B4F

C:* #Ifs= 1 Cfg#= 1 Atr=80 MxPwr= 0mA

I:* If#= 0 Alt= 0 #EPs= 2 Cls=08(stor.) Sub=06 Prot=50 Driver=usb-

 storage
E: Ad=81(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms

E: Ad=02(O) Atr=02(Bulk) MxPS= 512 Ivl=0ms

T: Bus=04 Lev=02 Prnt=02 Port=01 Cnt=02 Dev#= 5 Spd=480 MxCh= 0

N: Device=sr0(CDROM)

D: Ver= 2.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS=64 #Cfgs= 1

P: Vendor=0bf6 ProdID=a002 Rev= 3.00

S: Manufacturer=Addonics

S: Product=USB to IDE Cable

S: SerialNumber=1301011002A9AFA9

C:* #Ifs= 1 Cfg#= 2 Atr=c0 MxPwr= 98mA
I:* If#= 0 Alt= 0 #EPs= 3 Cls=08(stor.) Sub=06 Prot=50 Driver=usb-

 storage

E: Ad=01(O) Atr=02(Bulk) MxPS= 512 Ivl=125us
E: Ad=82(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms

E: Ad=83(I) Atr=03(Int.) MxPS= 2 Ivl=32ms

T: Bus=04 Lev=02 Prnt=02 Port=02 Cnt=03 Dev#= 4 Spd=480 MxCh= 0

N: Device=sdb(Disk)

D: Ver= 2.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS=64 #Cfgs= 1

P: Vendor=0bc2 ProdID=0501 Rev= 0.01

S: Manufacturer=Seagate

S: Product=USB Mass Storage
S: SerialNumber=000000062459

C:* #Ifs= 1 Cfg#= 1 Atr=c0 MxPwr= 0mA

I:* If#= 0 Alt= 0 #EPs= 2 Cls=08(stor.) Sub=06 Prot=50 Driver=usb-

 storage
E: Ad=02(O) Atr=02(Bulk) MxPS= 512 Ivl=0ms

E: Ad=88(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms
...

As you can see, the SCSI subsystem has allotted sda to the pen drive, sr0 to the CD-ROM, and sdb to the hard
disk. User-space applications operate on these nodes to communicate with the respective devices. As you saw in
Chapter 4, with the arrival of udev, however, you have the option of creating higher-level abstractions to
identify each device without relying on the identity of the /dev names allocated by the SCSI subsystem.

USB-Serial

USB-to-serial converters bring serial port capabilities to your computer via USB. You can use a USB-to-serial
converter, for example, to get a serial debug console from an embedded device on a development laptop that
has no serial ports.

In Chapter 6, "Serial Drivers," you learned the benefits of the kernel's layered serial architecture. Figure 11.5
illustrates how the USB-Serial layer fits into the kernel's serial framework.

Figure 11.5. The USB-Serial layer.

[View full size image]

A USB-serial driver is similar to other USB client drivers except that it avails the services of a USB-Serial core in
addition to the USB core. The USB-Serial core provides the following:

A tty driver that insulates low-level USB-to-serial converter drivers from higher serial layers such as line
disciplines.

Generic probe() and disconnect() routines that individual USB-serial drivers can leverage.

Device nodes to access USB-serial ports from user space. Applications operate on USB-serial ports via
/dev/ttyUSBX, where X is the serial port number. Terminal emulators such as minicom and protocols such
as PPP run unchanged over these interfaces.

A low-level USB-to-serial converter driver essentially does the following:

Registers a usb_serial_driver structure with the USB-Serial core using usb_serial_register(). The

entry points supplied as part of usb_serial_driver form the crux of the driver.

1.

2.

1.

Populates a usb_driver structure and registers it with the USB core using usb_register(). This is similar

to what the example telemetry driver does, except that a serial converter driver can count on the generic
probe() and disconnect() routines provided by the USB-Serial core.

2.

Listing 11.7 contains snippets from the FTDI driver (drivers/usb/serial/ftdi_sio.c) that accomplish these two
registrations for USB-to-serial converters based on FTDI chipsets.

Listing 11.7. A Snippet from the FTDI Driver

Code View:
/* The usb_driver structure */

static struct usb_driver ftdi_driver = {

 .name = "ftdi_sio", /* Name */

 .probe = usb_serial_probe, /* Provided by the

 USB-Serial core */

 .disconnect = usb_serial_disconnect,/* Provided by the

 USB-Serial core */

 .id_table = id_table_combined, /* List of supported

 devices built

 around the FTDI chip */

 .no_dynamic_id = 1, /* Supported ids cannot be

 added dynamically */

};

/* The usb_serial_driver structure */

static struct usb_serial_driver ftdi_sio_device = {

 /* ... */

 .num_ports = 1,

 .probe = ftdi_sio_probe,

 .port_probe = ftdi_sio_port_probe,

 .port_remove = ftdi_sio_port_remove,

 .open = ftdi_open,

 .close = ftdi_close,

 .throttle = ftdi_throttle,

 .unthrottle = ftdi_unthrottle,

 .write = ftdi_write,

 .write_room = ftdi_write_room,

 .chars_in_buffer = ftdi_chars_in_buffer,

 .read_bulk_callback = ftdi_read_bulk_callback,

 .write_bulk_callback = ftdi_write_bulk_callback,

 /* ... */

};

/* Driver Initialization */

static int __init ftdi_init(void)

{

 /* ... */

 /* Register with the USB-Serial core */

 retval = usb_serial_register(&ftdi_sio_device);

 /* ... */

 /* Register with the USB core */

 retval = usb_register(&ftdi_driver);

 /* ... */

}

Human Interface Devices

Devices such as keyboards and mice are called human interface devices (HIDs). Take a look at the section "USB
and Bluetooth Keyboards" in Chapter 7, "Input Drivers," for a discussion on the USB HID class.

Bluetooth

A USB-Bluetooth dongle is a quick way to Bluetooth-enable your computer so that it can communicate with
Bluetooth-equipped devices such as cell phones, mice, or handhelds. Chapter 16 discusses the USB Bluetooth
class.

Gadget Drivers

In a typical usage scenario, an embedded device connects to a PC host over USB. Embedded computers usually
belong to the device side of USB, unlike PC systems that function as USB hosts. Because Linux runs on both
embedded and PC systems, it needs support to run on either end of USB. The USB Gadget project brings USB
device mode capability to embedded Linux systems. Bus 3 of the embedded Linux device in Figure 11.2 can, for
example, use a gadget driver to let the device function as a mass storage drive when connected to a host
computer.

Before proceeding, let's briefly look at some related terminology. The USB controller at the device side is
variously called a device controller, peripheral controller, client controller, or function controller. The terms
gadget and gadget driver are commonly used rather than the heavily overloaded words device and device
driver.

USB gadget support is now part of the mainline kernel and contains the following:

Drivers for USB device controllers integrated into SoC families such as Intel PXA, Texas Instruments
OMAP, and Atmel AT91. These drivers additionally provide a gadget API that gadget drivers can use.

Gadget drivers for device classes such as storage, networking, and serial converters. These drivers answer
to their class when they receive enumeration requests from host-side software. A storage gadget driver,
for example, identifies itself as a class 0x08 (mass storage class) device and exports a storage partition to
the host. You can specify the associated block device node or filename via a module-insertion parameter.
Because the exported region has to appear to the host as a mass storage device, the gadget driver
implements the SCSI interactions required by the USB mass storage protocol. Gadget drivers are also
available for Ethernet and serial devices.

A skeletal gadget driver, drivers/usb/gadget/zero.c, that you may use to test device controller drivers.

Gadget drivers use the services of the gadget API provided by device controller drivers. They populate a
usb_gadget_driver structure and register it with the kernel using usb_gadget_register_driver(). Hardware

specifics are hidden inside the gadget API implementation offered by individual device controller drivers, so the
gadget drivers themselves are hardware independent.

Documentation/DocBook/gadget.tmpl provides an overview of the gadget API. Have a look at http://linux-
usb.org/gadget/ for more on the gadget project.

http://linux-

Debugging

A USB bus analyzer magnifies the goings-on in the bus and is useful for debugging low-level problems. If you
can't get hold of an analyzer, you might be able to make do with the kernel's soft USB tracer, usbmon. This tool
captures traffic between USB host controllers and devices. To collect a trace, read from the debugfs[3] file
/sys/kernel/debug/usbmon/Xt, where X is the bus number to which your device is connected.

[3] An in-memory filesystem to export kernel debug data to user space.

For example, consider a USB disk connected to a PC. From the associated "T:" line in /proc/bus/usb/devices,
you can see that the drive is attached to bus 1:

T: Bus=01 Lev=01 Prnt=01 Port=03 Cnt=01 Dev#= 2 Spd=480 MxCh= 0

Ensure that you have enabled debugfs (CONFIG_DEBUG_FS) and usbmon (CONFIG_USB_MON) support in your
kernel. This is a snapshot of usbmon output while copying a file from the disk:

Code View:
bash> mount -t debugfs none_debugs /sys/kernel/debug/

bash> cat /sys/kernel/debug/usbmon/1u

...

ee6a5c40 3718782540 S Bi:1:002:1 -115 20480 <
ee6a5cc0 3718782567 S Bi:1:002:1 -115 65536 <

ee6a5d40 3718782595 S Bi:1:002:1 -115 36864 <
ee6a5c40 3718788189 C Bi:1:002:1 0 20480 = 0f846801 118498f\ 15c60500 01680106

5e846801 608498fe 6f280087 68000000
ee6a5cc0 3718800994 C Bi:1:002:1 0 65536 = 118498fe 15c60500\ 01680106 5e846801
608498fe 6f280087 68000000 00884800

ee6a5d40 3718801001 C Bi:1:002:1 0 36864 = 13608498 fe4f4a01\ 00514a01 006f2800
87680000 00008848 00000100 b7f00100

...

Each output line starts with the URB address, followed by an event timestamp. An S in the next column
indicates URB submission, and a C announces a callback. The following field has the format
URBType:Bus#:DeviceAddress:Endpoint#. In the preceding output, a URBType of Bi stands for a bulk URB in
the IN direction. After this, usbmon dumps the URB status, data length, a data tag (= or < in the preceding

output), and the data words (if the tag is =). The last three lines in the preceding output are callbacks

associated with bulk URBs submitted in earlier lines. You can match the callbacks with the related submissions
using the URB addresses. Documentation/usb/usbmon.txt details usbmon syntax and contains example code to
parse the output into human readable form.

If you turn on Device Drivers USB Support USB Verbose Debug Messages during kernel configuration,
the kernel will emit the contents of all dev_dbg() statements present in the USB subsystem.

You can glean device and bus specific information from the USB filesystem (usbfs) node, /proc/bus/usb/devices.
And as we discuss in Chapter 19, "Drivers in User Space," usbfs also lets you implement USB device drivers in
user space. Even when the final destination of your USB driver is inside the kernel, starting with a user-space
driver can ease debugging and testing.

The linux-usb-devel mailing list is the forum to discuss questions related to USB device drivers. Visit
https://lists.sourceforge.net/lists/listinfo/linux-usb-devel for subscription and archive retrieval information. Read
www.linux-usb.org/usbtest for ideas on USB testing.

The home page of the Linux-USB project is www.linux-usb.org. You may download the USB 2.0 specification,
OTG supplement, and other related standards from www.usb.org/developers/docs.

Looking at the Sources

The USB core layer lives in drivers/usb/core/. This directory also contains URB manipulation routines and the
usbfs implementation. The hub driver and khubd are part of drivers/usb/core/hub.c. The drivers/usb/host/
directory contains host controller device drivers. USB-related header definitions reside in include/linux/usb*.h.
The usbmon tracer is in drivers/usb/mon/. Look inside Documentation/usb/ for Linux-USB documentation.

USB class drivers stay in various subdirectories under drivers/usb/. The mass storage driver
drivers/usb/storage/, in tandem with the SCSI subsystem drivers/scsi/, implements the USB mass storage
protocol. The drivers/input/[4] directory tree includes drivers for USB input devices such as keyboards and mice;
drivers/usb/serial/ has drivers for USB-to-serial converters; drivers/usb/media/ supports USB multimedia
devices; drivers/net/usb/[5] has drivers for USB Ethernet dongles; and drivers/usb/misc/ contains drivers for
miscellaneous USB devices such as LEDs, LCDs, and fingerprint sensors. Look at drivers/usb/usb-skeleton.c for
a starting point driver template if you can't zero in on a closer match.

[4] Before the 2.6.22 kernel release, USB input device drivers used to reside in drivers/usb/input/.

[5] Before the 2.6.22 kernel release, USB network device drivers used to reside in drivers/usb/net/.

The USB gadget subsystem is in drivers/usb/gadget/. This directory contains USB device controller drivers, and
gadget drivers for mass storage (file_storage.c), serial converters (serial.c), and Ethernet networking (ether.c).

Table 11.3 contains the main data structures used in this chapter and their location in the source tree. Table
11.4 lists the main kernel programming interfaces that you used in this chapter along with the location of their
definitions.

Table 11.3. Summary of Data Structures

Data Structure Location Description

urb include/linux/usb.h Centerpiece of the USB data transfer
mechanism

pipe include/linux/usb.h Address element of a URB

usb_device_descriptor

usb_config_descriptor

usb_interface_descriptor
usb_endpoint_descriptor

include/linux/usb/ch9.h Descriptors that hold information about a
USB device

usb_device include/linux/usb.h Representation of a USB device

usb_device_id include/linux/mod_devicetable.h Identity of a USB device

usb_driver include/linux/usb.h Representation of a USB client driver

usb_gadget_driver include/linux/usb_gadget.h Representation of a USB gadget driver

Table 11.4. Summary of Kernel Programming Interfaces

Kernel Interface Location Description

usb_register() include/linux/usb.h
drivers/usb/core/driver.c

Registers a usb_driver with the
USB core

usb_deregister() drivers/usb/core/driver.c Unregisters a usb_driver from the

USB core

usb_set_intfdata() include/linux/usb.h Attaches device-specific data to a
usb_interface

usb_get_intfdata() include/linux/usb.h Detaches device-specific data from
a usb_interface

usb_register_dev() drivers/usb/core/file.c Associates a character interface
with a USB client driver

usb_deregister_dev() drivers/usb/core/file.c Dissociates a character interface
from a USB client driver

usb_alloc_urb() drivers/usb/core/urb.c Allocates a URB

usb_fill_[control|int|bulk]_urb() include/linux/usb.h Populates a URB

usb_[control|interrupt|bulk]_msg() drivers/usb/core/message.c Wrappers for synchronous URB
submission

usb_submit_urb() drivers/usb/core/urb.c Submits a URB to the USB core

usb_free_urb() drivers/usb/core/urb.c Frees references to a completed
URB

usb_unlink_urb() drivers/usb/core/urb.c Frees references to a pending URB

usb_[rcv|snd][ctrl|int|bulk|isoc]pipe() include/linux/usb.h Creates a USB pipe

usb_find_interface() drivers/usb/core/usb.c Gets the usb_interface

associated with a USB client driver

usb_buffer_alloc() drivers/usb/core/usb.c Allocates a consistent DMA transfer
buffer

usb_buffer_free() drivers/usb/core/usb.c Frees a buffer that was allocated
using usb_buffer_alloc()

usb_serial_register() drivers/usb/serial/usb-
serial.c

Registers a driver with the USB-
Serial core

usb_serial_deregister() drivers/usb/serial/usb-
serial.c

Unregisters a driver from the USB-
Serial core

usb_gadget_register_driver() Device controller drivers in
drivers/usb/gadget/

Registers a gadget with a device
controller driver

Chapter 12. Video Drivers

In This Chapter

Display Architecture

356

Linux-Video Subsystem

359

Display Parameters

361

The Frame Buffer API
362

Frame Buffer Drivers

365

Console Drivers
380

Debugging

387

Looking at the Sources
388

Video hardware generates visual output for a computer system to display. In this chapter, let's
find out how the kernel supports video controllers and discover the advantages offered by the
frame buffer abstraction. Let's also learn to write console drivers that display messages emitted by
the kernel.

Display Architecture

Figure 12.1 shows the display assembly on a PC-compatible system. The graphics controller that is part of the
North Bridge (see the sidebar "The North Bridge") connects to different types of display devices using several
interface standards (see the sidebar "Video Cabling Standards").

Figure 12.1. Display connection on a PC system.

Video Graphics Array (VGA) is the original display standard introduced by IBM, but it's more of a resolution
specification today. VGA refers to a resolution of 640x480, whereas newer standards such as eXtended Graphics
Array (XGA) and Super Video Graphics Array (SVGA) support higher resolutions of 800x600 and 1024x768.
Quarter VGA (QVGA) panels having a resolution of 320x240 are common on embedded devices, such as
handhelds and smart phones.

Graphics controllers in the x86 world compatible with VGA and its derivatives offer a character-based text mode
and a pixel-based graphics mode. The non-x86 embedded space is non-VGA, however, and has no concept of a
dedicated text mode.

The North Bridge

In earlier chapters, you learned about peripheral buses such as LPC, I2C, PCMCIA, PCI, and USB,
all of which are sourced from the South Bridge on PC-centric systems. Display architecture,
however, takes us inside the North Bridge. A North Bridge in the Intel-based PC architecture is
either a Graphics and Memory Controller Hub (GMCH) or a Memory Controller Hub (MCH). The
former contains a memory controller, a Front Side Bus (FSB) controller, and a graphics controller.
The latter lacks an integrated graphics controller but provides an Accelerated Graphics Port (AGP)
channel to connect external graphics hardware.

Consider, for example, the Intel 855 GMCH North Bridge chipset. The FSB controller in the 855
GMCH interfaces with Pentium M processors. The memory controller supports Dual Data Rate
(DDR) SDRAM memory chips. The integrated graphics controller lets you connect to display
devices using analog VGA, LVDS, or DVI (see the sidebar "Video Cabling Standards"). The 855
GMCH enables you to simultaneously send output to two displays, so you can, for example,
dispatch similar or separate information to your laptop's LCD panel and an external CRT monitor at
the same time.

Recent North Bridge chipsets, such as the AMD 690G, include support for HDMI (see the following
sidebar) in addition to VGA and DVI.

Video Cabling Standards

Several interfacing standards specify the connection between video controllers and display
devices. Display devices and the cabling technologies they use follow:

An analog display such as a cathode ray tube (CRT) monitor that has a standard VGA
connector.

A digital flat-panel display such as a laptop Thin Film Transistor (TFT) LCD that has a low-
voltage differential signaling (LVDS) connector.

A display monitor that complies with the Digital Visual Interface (DVI) specification. DVI is a
standard developed by the Digital Display Working Group (DDWG) for carrying high-quality
video. There are three DVI subclasses: digital-only (DVI-D), analog-only (DVI-A), and
digital-and-analog (DVI-I).

A display monitor that complies with the High-Definition Television (HDTV) specification
using the High-Definition Multimedia Interface (HDMI). HDMI is a modern digital audio-video
cable standard that supports high data rates. Unlike video-only standards such as DVI, HDMI
can carry both picture and sound.

Embedded SoCs usually have an on-chip LCD controller, as shown in Figure 12.2. The output emanating from
the LCD controller are TTL (Transistor-Transistor Logic) signals that pack 18 bits of flat-panel video data, six
each for the three primary colors, red, green, and blue. Several handhelds and phones use QVGA-type internal
LCD panels that directly receive the TTL flat-panel video data sourced by LCD controllers.

Figure 12.2. Display connection on an embedded system.

The embedded device, as in Figure 12.3, supports dual display panels: an internal LVDS flat-panel LCD and an

external DVI monitor. The internal TFT LCD takes an LVDS connector as input, so an LVDS transmitter chip is
used to convert the flat-panel signals to LVDS. An example of an LVDS transmitter chip is DS90C363B from
National Semiconductor. The external DVI monitor takes only a DVI connector, so a DVI transmitter is used to
convert the 18-bit video signals to DVI-D. An I2C interface is provided so that the device driver can configure
the DVI transmitter registers. An example of a DVI transmitter chip is SiI164 from Silicon Image.

Figure 12.3. LVDS and DVI connections on an embedded system.

[View full size image]

Chapter 12. Video Drivers

In This Chapter

Display Architecture

356

Linux-Video Subsystem

359

Display Parameters

361

The Frame Buffer API
362

Frame Buffer Drivers

365

Console Drivers
380

Debugging

387

Looking at the Sources
388

Video hardware generates visual output for a computer system to display. In this chapter, let's
find out how the kernel supports video controllers and discover the advantages offered by the
frame buffer abstraction. Let's also learn to write console drivers that display messages emitted by
the kernel.

Display Architecture

Figure 12.1 shows the display assembly on a PC-compatible system. The graphics controller that is part of the
North Bridge (see the sidebar "The North Bridge") connects to different types of display devices using several
interface standards (see the sidebar "Video Cabling Standards").

Figure 12.1. Display connection on a PC system.

Video Graphics Array (VGA) is the original display standard introduced by IBM, but it's more of a resolution
specification today. VGA refers to a resolution of 640x480, whereas newer standards such as eXtended Graphics
Array (XGA) and Super Video Graphics Array (SVGA) support higher resolutions of 800x600 and 1024x768.
Quarter VGA (QVGA) panels having a resolution of 320x240 are common on embedded devices, such as
handhelds and smart phones.

Graphics controllers in the x86 world compatible with VGA and its derivatives offer a character-based text mode
and a pixel-based graphics mode. The non-x86 embedded space is non-VGA, however, and has no concept of a
dedicated text mode.

The North Bridge

In earlier chapters, you learned about peripheral buses such as LPC, I2C, PCMCIA, PCI, and USB,
all of which are sourced from the South Bridge on PC-centric systems. Display architecture,
however, takes us inside the North Bridge. A North Bridge in the Intel-based PC architecture is
either a Graphics and Memory Controller Hub (GMCH) or a Memory Controller Hub (MCH). The
former contains a memory controller, a Front Side Bus (FSB) controller, and a graphics controller.
The latter lacks an integrated graphics controller but provides an Accelerated Graphics Port (AGP)
channel to connect external graphics hardware.

Consider, for example, the Intel 855 GMCH North Bridge chipset. The FSB controller in the 855
GMCH interfaces with Pentium M processors. The memory controller supports Dual Data Rate
(DDR) SDRAM memory chips. The integrated graphics controller lets you connect to display
devices using analog VGA, LVDS, or DVI (see the sidebar "Video Cabling Standards"). The 855
GMCH enables you to simultaneously send output to two displays, so you can, for example,
dispatch similar or separate information to your laptop's LCD panel and an external CRT monitor at
the same time.

Recent North Bridge chipsets, such as the AMD 690G, include support for HDMI (see the following
sidebar) in addition to VGA and DVI.

Video Cabling Standards

Several interfacing standards specify the connection between video controllers and display
devices. Display devices and the cabling technologies they use follow:

An analog display such as a cathode ray tube (CRT) monitor that has a standard VGA
connector.

A digital flat-panel display such as a laptop Thin Film Transistor (TFT) LCD that has a low-
voltage differential signaling (LVDS) connector.

A display monitor that complies with the Digital Visual Interface (DVI) specification. DVI is a
standard developed by the Digital Display Working Group (DDWG) for carrying high-quality
video. There are three DVI subclasses: digital-only (DVI-D), analog-only (DVI-A), and
digital-and-analog (DVI-I).

A display monitor that complies with the High-Definition Television (HDTV) specification
using the High-Definition Multimedia Interface (HDMI). HDMI is a modern digital audio-video
cable standard that supports high data rates. Unlike video-only standards such as DVI, HDMI
can carry both picture and sound.

Embedded SoCs usually have an on-chip LCD controller, as shown in Figure 12.2. The output emanating from
the LCD controller are TTL (Transistor-Transistor Logic) signals that pack 18 bits of flat-panel video data, six
each for the three primary colors, red, green, and blue. Several handhelds and phones use QVGA-type internal
LCD panels that directly receive the TTL flat-panel video data sourced by LCD controllers.

Figure 12.2. Display connection on an embedded system.

The embedded device, as in Figure 12.3, supports dual display panels: an internal LVDS flat-panel LCD and an

external DVI monitor. The internal TFT LCD takes an LVDS connector as input, so an LVDS transmitter chip is
used to convert the flat-panel signals to LVDS. An example of an LVDS transmitter chip is DS90C363B from
National Semiconductor. The external DVI monitor takes only a DVI connector, so a DVI transmitter is used to
convert the 18-bit video signals to DVI-D. An I2C interface is provided so that the device driver can configure
the DVI transmitter registers. An example of a DVI transmitter chip is SiI164 from Silicon Image.

Figure 12.3. LVDS and DVI connections on an embedded system.

[View full size image]

Linux-Video Subsystem

The concept of frame buffers is central to video on Linux, so let's first find out what that offers.

Because video adapters can be based on different hardware architectures, the implementation of higher kernel
layers and applications might need to vary across video cards. This results in nonuniform schemes to handle
different video cards. The ensuing nonportability and extra code necessitate greater investment and
maintenance. The frame buffer concept solves this problem by describing a general abstraction and specifying a
programming interface that allows applications and higher kernel layers to be written in a platform-independent
manner. Figure 12.4 shows you the frame buffer advantage.

Figure 12.4. The frame buffer advantage.

The kernel's frame buffer interface thus allows applications to be independent of the vagaries of the underlying
graphics hardware. Applications run unchanged over diverse types of video hardware if they and the display
drivers conform to the frame buffer interface. As you will soon find out, the common frame buffer programming
interface also brings hardware independence to kernel layers, such as the frame buffer console driver.

Today, several applications, such as web browsers and movie players, work directly over the frame
buffer interface. Such applications can do graphics without help from a windowing system.

The X Windows server (Xfbdev) is capable of working over the frame buffer interface, as shown in Figure
12.5.

Figure 12.5. Linux-Video subsystem.

[View full size image]

The Linux-Video subsystem shown in Figure 12.5 is a collection of low-level display drivers, middle-level frame
buffer and console layers, a high-level virtual terminal driver, user mode drivers part of X Windows, and utilities
to configure display parameters. Let's trace the figure top down:

The X Windows GUI has two options for operating over video cards. It can use either a suitable built-in
user-space driver for the card or work over the frame buffer subsystem.

Text mode consoles function over the virtual terminal character driver. Virtual terminals, introduced in the
section "TTY Drivers" in Chapter 6, "Serial Drivers," are full-screen text-based terminals that you get when
you logon in text mode. Like X Windows, text consoles have two operational choices. They can either work
over a card-specific console driver, or use the generic frame buffer console driver (fbcon) if the kernel
supports a low-level frame buffer driver for the card in question.

Display Parameters

Sometimes, configuring the properties associated with your display panel might be the only driver changes that
you need to make to enable video on your device, so let's start learning about video drivers by looking at
common display parameters. We will assume that the associated driver conforms to the frame buffer interface,
and use the fbset utility to obtain display characteristics:

bash> fbset

mode "1024x768-60"

 # D: 65.003 MHz, H: 48.365 kHz, V: 60.006 Hz

 geometry 1024 768 1024 768 8
 timings 15384 168 16 30 2 136 6

 hsync high

 vsync high

 rgba 8/0,8/0,8/0,0/0

endmode

The D: value in the output stands for the dotclock, which is the speed at which the video hardware draws pixels
on the display. The value of 65.003MHz in the preceding output means that it'll take (1/65.003*1000000) or
about 15,384 picoseconds for the video controller to draw a single pixel. This duration is called the pixclock and
is shown as the first numeric parameter in the line starting with timings. The numbers against "geometry"

announce that the visible and virtual resolutions are 1024x768 (SVGA) and that the bits required to store
information pertaining to a pixel is 8.

The H: value specifies the horizontal scan rate, which is the number of horizontal display lines scanned by the

video hardware in one second. This is the inverse of the pixclock times the X-resolution. The V: value is the rate
at which the entire display is refreshed. This is the inverse of the pixclock times the visible X-resolution times
the visible Y-resolution, which is around 60Hz in this example. In other words, the LCD is refreshed 60 times in
a second.

Video controllers issue a horizontal sync (HSYNC) pulse at the end of each line and a vertical sync (VSYNC) pulse

after each display frame. The durations of HSYNC (in terms of pixels) and VSYNC (in terms of pixel lines) are
shown as the last two parameters in the line starting with "timings." The larger your display, the bigger the
likely values of HSYNC and VSYNC. The four numbers before the HSYNC duration in the timings line announce the

length of the right display margin (or horizontal front porch), left margin (or horizontal back porch), lower
margin (or vertical front porch), and upper margin (or vertical back porch), respectively.
Documentation/fb/framebuffer.txt and the man page of fb.modes pictorially show these parameters.

To tie these parameters together, let's calculate the pixclock value for a given refresh rate, which is
60.006Hz in our example:

dotclock = (X-resolution + left margin + right margin

 + HSYNC length) * (Y-resolution + upper margin

 + lower margin + VSYNC length) * refresh rate

 = (1024 + 168 + 16 + 136) * (768 + 30 + 2 + 6) * 60.006
 = 65.003 MHz

pixclock = 1/dotclock

 = 15384 picoseconds (which matches with the fbset output
 above)

The Frame Buffer API

Let's next wet our feet in the frame buffer API. The frame buffer core layer exports device nodes to user space
so that applications can access each supported video device. /dev/fbX is the node associated with frame buffer
device X. The following are the main data structures that interest users of the frame buffer API. Inside the
kernel, they are defined in include/linux/fb.h, whereas in user land, their definitions reside in
/usr/include/linux/fb.h:

Variable information pertaining to the video card that you saw in the fbset output in the previous section is
held in struct fb_var_screeninfo. This structure contains fields such as the X-resolution, Y-resolution,

bits required to hold a pixel, pixclock, HSYNC duration, VSYNC duration, and margin lengths. These values
are programmable by the user:

struct fb_var_screeninfo {
 __u32 xres; /* Visible resolution in the X axis */
 __u32 yres; /* Visible resolution in the Y axis */

 /* ... */
 __u32 bits_per_pixel; /* Number of bits required to hold a

 pixel */
 /* ... */

 __u32 pixclock; /* Pixel clock in picoseconds */
 __u32 left_margin; /* Time from sync to picture */

 __u32 right_margin; /* Time from picture to sync */
 /* ... */
 __u32 hsync_len; /* Length of horizontal sync */

 __u32 vsync_len; /* Length of vertical sync */
 /* ... */

};

1.

Fixed information about the video hardware, such as the start address and size of frame buffer memory, is
held in struct fb_fix_screeninfo. These values cannot be altered by the user:

struct fb_fix_screeninfo {

 char id[16]; /* Identification string */
 unsigned long smem_start; /* Start of frame buffer memory */
 __u32 smem_len; /* Length of frame buffer memory */
 /* ... */

};

2.

The fb_cmap structure specifies the color map, which is used to convey the user's definition of colors to
the underlying video hardware. You can use this structure to define the RGB (Red, Green, Blue) ratio that
you desire for different colors:

struct fb_cmap {
 __u32 start; /* First entry */

 __u32 len; /* Number of entries */

 __u16 *red; /* Red values */

 __u16 *green; /* Green values */
 __u16 *blue; /* Blue values */

 __u16 *transp; /* Transparency. Discussed later on */

};

3.

Listing 12.1 is a simple application that works over the frame buffer API. The program clears the screen by
operating on /dev/fb0, the frame buffer device node corresponding to the display. It first deciphers the visible
resolutions and the bits per pixel in a hardware-independent manner using the frame buffer API,
FBIOGET_VSCREENINFO. This interface command gleans the display's variable parameters by operating on the
fb_var_screeninfo structure. The program then goes on to mmap() the frame buffer memory and clears each

constituent pixel bit.

Listing 12.1. Clear the Display in a Hardware-Independent Manner

Code View:
#include <stdio.h>

#include <fcntl.h>

#include <linux/fb.h>

#include <sys/mman.h>

#include <stdlib.h>

struct fb_var_screeninfo vinfo;

int

main(int argc, char *argv[])

{

 int fbfd, fbsize, i;

 unsigned char *fbbuf;

 /* Open video memory */

 if ((fbfd = open("/dev/fb0", O_RDWR)) < 0) {

 exit(1);

 }

 /* Get variable display parameters */

 if (ioctl(fbfd, FBIOGET_VSCREENINFO, &vinfo)) {

 printf("Bad vscreeninfo ioctl\n");

 exit(2);

 }

 /* Size of frame buffer =

 (X-resolution * Y-resolution * bytes per pixel) */

 fbsize = vinfo.xres*vinfo.yres*(vinfo.bits_per_pixel/8);

 /* Map video memory */

 if ((fbbuf = mmap(0, fbsize, PROT_READ|PROT_WRITE,

 MAP_SHARED, fbfd, 0)) == (void *) -1){

 exit(3);

 }

 /* Clear the screen */

 for (i=0; i<fbsize; i++) {

 *(fbbuf+i) = 0x0;

 }

 munmap(fbbuf, fbsize);

 close(fbfd);

}

We look at another frame buffer application when we learn to access memory regions from user space in
Chapter 19, "Drivers in User Space."

Frame Buffer Drivers

Now that you have an idea of the frame buffer API and how it provides hardware independence, let's discover
the architecture of a low-level frame buffer device driver using the example of a navigation system.

Device Example: Navigation System

Figure 12.6 shows video operation on an example vehicle navigation system built around an embedded SoC. A
GPS receiver streams coordinates to the SoC via a UART interface. An application produces graphics from the
received location information and updates a frame buffer in system memory. The frame buffer driver DMAs this
picture data to display buffers that are part of the SoC's LCD controller. The controller forwards the pixel data to
the QVGA LCD panel for display.

Figure 12.6. Display on a Linux navigation device.

Our goal is to develop the video software for this system. Let's assume that Linux supports the SoC used on this
navigation device and that all architecture-dependent interfaces such as DMA are supported by the kernel.

One possible hardware implementation of the device shown in Figure 12.6 is by using a Freescale i.MX21
SoC. The CPU core in that case is an ARM9 core, and the on-chip video controller is the Liquid Crystal
Display Controller (LCDC). SoCs commonly have a high-performance internal local bus that connects to
controllers such as DRAM and video. In the case of the iMX.21, this bus is called the Advanced High-
Performance Bus (AHB). The LCDC connects to the AHB.

The navigation system's video software is broadly architected as a GPS application operating over a low-level
frame buffer driver for the LCD controller. The application fetches location coordinates from the GPS receiver by
reading /dev/ttySX, where X is the UART number connected to the receiver. It then translates the geographic fix
information into a picture and writes the pixel data to the frame buffer associated with the LCD controller. This
is done on the lines of Listing 12.1, except that picture data is dispatched rather than zeros to clear the screen.

The rest of this section focuses only on the low-level frame buffer device driver. Like many other driver
subsystems, the full complement of facilities, modes, and options offered by the frame buffer core layer are
complex and can be learned only with coding experience. The frame buffer driver for the example navigation
system is relatively simplistic and is only a starting point for deeper explorations.

Table 12.1 describes the register model of the LCD controller shown in Figure 12.6. The frame buffer driver in
Listing 12.2 operates over these registers.

Table 12.1. Register Layout of the LCD Controller Shown in Figure 12.6

Register Name Used to Configure

SIZE_REG LCD panel's maximum X and Y dimensions

HSYNC_REG HSYNC duration

VSYNC_REG VSYNC duration

CONF_REG Bits per pixel, pixel polarity, clock dividers for generating
pixclock, color/monochrome mode, and so on

CTRL_REG Enable/disable LCD controller, clocks, and DMA

DMA_REG Frame buffer's DMA start address, burst length, and
watermark sizes

STATUS_REG Status values

CONTRAST_REG Contrast level

Our frame buffer driver (called myfb) is implemented as a platform driver in Listing 12.2. As you learned in
Chapter 6, a platform is a pseudo bus usually used to connect lightweight devices integrated into SoCs, with the
kernel's device model. Architecture-specific setup code (in arch/your-arch/your-platform/) adds the platform
using platform_device_add(); but for simplicity, the probe() method of the myfb driver performs this before
registering itself as a platform driver. Refer back to the section "Device Example: Cell Phone" in Chapter 6 for
the general architecture of a platform driver and associated entry points.

Data Structures

Let's take a look at the major data structures and methods associated with frame buffer drivers and then zoom
in on myfb. The following two are the main structures:

struct fb_info is the centerpiece data structure of frame buffer drivers. This structure is defined in

include/linux/fb.h as follows:

struct fb_info {

 /* ... */
 struct fb_var_screeninfo var; /* Variable screen information.

1.

 Discussed earlier. */

 struct fb_fix_screeninfo fix; /* Fixed screen information.

 Discussed earlier. */
 /* ... */

 struct fb_cmap cmap; /* Color map.

 Discussed earlier. */
 /* ... */

 struct fb_ops *fbops; /* Driver operations.

 Discussed next. */
 /* ... */

 char __iomem *screen_base; /* Frame buffer's

 virtual address */

 unsigned long screen_size; /* Frame buffer's size */

 /* ... */
 /* From here on everything is device dependent */

 void *par; /* Private area */

};

Memory for fb_info is allocated by framebuffer_alloc(), a library routine provided by the frame buffer

core. This function also takes the size of a private area as an argument and appends that to the end of the
allocated fb_info. This private area can be referenced using the par pointer in the fb_info structure. The

semantics of fb_info fields such as fb_var_screeninfo and fb_fix_screeninfo were discussed in the
section "The Frame Buffer API."

The fb_ops structure contains the addresses of all entry points provided by the low-level frame buffer
driver. The first few methods in fb_ops are necessary for the functioning of the driver, while the remaining
are optional ones that provide for graphics acceleration. The responsibility of each function is briefly
explained within comments:

Code View:
struct fb_ops {
 struct module *owner;
 /* Driver open */

 int (*fb_open)(struct fb_info *info, int user);
 /* Driver close */

 int (*fb_release)(struct fb_info *info, int user);
 /* ... */

 /* Sanity check on video parameters */
 int (*fb_check_var)(struct fb_var_screeninfo *var,

 struct fb_info *info);
 /* Configure the video controller registers */

 int (*fb_set_par)(struct fb_info *info);

 /* Create pseudo color palette map */

 int (*fb_setcolreg)(unsigned regno, unsigned red,
 unsigned green, unsigned blue,

 unsigned transp, struct fb_info *info);

 /* Blank/unblank display */

 int (*fb_blank)(int blank, struct fb_info *info);
 /* ... */

 /* Accelerated method to fill a rectangle with pixel lines */

 void (*fb_fillrect)(struct fb_info *info,
 const struct fb_fillrect *rect);

 /* Accelerated method to copy a rectangular area from one

 screen region to another */

 void (*fb_copyarea)(struct fb_info *info,

2.

 const struct fb_copyarea *region);

 /* Accelerated method to draw an image to the display */

 void (*fb_imageblit)(struct fb_info *info,
 const struct fb_image *image);

 /* Accelerated method to rotate the display */

 void (*fb_rotate)(struct fb_info *info, int angle);
 /* Ioctl interface to support device-specific commands */

 int (*fb_ioctl)(struct fb_info *info, unsigned int cmd,

 unsigned long arg);
 /* ... */

};

Let's now look at the driver methods that Listing 12.2 implements for the myfb driver.

Checking and Setting Parameters

The fb_check_var() method performs a sanity check of variables such as X-resolution, Y-resolution, and bits
per pixel. So, if you use fbset to set an X-resolution less than the minimum supported by the LCD controller (64
in our example), this function will limit it to the minimum allowed by the hardware.

fb_check_var() also sets the appropriate RGB format. Our example uses 16 bits per pixel, and the controller
maps each data word in the frame buffer into the commonly used RGB565 code: 5 bits for red, 6 bits for green,
and 5 bits for blue. The offsets into the data word for each of the three colors are also set accordingly.

The fb_set_par() method configures the registers of the LCD controller depending on the values found in
fb_info.var. This includes setting

Horizontal sync duration, left margin, and right margin in HSYNC_REG

Vertical sync duration, upper margin, and lower margin in VSYNC_REG

The visible X and Y resolutions in SIZE_REG

DMA parameters in DMA_REG

Assume that the GPS application attempts to alter the resolution of the QVGA display to 50x50. The following is
the train of events:

The display is initially at QVGA resolution:

bash> fbset

mode "320x240-76"

 # D: 5.830 MHz, H: 18.219 kHz, V: 75.914 Hz

 geometry 320 240 320 240 16

 timings 171521 0 0 0 0 0 0
 rgba 5/11,6/5,5/0,0/0

1.

2.

endmode

The application does something like this:

struct fb_var_screeninfo vinfo;

fbfd = open("/dev/fb0", O_RDWR);

vinfo.xres = 50;

vinfo.yres = 50;

vinfo.bits_per_pixel = 8;

ioctl(fbfd, FBIOPUT_VSCREENINFO, &vinfo);

Note that this is equivalent to the command fbset -xres 50 -yres 50 -depth 8.

2.

The FBIOPUT_VSCREENINFO ioctl in the previous step triggers invocation of myfb_check_var(). This driver

method expresses displeasure and rounds up the requested resolution to the minimum supported by the
hardware, which is 64x64 in this case.

3.

myfb_set_par() is invoked by the frame buffer core, which programs the new display parameters into

LCD controller registers.

4.

fbset now outputs new parameters:

bash> fbset

mode "64x64-1423"
 # D: 5.830 MHz, H: 91.097 kHz, V: 1423.386 Hz

 geometry 64 64 320 240 16
 timings 171521 0 0 0 0 0 0
 rgba 5/11,6/5,5/0,0/0

endmode

5.

Color Modes

Common color modes supported by video hardware include pseudo color and true color. In the former, index
numbers are mapped to RGB pixel encodings. By choosing a subset of available colors and by using the indices
corresponding to the colors instead of the pixel values themselves, you can reduce demands on frame buffer
memory. Your hardware needs to support this scheme of a modifiable color set (or palette), however.

In true color mode (which is what our example LCD controller supports), modifiable palettes are not relevant.
However, you still have to satisfy the demands of the frame buffer console driver, which uses only 16 colors. For
this, you have to create a pseudo palette by encoding the corresponding 16 raw RGB values into bits that can
be directly fed to the hardware. This pseudo palette is stored in the pseudo_palette field of the fb_info

structure. In Listing 12.2, myfb_setcolreg() populates it as follows:

((u32*)(info->pseudo_palette))[color_index] =

 (red << info->var.red.offset) |

 (green << info->var.green.offset) |

 (blue << info->var.blue.offset) |
 (transp << info->var.transp.offset);

Our LCD controller uses 16 bits per pixel and the RGB565 format, so as you saw earlier, the fb_check_var()
method ensures that the red, green and blue values reside at bit offsets 11, 5, and 0, respectively. In addition

to the color index and the red, blue, and green values, fb_setcolreg() takes in an argument transp, to specify

desired transparency effects. This mechanism, called alpha blending, combines the specified pixel value with the
background color. The LCD controller in this example does not support alpha blending, so myfb_check_var()

sets the transp offset and length to zero.

The frame buffer abstraction is powerful enough to insulate applications from the characteristics of the
display panel—whether it's RGB or BGR or something else. The red, blue, and green offsets set by
fb_check_var() percolate to user space via the fb_var_screeninfo structure populated by the

FBIOGET_VSCREENINFO ioctl(). Because applications such as X Windows are frame buffer-compliant,

they paint pixels into the frame buffer according to the color offsets returned by this ioctl().

Bit lengths used by the RGB encoding (5+6+5=16 in this case) is called the color depth, which is used by the
frame buffer console driver to choose the logo file to display during boot (see the section "Boot Logo").

Screen Blanking

The fb_blank() method provides support for blanking and unblanking the display. This is mainly used for power

management. To blank the navigation system's display after a 10-minute period of inactivity, do this:

bash> setterm -blank 10

This command percolates down the layers to the frame buffer layer and results in the invocation of
myfb_blank(), which programs appropriate bits in CTRL_REG.

Accelerated Methods

If your user interface needs to perform heavy-duty video operations such as blending, stretching, moving
bitmaps, or dynamic gradient generation, you likely require graphics acceleration to obtain acceptable
performance. Let's briefly visit the fb_ops methods that you can leverage if your video hardware supports
graphics acceleration.

The fb_imageblit() method draws an image to the display. This entry point provides an opportunity to your

driver to leverage any special capabilities that your video controller might possess to hasten this operation.
cfb_imageblit() is a generic library function provided by the frame buffer core to achieve this if you have
nonaccelerated hardware. It's used, for instance, to output a logo to the screen during boot up. fb_copyarea()

copies a rectangular area from one screen region to another. cfb_copyarea() provides an optimized way of

doing this if your graphics controller does not possess any magic to accelerate this operation. The
fb_fillrect() method speedily fills a rectangle with pixel lines. cfb_fillrect() offers a generic non-

accelerated way to achieve this. The LCD controller in our navigation system does not provide for acceleration,
so the example driver populates these methods using the generic software-optimized routines offered by the
frame buffer core.

DirectFB

DirectFB (www.directfb.org) is a library built on top of the frame buffer interface that provides a
simple window manager framework and hooks for hardware graphics acceleration and virtual
interfaces that allow coexistence of multiple frame buffer applications. DirectFB, along with an
accelerated frame buffer device driver downstream and a DirectFB-aware rendering engine such as
Cairo (www.cairographics.org) upstream, is sometimes used on graphics-intensive embedded
devices instead of more traditional solutions such as X Windows.

DMA from the Frame Buffer

The LCD controller in the navigation system contains a DMA engine that fetches picture frames from system
memory. The controller dispatches the obtained graphics data to the display panel. The rate of DMA sustains the
refresh rate of the display. A non-cacheable frame buffer suitable for coherent access is allocated using
dma_alloc_coherent() from myfb_probe(). (We discussed coherent DMA mapping in Chapter 10, "Peripheral
Component Interconnect.") myfb_set_par() writes this allocated DMA address to the DMA_REG register in the

LCD controller.

When the driver enables DMA by calling myfb_enable_controller(), the controller starts ferrying pixel data
from the frame buffer to the display using synchronous DMA. So, when the GPS application maps the frame
buffer (using mmap()) and writes location information to it, the pixels gets painted onto the LCD.

Contrast and Backlight

The LCD controller in the navigation system supports contrast control using the CONTRAST_REG register. The
driver exports this to user space via myfb_ioctl(). The GPS application controls contrast as follows:

unsigned int my_fd, desired_contrast_level = 100;

/* Open the frame buffer */
my_fd = open("/dev/fb0", O_RDWR);

ioctl(my_fd, MYFB_SET_BRIGHTNESS, &desired_contrast_level);

The LCD panel on the navigation system is illuminated using a backlight. The processor controls the backlight
inverter through GPIO lines, so you can turn the light on or off by wiggling the corresponding pins. The kernel
abstracts a generic backlight interface via sysfs nodes. To tie with this interface, your driver has to populate a
backlight_ops structure with methods for obtaining and updating backlight brightness, and register it with the
kernel using backlight_device_register(). Look inside drivers/video/backlight/ for the backlight interface
sources and recursively grep the drivers/ tree for backlight_device_register() to locate video drivers that

use this interface. Listing 12.2 does not implement backlight manipulation operations.

Listing 12.2. Frame Buffer Driver for the Navigation System

Code View:
#include <linux/fb.h>

#include <linux/dma-mapping.h>

#include <linux/platform_device.h>

/* Address map of LCD controller registers */

#define LCD_CONTROLLER_BASE 0x01000D00

#define SIZE_REG (*(volatile u32 *)(LCD_CONTROLLER_BASE))

#define HSYNC_REG (*(volatile u32 *)(LCD_CONTROLLER_BASE + 4))

#define VSYNC_REG (*(volatile u32 *)(LCD_CONTROLLER_BASE + 8))

#define CONF_REG (*(volatile u32 *)(LCD_CONTROLLER_BASE + 12))

#define CTRL_REG (*(volatile u32 *)(LCD_CONTROLLER_BASE + 16))

#define DMA_REG (*(volatile u32 *)(LCD_CONTROLLER_BASE + 20))

#define STATUS_REG (*(volatile u32 *)(LCD_CONTROLLER_BASE + 24))

#define CONTRAST_REG (*(volatile u32 *)(LCD_CONTROLLER_BASE + 28))

#define LCD_CONTROLLER_SIZE 32

/* Resources for the LCD controller platform device */

static struct resource myfb_resources[] = {

 [0] = {

 .start = LCD_CONTROLLER_BASE,

 .end = LCD_CONTROLLER_SIZE,

 .flags = IORESOURCE_MEM,

 },

};

/* Platform device definition */

static struct platform_device myfb_device = {

 .name = "myfb",

 .id = 0,

 .dev = {

 .coherent_dma_mask = 0xffffffff,

 },

 .num_resources = ARRAY_SIZE(myfb_resources),

 .resource = myfb_resources,

};

/* Set LCD controller parameters */

static int

myfb_set_par(struct fb_info *info)

{

 unsigned long adjusted_fb_start;

 struct fb_var_screeninfo *var = &info->var;

 struct fb_fix_screeninfo *fix = &info->fix;

 /* Top 16 bits of HSYNC_REG hold HSYNC duration, next 8 contain

 the left margin, while the bottom 8 house the right margin */

 HSYNC_REG = (var->hsync_len << 16) |

 (var->left_margin << 8)|

 (var->right_margin);

 /* Top 16 bits of VSYNC_REG hold VSYNC duration, next 8 contain

 the upper margin, while the bottom 8 house the lower margin */

 VSYNC_REG = (var->vsync_len << 16) |

 (var->upper_margin << 8)|

 (var->lower_margin);

 /* Top 16 bits of SIZE_REG hold xres, bottom 16 hold yres */

 SIZE_REG = (var->xres << 16) | (var->yres);

 /* Set bits per pixel, pixel polarity, clock dividers for

 the pixclock, and color/monochrome mode in CONF_REG */

 /* ... */

 /* Fill DMA_REG with the start address of the frame buffer

 coherently allocated from myfb_probe(). Adjust this address

 to account for any offset to the start of screen area */

 adjusted_fb_start = fix->smem_start +

 (var->yoffset * var->xres_virtual + var->xoffset) *

 (var->bits_per_pixel) / 8;

 __raw_writel(adjusted_fb_start, (unsigned long *)DMA_REG);

 /* Set the DMA burst length and watermark sizes in DMA_REG */

 /* ... */

 /* Set fixed information */

 fix->accel = FB_ACCEL_NONE; /* No hardware acceleration */

 fix->visual = FB_VISUAL_TRUECOLOR; /* True color mode */

 fix->line_length = var->xres_virtual * var->bits_per_pixel/8;

 return 0;

}

/* Enable LCD controller */

static void

myfb_enable_controller(struct fb_info *info)

{

 /* Enable LCD controller, start DMA, enable clocks and power

 by writing to CTRL_REG */

 /* ... */

}

/* Disable LCD controller */

static void

myfb_disable_controller(struct fb_info *info)

{

 /* Disable LCD controller, stop DMA, disable clocks and power

 by writing to CTRL_REG */

 /* ... */

}

/* Sanity check and adjustment of variables */

static int

myfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)

{

 /* Round up to the minimum resolution supported by

 the LCD controller */

 if (var->xres < 64) var->xres = 64;

 if (var->yres < 64) var->yres = 64;

 /* ... */

 /* This hardware supports the RGB565 color format.

 See the section "Color Modes" for more details */

 if (var->bits_per_pixel == 16) {

 /* Encoding Red */

 var->red.length = 5;

 var->red.offset = 11;

 /* Encoding Green */

 var->green.length = 6;

 var->green.offset = 5;

 /* Encoding Blue */

 var->blue.length = 5;

 var->blue.offset = 0;

 /* No hardware support for alpha blending */

 var->transp.length = 0;

 var->transp.offset = 0;

 }

 return 0;

}

/* Blank/unblank screen */

static int

myfb_blank(int blank_mode, struct fb_info *info)

{

 switch (blank_mode) {

 case FB_BLANK_POWERDOWN:

 case FB_BLANK_VSYNC_SUSPEND:

 case FB_BLANK_HSYNC_SUSPEND:

 case FB_BLANK_NORMAL:

 myfb_disable_controller(info);

 break;

 case FB_BLANK_UNBLANK:

 myfb_enable_controller(info);

 break;

 }

 return 0;

}

/* Configure pseudo color palette map */

static int

myfb_setcolreg(u_int color_index, u_int red, u_int green,

 u_int blue, u_int transp, struct fb_info *info)

{

 if (info->fix.visual == FB_VISUAL_TRUECOLOR) {

 /* Do any required translations to convert red, blue, green and

 transp, to values that can be directly fed to the hardware */

 /* ... */

 ((u32 *)(info->pseudo_palette))[color_index] =

 (red << info->var.red.offset) |

 (green << info->var.green.offset) |

 (blue << info->var.blue.offset) |

 (transp << info->var.transp.offset);

 }

 return 0;

}

/* Device-specific ioctl definition */

#define MYFB_SET_BRIGHTNESS _IOW('M', 3, int8_t)

/* Device-specific ioctl */

static int

myfb_ioctl(struct fb_info *info, unsigned int cmd,

 unsigned long arg)

{

 u32 blevel ;

 switch (cmd) {

 case MYFB_SET_BRIGHTNESS :

 copy_from_user((void *)&blevel, (void *)arg,

 sizeof(blevel)) ;

 /* Write blevel to CONTRAST_REG */

 /* ... */

 break;

 default:

 return –EINVAL;

 }

 return 0;

}

/* The fb_ops structure */

static struct fb_ops myfb_ops = {

 .owner = THIS_MODULE,

 .fb_check_var = myfb_check_var,/* Sanity check */

 .fb_set_par = myfb_set_par, /* Program controller registers */

 .fb_setcolreg = myfb_setcolreg,/* Set color map */

 .fb_blank = myfb_blank, /* Blank/unblank display */

 .fb_fillrect = cfb_fillrect, /* Generic function to fill

 rectangle */

 .fb_copyarea = cfb_copyarea, /* Generic function to copy area */

 .fb_imageblit = cfb_imageblit, /* Generic function to draw */

 .fb_ioctl = myfb_ioctl, /* Device-specific ioctl */

};

/* Platform driver's probe() routine */

static int __init

myfb_probe(struct platform_device *pdev)

{

 struct fb_info *info;

 struct resource *res;

 info = framebuffer_alloc(0, &pdev->dev);

 /* ... */

 /* Obtain the associated resource defined while registering the

 corresponding platform_device */

 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

 /* Get the kernel's sanction for using the I/O memory chunk

 starting from LCD_CONTROLLER_BASE and having a size of

 LCD_CONTROLLER_SIZE bytes */

 res = request_mem_region(res->start, res->end - res->start + 1,

 pdev->name);

 /* Fill the fb_info structure with fixed (info->fix) and variable

 (info->var) values such as frame buffer length, xres, yres,

 bits_per_pixel, fbops, cmap, etc */

 initialize_fb_info(info, pdev); /* Not expanded */

 info->fbops = &myfb_ops;

 fb_alloc_cmap(&info->cmap, 16, 0);

 /* DMA-map the frame buffer memory coherently. info->screen_base

 holds the CPU address of the mapped buffer,

 info->fix.smem_start carries the associated hardware address */

 info->screen_base = dma_alloc_coherent(0, info->fix.smem_len,

 (dma_addr_t *)&info->fix.smem_start,

 GFP_DMA | GFP_KERNEL);

 /* Set the information in info->var to the appropriate

 LCD controller registers */

 myfb_set_par(info);

 /* Register with the frame buffer core */

 register_framebuffer(info);

 return 0;

}

/* Platform driver's remove() routine */

static int

myfb_remove(struct platform_device *pdev)

{

 struct fb_info *info = platform_get_drvdata(pdev);

 struct resource *res;

 /* Disable screen refresh, turn off DMA,.. */

 myfb_disable_controller(info);

 /* Unregister frame buffer driver */

 unregister_framebuffer(info);

 /* Deallocate color map */

 fb_dealloc_cmap(&info->cmap);

 kfree(info->pseudo_palette);

 /* Reverse of framebuffer_alloc() */

 framebuffer_release(info);

 /* Release memory region */

 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

 release_mem_region(res->start, res->end - res->start + 1);

 platform_set_drvdata(pdev, NULL);

 return 0;

}

/* The platform driver structure */

static struct platform_driver myfb_driver = {

 .probe = myfb_probe,

 .remove = myfb_remove,

 .driver = {

 .name = "myfb",

 },

};

/* Module Initialization */

int __init

myfb_init(void)

{

 platform_device_add(&myfb_device);

 return platform_driver_register(&myfb_driver);

}

/* Module Exit */

void __exit

myfb_exit(void)

{

 platform_driver_unregister(&myfb_driver);

 platform_device_unregister(&myfb_device);

}

module_init(myfb_init);

module_exit(myfb_exit);

Console Drivers

A console is a device that displays printk() messages generated by the kernel. If you look at Figure 12.5, you
can see that console drivers lie in two tiers: a top level constituting drivers such as the virtual terminal driver,
the printer console driver, and the example USB_UART console driver (discussed soon), and bottom-level drivers

that are responsible for advanced operations. Consequently, there are two main interface definition structures
used by console drivers. Top-level console drivers revolve around struct console, which defines basic
operations such as setup() and write(). Bottom-level drivers center on struct consw that specifies advanced

operations such as setting cursor properties, console switching, blanking, resizing, and setting palette
information. These structures are defined in include/linux/console.h as follows:

struct console {
 char name[8];

 void (*write)(struct console *, const char *, unsigned);
 int (*read)(struct console *, char *, unsigned);

 /* ... */
 void (*unblank)(void);
 int (*setup)(struct console *, char *);

 /* ... */
};

1.

struct consw {
 struct module *owner;

 const char *(*con_startup)(void);
 void (*con_init)(struct vc_data *, int);
 void (*con_deinit)(struct vc_data *);

 void (*con_clear)(struct vc_data *, int, int, int, int);
 void (*con_putc)(struct vc_data *, int, int, int);

 void (*con_putcs)(struct vc_data *,
 const unsigned short *, int, int, int);

 void (*con_cursor)(struct vc_data *, int);
 int (*con_scroll)(struct vc_data *, int, int, int, int);

 /* ... */

};

2.

As you might have guessed by looking at Figure 12.5, most console devices need both levels of drivers working
in tandem. The vt driver is the top-level console driver in many situations. On PC-compatible systems, the VGA
console driver (vgacon) is usually the bottom-level console driver; whereas on embedded devices, the frame
buffer console driver (fbcon) is often the bottom-level driver. Because of the indirection offered by the frame
buffer abstraction, fbcon, unlike other bottom-level console drivers, is hardware-independent.

Let's briefly look at the architecture of both levels of console drivers:

The top-level driver populates a struct console with prescribed entry points and registers it with the

kernel using register_console(). Unregistering is accomplished using unregister_console(). This is
the driver that interacts with printk(). The entry points belonging to this driver call on the services of the

associated bottom-level console driver.

The bottom-level console driver populates a struct consw with specified entry points and registers it with

the kernel using register_con_driver(). Unregistering is done using unregister_con_driver(). When

the system supports multiple console drivers, the driver might instead invoke take_over_console() to

register itself and take over the existing console. give_up_console() accomplishes the reverse. For
conventional displays, bottom-level drivers interact with the top-level vt console driver and the vc_screen
character driver that allows access to virtual console memory.

Some simple consoles, such as line printers and the USB_UART discussed next, need only a top-level console
driver.

The fbcon driver in the 2.6 kernel also supports console rotation. Display panels on PDAs and cell phones are
usually mounted in portrait orientation, whereas automotive dashboards and IP phones are examples of
systems where the display panel is likely to be in landscape mode. Sometimes, due to economics or other
factors, an embedded device may require a landscape LCD to be mounted in portrait mode or vice versa.
Console rotation support comes handy in such situations. Because fbcon is hardware-independent, the console
rotation implementation is also generic. To enable console rotation, enable
CONFIG_FRAMEBUFFER_CONSOLE_ROTATION during kernel configuration and add fbcon=rotate:X to the kernel

command line, where X is 0 for normal orientation, 1 for 90-degree rotation, 2 for 180-degree rotation, and 3
for 270-degree rotation.

Device Example: Cell Phone Revisited

To learn how to write console drivers, let's revisit the Linux cell phone that we used in Chapter 6. Our task in
this section is to develop a console driver that operates over the USB_UARTs in the cell phone. For convenience,

Figure 12.7 reproduces the cell phone from Figure 6.5 in Chapter 6. Let's write a console driver that gets
printk() messages out of the door via a USB_UART. The messages are picked up by a PC host and displayed to

the user via a terminal emulator session.

Figure 12.7. Console over USB_UART.

[View full size image]

Listing 12.3 develops the console driver that works over the USB_UARTs. The usb_uart_port[] structure and a

few definitions used by the USB_UART driver in Chapter 6 are included in this listing, too, to create a complete

driver. Comments associated with the listing explain the driver's operation.

Figure 12.7 shows the position of our example USB_UART console driver within the Linux-Video subsystem. As
you can see, the USB_UART is a simple device that needs only a top-level console driver.

Listing 12.3. Console over USB_UART

Code View:
#include <linux/console.h>

#include <linux/serial_core.h>

#include <asm/io.h>

#define USB_UART_PORTS 2 /* The cell phone has 2

 USB_UART ports */

/* Each USB_UART has a 3-byte register set consisting of

 UU_STATUS_REGISTER at offset 0, UU_READ_DATA_REGISTER at

 offset 1, and UU_WRITE_DATA_REGISTER at offset 2, as shown

 in Table One of Chapter 6, "Serial Drivers" */

#define USB_UART1_BASE 0xe8000000 /* Memory base for USB_UART1 */

#define USB_UART2_BASE 0xe9000000 /* Memory base for USB_UART1 */

#define USB_UART_REGISTER_SPACE 0x3

/* Semantics of bits in the status register */

#define USB_UART_TX_FULL 0x20

#define USB_UART_RX_EMPTY 0x10

#define USB_UART_STATUS 0x0F

#define USB_UART1_IRQ 3

#define USB_UART2_IRQ 4

#define USB_UART_CLK_FREQ 16000000

#define USB_UART_FIFO_SIZE 32

/* Parameters of each supported USB_UART port */

static struct uart_port usb_uart_port[] = {

 {

 .mapbase = (unsigned int)USB_UART1_BASE,

 .iotype = UPIO_MEM, /* Memory mapped */

 .irq = USB_UART1_IRQ, /* IRQ */

 .uartclk = USB_UART_CLK_FREQ, /* Clock HZ */

 .fifosize = USB_UART_FIFO_SIZE, /* Size of the FIFO */

 .flags = UPF_BOOT_AUTOCONF, /* UART port flag */

 .line = 0, /* UART Line number */

 },

 {

 .mapbase = (unsigned int)USB_UART2_BASE,

 .iotype = UPIO_MEM, /* Memory mapped */

 .irq = USB_UART2_IRQ, /* IRQ */

 .uartclk = USB_UART_CLK_FREQ, /* CLock HZ */

 .fifosize = USB_UART_FIFO_SIZE, /* Size of the FIFO */

 .flags = UPF_BOOT_AUTOCONF, /* UART port flag */

 .line = 1, /* UART Line number */

 }

};

/* Write a character to the USB_UART port */

static void

usb_uart_putc(struct uart_port *port, unsigned char c)

{

 /* Wait until there is space in the TX FIFO of the USB_UART.

 Sense this by looking at the USB_UART_TX_FULL

 bit in the status register */

 while (__raw_readb(port->membase) & USB_UART_TX_FULL);

 /* Write the character to the data port*/

 __raw_writeb(c, (port->membase+1));

}

/* Console write */

static void

usb_uart_console_write(struct console *co, const char *s,

 u_int count)

{

 int i;

 /* Write each character */

 for (i = 0; i < count; i++, s++) {

 usb_uart_putc(&usb_uart_port[co->index], *s);

 }

}

/* Get communication parameters */

static void __init

usb_uart_console_get_options(struct uart_port *port,

 int *baud, int *parity, int *bits)

{

 /* Read the current settings (possibly set by a bootloader)

 or return default values for parity, number of data bits,

 and baud rate */

 *parity = 'n';

 *bits = 8;

 *baud = 115200;

}

/* Setup console communication parameters */

static int __init

usb_uart_console_setup(struct console *co, char *options)

{

 struct uart_port *port;

 int baud, bits, parity, flow;

 /* Validate port number and get a handle to the

 appropriate structure */

 if (co->index == -1 || co->index >= USB_UART_PORTS) {

 co->index = 0;

 }

 port = &usb_uart_port[co->index];

 /* Use functions offered by the serial layer to parse options */

 if (options) {

 uart_parse_options(options, &baud, &parity, &bits, &flow);

 } else {

 usb_uart_console_get_options(port, &baud, &parity, &bits);

 }

 return uart_set_options(port, co, baud, parity, bits, flow);

}

/* Populate the console structure */

static struct console usb_uart_console = {

 .name = "ttyUU", /* Console name */

 .write = usb_uart_console_write, /* How to printk to the

 console */

 .device = uart_console_device, /* Provided by the serial core */

 .setup = usb_uart_console_setup, /* How to setup the console */

 .flags = CON_PRINTBUFFER, /* Default flag */

 .index = -1, /* Init to invalid value */

};

/* Console Initialization */

static int __init

usb_uart_console_init(void)

{

 /* ... */

 /* Register this console */

 register_console(&usb_uart_console);

 return 0;

}

console_initcall(usb_uart_console_init); /* Mark console init */

After this driver has been built as part of the kernel, you can activate it by appending console=ttyUUX (where X
is 0 or 1) to the kernel command line.

Boot Logo

A popular feature offered by the frame buffer subsystem is the boot logo. To display a logo, enable CONFIG_LOGO

during kernel configuration and select an available logo. You may also add a custom logo image in the
drivers/video/logo/ directory.

CLUT224 is a commonly used boot logo image format that supports 224 colors. The working of this format is
similar to pseudo palettes described in the section "Color Modes." A CLUT224 image is a C file containing two
structures:

A CLUT (Color Look Up Table), which is a character array of 224 RGB tuples (thus having a size of 224*3
bytes). Each 3-byte CLUT element is a combination of red, green, and blue colors.

A data array whose each byte is an index into the CLUT. The indices start at 32 and extend until 255 (thus
supporting 224 colors). Index 32 refers to the first element in the CLUT. The logo manipulation code (in
drivers/video/fbmem.c) creates frame buffer pixel data from the CLUT tuple corresponding to each index
in the data array. Image display is accomplished using the low-level frame buffer driver's fb_imageblit()
method, as indicated in the section "Accelerated Methods."

Other supported logo formats are the 16-color vga16 and the black-and-white mono. Scripts are available in the
top-level scripts/ directory to convert standard Portable Pixel Map (PPM) files to the supported logo formats.

If the frame buffer device is also the console, boot messages scroll under the logo. You may prefer to disable
console messages on production-level systems (by adding console=/dev/null to the kernel command line) and
display a customer-supplied CLUT224 "splash screen" image as the boot logo.

Debugging

The virtual frame buffer driver, enabled by setting CONFIG_FB_VIRTUAL in the configuration menu, operates over
a pseudo graphics adapter. You can use this driver's assistance to debug the frame buffer subsystem.

Some frame buffer drivers, such as intelfb, offer an additional configuration option that you may enable to
generate driver-specific debug information.

To discuss issues related to frame buffer drivers, subscribe to the linux-fbdev-devel mailing list,
https://lists.sourceforge.net/lists/listinfo/linux-fbdev-devel/.

Debugging console drivers is not an easy job because you can't call printk() from inside the driver. If you have
a spare console device such as a serial port, you can implement a UART/tty form factor of your console driver
first (as we did in Chapter 6 for the USB_UART device used in this chapter) and debug that driver by operating
on /dev/tty and printing messages to the spare console. You can then repackage the debugged code regions in
the form of a console driver.

Looking at the Sources

The frame buffer core layer and low-level frame buffer drivers reside in the drivers/video/ directory. Generic
frame buffer structures are defined in include/linux/fb.h, whereas chipset-specific headers stay inside
include/video/. The fbmem driver, drivers/video/fbmem.c, creates the /dev/fbX character devices and is the
front end for handling frame buffer ioctl commands issued by user applications.

The intelfb driver, drivers/video/intelfb/*, is the low-level frame buffer driver for several Intel graphics
controllers such as the one integrated with the 855 GME North Bridge. The radeonfb driver, drivers/video/aty/*,
is the frame buffer driver for Radeon Mobility AGP graphics hardware from ATI technologies. The source files,
drivers/video/*fb.c, are all frame buffer drivers for graphics controllers, including those integrated into several
SoCs. You can use drivers/video/skeletonfb.c as the starting point if you are writing a custom low-level frame
buffer driver. Look at Documentation/fb/* for more documentation on the frame buffer layer.

The home page of the Linux frame buffer project is www.linux-fbdev.org. This website contains HOWTOs, links
to frame buffer drivers and utilities, and pointers to related web pages.

Console drivers, both frame buffer-based and otherwise, live inside drivers/video/console/. To find out how
printk() logs kernel messages to an internal buffer and calls console drivers, look at kernel/printk.c.

Table 12.2 contains the main data structures used in this chapter and their location in the source tree. Table
12.3 lists the main kernel programming interfaces that you used in this chapter with the location of their
definitions.

Table 12.2. Summary of Data Structures

Data Structure Location Description

fb_info include/linux/fb.h Central data structure used by low-level
frame buffer drivers

fb_ops include/linux/fb.h Contains addresses of all entry points
provided by low-level frame buffer
drivers

fb_var_screeninfo include/linux/fb.h Contains variable information pertaining
to video hardware such as the X-
resolution, Y-resolution, and
HYSNC/VSYNC durations

fb_fix_screeninfo include/linux/fb.h Fixed information about video hardware
such as the start address of the frame
buffer

fb_cmap include/linux/fb.h The RGB color map for a frame buffer
device

console include/linux/console.h Representation of a top-level console
driver

consw include/linux/console.h Representation of a bottom-level console
driver

Table 12.3. Summary of Kernel Programming Interfaces

Kernel Interface Location Description

register_framebuffer() drivers/video/fbmem.c Registers a low-level frame buffer
device.

unregister_framebuffer() drivers/video/fbmem.c Releases a low-level frame buffer
device.

framebuffer_alloc() drivers/video/fbsysfs.c Allocates memory for an fb_info
structure.

framebuffer_release() drivers/video/fbsysfs.c Reverse of framebuffer_alloc().

fb_alloc_cmap() drivers/video/fbcmap.c Allocates color map.

fb_dealloc_cmap() drivers/video/fbcmap.c Frees color map.

dma_alloc_coherent() include/asm-
generic/dma-mapping.h

Allocates and maps a coherent DMA
buffer. See
pci_alloc_consistent() in Chapter

10.

dma_free_coherent() include/asm-
generic/dma-mapping.h

Frees a coherent DMA buffer. See
pci_free_consistent() in Chapter
10.

register_console() kernel/printk.c Registers a top-level console driver.

unregister_console() kernel/printk.c Unregisters a top-level console
driver.

register_con_driver()

take_over_console()

drivers/char/vt.c Registers/binds a bottom-level
console driver.

unregister_con_driver()

give_up_console()

drivers/char/vt.c Unregisters/unbinds a bottom-level
console driver.

Chapter 13. Audio Drivers

In This Chapter

Audio Architecture

392

Linux-Sound Subsystem

394

Device Example: MP3 Player

396

Debugging
412

Looking at the Sources

412

Audio hardware provides computer systems the capability to generate and capture sound. Audio is
an integral component in both the PC and the embedded space, for chatting on a laptop, making a
call from a cell phone, listening to an MP3 player, streaming multimedia from a set-top box, or
announcing instructions on a medical-grade system. If you run Linux on any of these devices, you
need the services offered by the Linux-Sound subsystem.

In this chapter, let's find out how the kernel supports audio controllers and codecs. Let's learn the
architecture of the Linux-Sound subsystem and the programming model that it exports.

Audio Architecture

Figure 13.1 shows audio connection on a PC-compatible system. The audio controller on the South Bridge,
together with an external codec, interfaces with analog audio circuitry.

Figure 13.1. Audio in the PC environment.

[View full size image]

An audio codec converts digital audio data to analog sound signals for playing through speakers and performs
the reverse operation for recording through a microphone. Other common audio inputs and outputs that
interface with a codec include headsets, earphones, handsets, hands-free, line-in, and line-out. A codec also
offers mixer functionality that connects it to a combination of these audio inputs and outputs, and controls the
volume gain of associated audio signals.[1]

[1] This definition of a mixer is from a software perspective. Sound mixing or data mixing refers to the capability of some codecs to mix

multiple sound streams and generate a single stream. This is needed, for example, if you want to superimpose an announcement while a voice

communication is in progress on an IP phone. The alsa-lib library, discussed in the latter part of this chapter, supports a plug-in feature called

dmix that performs data mixing in software if your codec does not have the capability to perform this operation in hardware.

Digital audio data is obtained by sampling analog audio signals at specific bit rates using a technique called
pulse code modulation (PCM). CD quality is, for example, sound sampled at 44.1KHz, using 16 bits to hold each
sample. A codec is responsible for recording audio by sampling at supported PCM bit rates and for playing audio
originally sampled at different PCM bit rates.

A sound card may support one or more codecs. Each codec may, in turn, support one or more audio substreams
in mono or stereo.

The Audio Codec'97 (AC'97) and the Inter-IC Sound (I2S) bus are examples of industry standard interfaces that
connect audio controllers to codecs:

The Intel AC'97 specification, downloadable from http://download.intel.com/, specifies the semantics and
locations of audio registers. Configuration registers are part of the audio controller, while the I/O register
space is situated inside the codec. Requests to operate on I/O registers are forwarded by the audio
controller to the codec over the AC'97 link. The register that controls line-in volume, for example, lives at
offset 0x10 within the AC'97 I/O space. The PC system in Figure 13.1 uses AC'97 to communicate with an

external codec.

The I2S specification, downloadable from www.nxp.com/acrobat_download/various/I2SBUS.pdf, is a codec

http://download.intel.com/

interface standard developed by Philips. The embedded device shown in Figure 13.2 uses I2S to send
audio data to the codec. Programming the codec's I/O registers is done via the I2C bus.

Figure 13.2. Audio connection on an embedded system.

AC'97 has limitations pertaining to the number of supported channels and bit rates. Recent South Bridge
chipsets from Intel feature a new technology called High Definition (HD) Audio that offers higher-quality,
surround sound, and multistreaming capabilities.

Chapter 13. Audio Drivers

In This Chapter

Audio Architecture

392

Linux-Sound Subsystem

394

Device Example: MP3 Player

396

Debugging
412

Looking at the Sources

412

Audio hardware provides computer systems the capability to generate and capture sound. Audio is
an integral component in both the PC and the embedded space, for chatting on a laptop, making a
call from a cell phone, listening to an MP3 player, streaming multimedia from a set-top box, or
announcing instructions on a medical-grade system. If you run Linux on any of these devices, you
need the services offered by the Linux-Sound subsystem.

In this chapter, let's find out how the kernel supports audio controllers and codecs. Let's learn the
architecture of the Linux-Sound subsystem and the programming model that it exports.

Audio Architecture

Figure 13.1 shows audio connection on a PC-compatible system. The audio controller on the South Bridge,
together with an external codec, interfaces with analog audio circuitry.

Figure 13.1. Audio in the PC environment.

[View full size image]

An audio codec converts digital audio data to analog sound signals for playing through speakers and performs
the reverse operation for recording through a microphone. Other common audio inputs and outputs that
interface with a codec include headsets, earphones, handsets, hands-free, line-in, and line-out. A codec also
offers mixer functionality that connects it to a combination of these audio inputs and outputs, and controls the
volume gain of associated audio signals.[1]

[1] This definition of a mixer is from a software perspective. Sound mixing or data mixing refers to the capability of some codecs to mix

multiple sound streams and generate a single stream. This is needed, for example, if you want to superimpose an announcement while a voice

communication is in progress on an IP phone. The alsa-lib library, discussed in the latter part of this chapter, supports a plug-in feature called

dmix that performs data mixing in software if your codec does not have the capability to perform this operation in hardware.

Digital audio data is obtained by sampling analog audio signals at specific bit rates using a technique called
pulse code modulation (PCM). CD quality is, for example, sound sampled at 44.1KHz, using 16 bits to hold each
sample. A codec is responsible for recording audio by sampling at supported PCM bit rates and for playing audio
originally sampled at different PCM bit rates.

A sound card may support one or more codecs. Each codec may, in turn, support one or more audio substreams
in mono or stereo.

The Audio Codec'97 (AC'97) and the Inter-IC Sound (I2S) bus are examples of industry standard interfaces that
connect audio controllers to codecs:

The Intel AC'97 specification, downloadable from http://download.intel.com/, specifies the semantics and
locations of audio registers. Configuration registers are part of the audio controller, while the I/O register
space is situated inside the codec. Requests to operate on I/O registers are forwarded by the audio
controller to the codec over the AC'97 link. The register that controls line-in volume, for example, lives at
offset 0x10 within the AC'97 I/O space. The PC system in Figure 13.1 uses AC'97 to communicate with an

external codec.

The I2S specification, downloadable from www.nxp.com/acrobat_download/various/I2SBUS.pdf, is a codec

http://download.intel.com/

interface standard developed by Philips. The embedded device shown in Figure 13.2 uses I2S to send
audio data to the codec. Programming the codec's I/O registers is done via the I2C bus.

Figure 13.2. Audio connection on an embedded system.

AC'97 has limitations pertaining to the number of supported channels and bit rates. Recent South Bridge
chipsets from Intel feature a new technology called High Definition (HD) Audio that offers higher-quality,
surround sound, and multistreaming capabilities.

Linux-Sound Subsystem

Advanced Linux Sound Architecture (ALSA) is the sound subsystem of choice in the 2.6 kernel. Open Sound
System (OSS), the sound layer in the 2.4 kernel, is now obsolete and depreciated. To help the transition from
OSS to ALSA, the latter provides OSS emulation that allows applications conforming to the OSS API to run
unchanged over ALSA. Linux-Sound frameworks such as ALSA and OSS render audio applications independent
of the underlying hardware, just as codec standards such as AC'97 and I2S do away with the need of writing
separate audio drivers for each sound card.

Take a look at Figure 13.3 to understand the architecture of the Linux-Sound subsystem. The constituent pieces
of the subsystem are as follows:

The sound core, which is a code base consisting of routines and structures available to other components
of the Linux-Sound layer. Like the core layers belonging to other driver subsystems, the sound core
provides a level of indirection that renders each component in the sound subsystem independent of the
others. The core also plays an important role in exporting the ALSA API to higher applications. The
following /dev/snd/* device nodes shown in Figure 13.3 are created and managed by the ALSA core:
/dev/snd/controlC0 is a control node (that applications use for controlling volume gain and such),
/dev/snd/pcmC0D0p is a playback device (p at the end of the device name stands for playback), and
/dev/snd/pcmC0D0c is a recording device (c at the end of the device name stands for capture). In these
device names, the integer following C is the card number, and that after D is the device number. An ALSA
driver for a card that has a voice codec for telephony and a stereo codec for music might export
/dev/snd/pcmC0D0p to read audio streams destined for the former and /dev/snd/pcmC0D1p to channel
music bound for the latter.

Audio controller drivers specific to controller hardware. To drive the audio controller present in the Intel
ICH South Bridge chipsets, for example, use the snd_intel8x0 driver.

Audio codec interfaces that assist communication between controllers and codecs. For AC'97 codecs, use
the snd_ac97_codec and ac97_bus modules.

An OSS emulation layer that acts as a conduit between OSS-aware applications and the ALSA-enabled
kernel. This layer exports /dev nodes that mirror what the OSS layer offered in the 2.4 kernels. These
nodes, such as /dev/dsp, /dev/adsp, and /dev/mixer, allow OSS applications to run unchanged over ALSA.
The OSS /dev/dsp node maps to the ALSA nodes /dev/snd/pcmC0D0*, /dev/adsp corresponds to
/dev/snd/pcmC0D1*, and /dev/mixer associates with /dev/snd/controlC0.

Procfs and sysfs interface implementations for accessing information via /proc/asound/ and
/sys/class/sound/.

The user-space ALSA library, alsa-lib, which provides the libasound.so object. This library eases the job of
the ALSA application programmer by offering several canned routines to access ALSA drivers.

The alsa-utils package that includes utilities such as alsamixer, amixer, alsactl, and aplay. Use alsamixer
or amixer to change volume levels of audio signals such as line-in, line-out, or microphone, and alsactl to
control settings for ALSA drivers. To play audio over ALSA, use aplay.

Figure 13.3. Linux-Sound (ALSA) subsystem.

[View full size image]

To obtain a better understanding of the architecture of the Linux-Sound layer, let's look at the ALSA driver

modules running on a laptop in tandem with Figure 13.3 (is used to attach comments):

Code View:
bash> lsmod|grep snd

snd_intel8x0 33148 0 Audio Controller Driver

snd_ac97_codec 92000 1 snd_intel8x0 Audio Codec Interface

ac97_bus 3104 1 snd_ac97_codec Audio Codec Bus

snd_pcm_oss 40512 0 OSS Emulation

snd_mixer_oss 16640 1 snd_pcm_oss OSS Volume Control

snd_pcm 73316 3 snd_intel8x0,snd_ac97_codec,snd_pcm_oss

 Core layer

snd_timer 22148 1 snd_pcm Core layer

snd 50820 6 snd_intel8x0,snd_ac97_codec,snd_pcm_oss,

 snd_mixer_oss,snd_pcm,snd_timer

 Core layer

soundcore 8960 1 snd Core layer

snd_page_alloc 10344 2 snd_intel8x0,snd_pcm Core layer

Device Example: MP3 Player

Figure 13.4 shows audio operation on an example Linux Bluetooth MP3 player built around an embedded SoC.
You can program the Linux cell phone (that we used in Chapter 6, "Serial Drivers," and Chapter 12, "Video
Drivers") to download songs from the Internet at night when phone rates are presumably cheaper and upload it
to the MP3 player's Compact Flash (CF) disk via Bluetooth so that you can listen to the songs next day during
office commute.

Figure 13.4. Audio on a Linux MP3 player.

[View full size image]

Our task is to develop the audio software for this device. An application on the player reads songs from the CF
disk and decodes it into system memory. A kernel ALSA driver gathers the music data from system memory and
dispatches it to transmit buffers that are part of the SoC's audio controller. This PCM data is forwarded to the
codec, which plays the music through the device's speaker. As in the case of the navigation system discussed in
the preceding chapter, we will assume that Linux supports this SoC, and that all architecture-dependent
services such as DMA are supported by the kernel.

The audio software for the MP3 player thus consists of two parts:

A user program that decodes MP3 files reads from the CF disk and converts it into raw PCM. To write a
native ALSA decoder application, you can leverage the helper routines offered by the alsa-lib library. The
section "ALSA Programming" looks at how ALSA applications interact with ALSA drivers.

You also have the option of customizing public domain MP3 players such as madplay
(http://sourceforge.net/projects/mad/) to suit this device.

1.

A low-level kernel ALSA audio driver. The following section is devoted to writing this driver.2.

http://sourceforge.net/projects/mad/

2.

One possible hardware implementation of the device shown in Figure 13.4 is by using a PowerPC 405LP
SoC and a Texas Instruments TLV320 audio codec. The CPU core in that case is the 405 processor and
the on-chip audio controller is the Codec Serial Interface (CSI). SoCs commonly have a high-
performance internal local bus that connects to controllers, such as DRAM and video, and a separate on-
chip peripheral bus to interface with low-speed peripherals such as serial ports, I2C, and GPIO. In the
case of the 405LP, the former is called the Processor Local Bus (PLB) and the latter is known as the On-
chip Peripheral Bus (OPB). The PCMCIA/CF controller hangs off the PLB, whereas the audio controller
interface connects to the OPB.

An audio driver is built out of three main ingredients:

Routines that handle playback1.

Routines that handle capture2.

Mixer control functions3.

Our driver implements playback, but does not support recording because the MP3 player in the example has no
microphone. The driver also simplifies the mixer function. Rather than offering the full compliment of volume
controls, such as speaker, earphone, and line-out, it allows only a single generic volume control.

The register layout of the MP3 player's audio hardware shown in Table 13.1 mirrors these assumptions and
simplifications, and does not conform to standards such as AC'97 alluded to earlier. So, the codec has a
SAMPLING_RATE_REGISTER to configure the playback (digital-to-analog) sampling rate but no registers to set the

capture (analog-to-digital) rate. The VOLUME_REGISTER configures a single global volume.

Table 13.1. Register Layout of the Audio Hardware in Figure 13.4

Register Name Description

VOLUME_REGISTER Controls the codec's global volume.

SAMPLING_RATE_REGISTER Sets the codec's sampling rate for digital-to-analog
conversion.

CLOCK_INPUT_REGISTER Configures the codec's clock source, divisors, and so on.

CONTROL_REGISTER Enables interrupts, configures interrupt cause (such as
completion of a buffer transfer), resets hardware,
enables/disables bus operation, and so on.

STATUS_REGISTER Status of codec audio events.

DMA_ADDRESS_REGISTER The example hardware supports a single DMA buffer
descriptor. Real-world cards may support multiple
descriptors and may have additional registers to hold

Register Name Description
descriptors and may have additional registers to hold
parameters such as the descriptor that is currently being
processed, the position of the current sample inside the
buffer, and so on. DMA is performed to the buffers in the
audio controller, so this register resides in the controller's
memory space.

DMA_SIZE_REGISTER Holds the size of the DMA transfer to/from the SoC. This
register also resides inside the audio controller.

Listing 13.1 is a skeletal ALSA audio driver for the MP3 player and liberally employs pseudo code (within
comments) to cut out extraneous detail. ALSA is a sophisticated framework, and conforming audio drivers are
usually several thousand lines long. Listing 13.1 gets you started only on your audio driver explorations.
Continue your learning by falling back to the mighty Linux-Sound sources inside the top-level sound/ directory.

Driver Methods and Structures

Our example driver is implemented as a platform driver. Let's take a look at the steps performed by the
platform driver's probe() method, mycard_audio_probe(). We will digress a bit under each step to explain

related concepts and important data structures that we encounter, and this will take us to other parts of the
driver and help tie things together.

mycard_audio_probe()does the following:

1. Creates an instance of a sound card by invoking snd_card_new():

struct snd_card *card = snd_card_new(-1, id[dev->id], THIS_MODULE, 0);

The first argument to snd_card_new() is the card index (that identifies this card among multiple sound
cards in the system), the second argument is the ID that'll be stored in the id field of the returned

snd_card structure, the third argument is the owner module, and the last argument is the size of a private
data field that'll be made available via the private_data field of the returned snd_card structure (usually
to store chip-specific data such as interrupt levels and I/O addresses).

snd_card represents the created sound card and is defined as follows in include/sound/core.h:

struct snd_card {
 int number; /* Card index */
 char id[16]; /* Card ID */
 /* ... */
 struct module *module; /* Owner module */
 void *private_data; /* Private data */
 /* ... */
 struct list_head controls;
 /* All controls for this card */
 struct device *dev; /* Device assigned to this card*/
 /* ... */
};

The remove() counterpart of the probe method, mycard_audio_remove(), releases the snd_card from the
ALSA framework using snd_card_free().

2. Creates a PCM playback instance and associates it with the card created in Step 1, using snd_pcm_new():

descriptors and may have additional registers to hold
parameters such as the descriptor that is currently being
processed, the position of the current sample inside the
buffer, and so on. DMA is performed to the buffers in the
audio controller, so this register resides in the controller's
memory space.

DMA_SIZE_REGISTER Holds the size of the DMA transfer to/from the SoC. This
register also resides inside the audio controller.

Listing 13.1 is a skeletal ALSA audio driver for the MP3 player and liberally employs pseudo code (within
comments) to cut out extraneous detail. ALSA is a sophisticated framework, and conforming audio drivers are
usually several thousand lines long. Listing 13.1 gets you started only on your audio driver explorations.
Continue your learning by falling back to the mighty Linux-Sound sources inside the top-level sound/ directory.

Driver Methods and Structures

Our example driver is implemented as a platform driver. Let's take a look at the steps performed by the
platform driver's probe() method, mycard_audio_probe(). We will digress a bit under each step to explain

related concepts and important data structures that we encounter, and this will take us to other parts of the
driver and help tie things together.

mycard_audio_probe()does the following:

1. Creates an instance of a sound card by invoking snd_card_new():

struct snd_card *card = snd_card_new(-1, id[dev->id], THIS_MODULE, 0);

The first argument to snd_card_new() is the card index (that identifies this card among multiple sound
cards in the system), the second argument is the ID that'll be stored in the id field of the returned

snd_card structure, the third argument is the owner module, and the last argument is the size of a private
data field that'll be made available via the private_data field of the returned snd_card structure (usually
to store chip-specific data such as interrupt levels and I/O addresses).

snd_card represents the created sound card and is defined as follows in include/sound/core.h:

struct snd_card {
 int number; /* Card index */
 char id[16]; /* Card ID */
 /* ... */
 struct module *module; /* Owner module */
 void *private_data; /* Private data */
 /* ... */
 struct list_head controls;
 /* All controls for this card */
 struct device *dev; /* Device assigned to this card*/
 /* ... */
};

The remove() counterpart of the probe method, mycard_audio_remove(), releases the snd_card from the
ALSA framework using snd_card_free().

2. Creates a PCM playback instance and associates it with the card created in Step 1, using snd_pcm_new():

int snd_pcm_new(struct snd_card *card, char *id,
 int device,
 int playback_count, int capture_count,
 struct snd_pcm **pcm);

The arguments are, respectively, the sound card instance created in Step 1, an identifier string, the device
index, the number of supported playback streams, the number of supported capture streams (0 in our
example), and a pointer to store the allocated PCM instance. The allocated PCM instance is defined as
follows in include/sound/pcm.h:

Code View:
struct snd_pcm {
 struct snd_card *card; /* Associated snd_card */
 /* ... */
 struct snd_pcm_str streams[2]; /* Playback and capture streams of this PCM
 component. Each stream may support
 substreams if your h/w supports it
 */
 /* ... */
 struct device *dev; /* Associated hardware
 device */
};

The snd_device_new() routine lies at the core of snd_pcm_new() and other similar component
instantiation functions. snd_device_new() ties a component and a set of operations with the associated

snd_card (see Step 3).

3. Connects playback operations with the PCM instance created in Step 2, by calling snd_pcm_set_ops(). The
snd_pcm_ops structure specifies these operations for transferring PCM audio to the codec. Listing 13.1

accomplishes this as follows:

Code View:
/* Operators for the PCM playback stream */
static struct snd_pcm_ops mycard_playback_ops = {
 .open = mycard_pb_open, /* Open */
 .close = mycard_pb_close, /* Close */
 .ioctl = snd_pcm_lib_ioctl, /* Use to handle special commands, else
 specify the generic ioctl handler
 snd_pcm_lib_ioctl()*/
 .hw_params = mycard_hw_params, /* Called when higher layers set hardware
 parameters such as audio format. DMA
 buffer allocation is also done from here */
 .hw_free = mycard_hw_free, /* Free resources allocated in
 mycard_hw_params() */
 .prepare = mycard_pb_prepare, /* Prepare to transfer the audio stream.
 Set audio format such as S16_LE
 (explained soon), enable interrupts,.. */
 .trigger = mycard_pb_trigger, /* Called when the PCM engine starts,
 stops, or pauses. The second argument
 specifies why it was called. This

 function cannot go to sleep */
};

/* Connect the operations with the PCM instance */
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &mycard_playback_ops);

In Listing 13.1, mycard_pb_prepare() configures the sampling rate into the SAMPLING_RATE_REGISTER,

clock source into the CLOCKING_INPUT_REGISTER, and transmit complete interrupt enablement into the

CONTROL_REGISTER. The trigger() method, mycard_pb_trigger(), maps an audio buffer populated by

the ALSA framework on-the-fly using dma_map_single(). (We discussed streaming DMA in Chapter 10,

"Peripheral Component Interconnect.") The mapped DMA buffer address is programmed into the
DMA_ADDRESS_REGISTER. This register is part of the audio controller in the SoC, unlike the earlier registers
that reside inside the codec. The audio controller forwards the DMA'ed data to the codec for playback.

Another related object is the snd_pcm_hardware structure, which announces the PCM component's

hardware capabilities. For our example device, this is defined in Listing 13.1 as follows:

Code View:
/* Hardware capabilities of the PCM playback stream */
static struct snd_pcm_hardware mycard_playback_stereo = {
 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_PAUSE |
 SNDRV_PCM_INFO_RESUME); /* mmap() is supported. The stream has
 pause/resume capabilities */
 .formats = SNDRV_PCM_FMTBIT_S16_LE,/* Signed 16 bits per channel, little
 endian */
 .rates = SNDRV_PCM_RATE_8000_48000,/* DAC Sampling rate range */
 .rate_min = 8000, /* Minimum sampling rate */
 .rate_max = 48000, /* Maximum sampling rate */
 .channels_min = 2, /* Supports a left and a right channel */
 .channels_max = 2, /* Supports a left and a right channel */
 .buffer_bytes_max = 32768, /* Max buffer size */
};

This object is tied with the associated snd_pcm from the open() operator, mycard_playback_open(), using
the PCM runtime instance. Each open PCM stream has a runtime object called snd_pcm_runtime that

contains all information needed to manage that stream. This is a gigantic structure of software and
hardware configurations defined in include/sound/pcm.h and contains snd_pcm_hardware as one of its

component fields.

4. Preallocates buffers using snd_pcm_lib_preallocate_pages_for_all(). DMA buffers are subsequently

obtained from this preallocated area by mycard_hw_params() using snd_pcm_lib_malloc_pages() and

stored in the PCM runtime instance alluded to in Step 3. mycard_pb_trigger() DMA-maps this buffer while
starting a PCM operation and unmaps it while stopping the PCM operation.

5. Associates a mixer control element with the sound card using snd_ctl_add() for global volume control:

snd_ctl_add(card, snd_ctl_new1(&mycard_playback_vol, &myctl_private));

snd_ctl_new1() takes an snd_kcontrol_new structure as its first argument and returns a pointer to an

snd_kcontrol structure. Listing 13.1 defines this as follows:

static struct snd_kcontrol_new mycard_playback_vol = {
 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
 /* Ctrl element is of type MIXER */
 .name = "MP3 volume", /* Name */
 .index = 0, /* Codec No: 0 */
 .info = mycard_pb_vol_info, /* Volume info */
 .get = mycard_pb_vol_get, /* Get volume */
 .put = mycard_pb_vol_put, /* Set volume */
};

The snd_kcontrol structure describes a control element. Our driver uses it as a knob for general volume

control. snd_ctl_add() registers an snd_kcontrol element with the ALSA framework. The constituent
control methods are invoked when user applications such as alsamixer are executed. In Listing 13.1, the
snd_kcontrol put() method, mycard_playback_volume_put(), writes requested volume settings to the

codec's VOLUME_REGISTER.

6. And finally, registers the sound card with the ALSA framework:

snd_card_register(card);

codec_write_reg() (used, but left unimplemented in Listing 13.1) writes values to codec registers by
communicating over the bus that connects the audio controller in the SoC to the external codec. If the
underlying bus protocol is I2C or SPI, for example, codec_write_reg() uses the interface functions discussed in
Chapter 8, "The Inter-Integrated Circuit Protocol."

If you want to create a /proc interface in your driver for dumping registers during debug or to export a
parameter during normal operation, use the services of snd_card_proc_new() and friends. Listing 13.1 does
not use /proc interface files.

If you build and load the driver module in Listing 13.1, you will see two new device nodes appearing on the MP3
player: /dev/snd/pcmC0D0p and /dev/snd/controlC0. The former is the interface for audio playback, and the
latter is the interface for mixer control. The MP3 decoder application, with the help of alsa-lib, streams music by
operating over these device nodes.

Listing 13.1. ALSA Driver for the Linux MP3 Player

Code View:
include <linux/platform_device.h>

#include <linux/soundcard.h>

#include <sound/driver.h>

#include <sound/core.h>

#include <sound/pcm.h>

#include <sound/initval.h>

#include <sound/control.h>

/* Playback rates supported by the codec */

static unsigned int mycard_rates[] = {

 8000,

 48000,

};

/* Hardware constraints for the playback channel */

static struct snd_pcm_hw_constraint_list mycard_playback_rates = {

 .count = ARRAY_SIZE(mycard_rates),

 .list = mycard_rates,

 .mask = 0,

};

static struct platform_device *mycard_device;

static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;

/* Hardware capabilities of the PCM stream */

static struct snd_pcm_hardware mycard_playback_stereo = {

 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_BLOCK_TRANSFER),

 .formats = SNDRV_PCM_FMTBIT_S16_LE, /* 16 bits per channel, little endian */

 .rates = SNDRV_PCM_RATE_8000_48000, /* DAC Sampling rate range */

 .rate_min = 8000, /* Minimum sampling rate */

 .rate_max = 48000, /* Maximum sampling rate */

 .channels_min = 2, /* Supports a left and a right channel */

 .channels_max = 2, /* Supports a left and a right channel */

 .buffer_bytes_max = 32768, /* Maximum buffer size */

};

/* Open the device in playback mode */

static int

mycard_pb_open(struct snd_pcm_substream *substream)

{

 struct snd_pcm_runtime *runtime = substream->runtime;

 /* Initialize driver structures */

 /* ... */

 /* Initialize codec registers */

 /* ... */

 /* Associate the hardware capabilities of this PCM component */

 runtime->hw = mycard_playback_stereo;

 /* Inform the ALSA framework about the constraints that

 the codec has. For example, in this case, it supports

 PCM sampling rates of 8000Hz and 48000Hz only */

 snd_pcm_hw_constraint_list(runtime, 0,

 SNDRV_PCM_HW_PARAM_RATE,

 &mycard_playback_rates);

 return 0;

}

/* Close */

static int

mycard_pb_close(struct snd_pcm_substream *substream)

{

 /* Disable the codec, stop DMA, free data structures */

 /* ... */

 return 0;

}

/* Write to codec registers by communicating over

 the bus that connects the SoC to the codec */

void

codec_write_reg(uint codec_register, uint value)

{

 /* ... */

}

/* Prepare to transfer an audio stream to the codec */

static int

mycard_pb_prepare(struct snd_pcm_substream *substream)

{

 /* Enable Transmit DMA complete interrupt by writing to

 CONTROL_REGISTER using codec_write_reg() */

 /* Set the sampling rate by writing to SAMPLING_RATE_REGISTER */

 /* Configure clock source and enable clocking by writing

 to CLOCK_INPUT_REGISTER */

 /* Allocate DMA descriptors for audio transfer */

 return 0;

}

/* Audio trigger/stop/.. */

static int

mycard_pb_trigger(struct snd_pcm_substream *substream, int cmd)

{

 switch (cmd) {

 case SNDRV_PCM_TRIGGER_START:

 /* Map the audio substream's runtime audio buffer (which is an

 offset into runtime->dma_area) using dma_map_single(),

 populate the resulting address to the audio controller's

 DMA_ADDRESS_REGISTER, and perform DMA */

 /* ... */

 break;

 case SNDRV_PCM_TRIGGER_STOP:

 /* Shut the stream. Unmap DMA buffer using dma_unmap_single() */

 /* ... */

 break;

 default:

 return -EINVAL;

 break;

 }

 return 0;

}

/* Allocate DMA buffers using memory preallocated for DMA from the

 probe() method. dma_[map|unmap]_single() operate on this area

 later on */

static int

mycard_hw_params(struct snd_pcm_substream *substream,

 struct snd_pcm_hw_params *hw_params)

{

 /* Use preallocated memory from mycard_audio_probe() to

 satisfy this memory request */

 return snd_pcm_lib_malloc_pages(substream,

 params_buffer_bytes(hw_params));

}

/* Reverse of mycard_hw_params() */

static int

mycard_hw_free(struct snd_pcm_substream *substream)

{

 return snd_pcm_lib_free_pages(substream);

}

/* Volume info */

static int

mycard_pb_vol_info(struct snd_kcontrol *kcontrol,

 struct snd_ctl_elem_info *uinfo)

{

 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;

 /* Integer type */

 uinfo->count = 1; /* Number of values */

 uinfo->value.integer.min = 0; /* Minimum volume gain */

 uinfo->value.integer.max = 10; /* Maximum volume gain */

 uinfo->value.integer.step = 1; /* In steps of 1 */

 return 0;

}

/* Playback volume knob */

static int

mycard_pb_vol_put(struct snd_kcontrol *kcontrol,

 struct snd_ctl_elem_value *uvalue)

{

 int global_volume = uvalue->value.integer.value[0];

 /* Write global_volume to VOLUME_REGISTER

 using codec_write_reg() */

 /* ... */

 /* If the volume changed from the current value, return 1.

 If there is an error, return negative code. Else return 0 */

}

/* Get playback volume */

static int

mycard_pb_vol_get(struct snd_kcontrol *kcontrol,

 struct snd_ctl_elem_value *uvalue)

{

 /* Read global_volume from VOLUME_REGISTER

 and return it via uvalue->integer.value[0] */

 /* ... */

 return 0;

}

/* Entry points for the playback mixer */

static struct snd_kcontrol_new mycard_playback_vol = {

 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,

 /* Control is of type MIXER */

 .name = "MP3 Volume", /* Name */

 .index = 0, /* Codec No: 0 */

 .info = mycard_pb_vol_info, /* Volume info */

 .get = mycard_pb_vol_get, /* Get volume */

 .put = mycard_pb_vol_put, /* Set volume */

};

/* Operators for the PCM playback stream */

static struct snd_pcm_ops mycard_playback_ops = {

 .open = mycard_playback_open, /* Open */

 .close = mycard_playback_close, /* Close */

 .ioctl = snd_pcm_lib_ioctl, /* Generic ioctl handler */

 .hw_params = mycard_hw_params, /* Hardware parameters */

 .hw_free = mycard_hw_free, /* Free h/w params */

 .prepare = mycard_playback_prepare, /* Prepare to transfer audio stream */

 .trigger = mycard_playback_trigger, /* Called when the PCM engine

 starts/stops/pauses */

};

/* Platform driver probe() method */

static int __init

mycard_audio_probe(struct platform_device *dev)

{

 struct snd_card *card;

 struct snd_pcm *pcm;

 int myctl_private;

 /* Instantiate an snd_card structure */

 card = snd_card_new(-1, id[dev->id], THIS_MODULE, 0);

 /* Create a new PCM instance with 1 playback substream

 and 0 capture streams */

 snd_pcm_new(card, "mycard_pcm", 0, 1, 0, &pcm);

 /* Set up our initial DMA buffers */

 snd_pcm_lib_preallocate_pages_for_all(pcm,

 SNDRV_DMA_TYPE_CONTINUOUS,

 snd_dma_continuous_data

 (GFP_KERNEL), 256*1024,

 256*1024);

 /* Connect playback operations with the PCM instance */

 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,

 &mycard_playback_ops);

 /* Associate a mixer control element with this card */

 snd_ctl_add(card, snd_ctl_new1(&mycard_playback_vol,

 &myctl_private));

 strcpy(card->driver, "mycard");

 /* Register the sound card */

 snd_card_register(card);

 /* Store card for access from other methods */

 platform_set_drvdata(dev, card);

 return 0;

}

/* Platform driver remove() method */

static int

mycard_audio_remove(struct platform_device *dev)

{

 snd_card_free(platform_get_drvdata(dev));

 platform_set_drvdata(dev, NULL);

 return 0;

}

/* Platform driver definition */

static struct platform_driver mycard_audio_driver = {

 .probe = mycard_audio_probe, /* Probe method */

 .remove = mycard_audio_remove, /* Remove method */

 .driver = {

 .name = "mycard_ALSA",

 },

};

/* Driver Initialization */

static int __init

mycard_audio_init(void)

{

 /* Register the platform driver and device */

 platform_driver_register(&mycard_audio_driver);

 mycard_device = platform_device_register_simple("mycard_ALSA",

 -1, NULL, 0);

 return 0;

}

/* Driver Exit */

static void __exit

mycard_audio_exit(void)

{

 platform_device_unregister(mycard_device);

 platform_driver_unregister(&mycard_audio_driver);

}

module_init(mycard_audio_init);

module_exit(mycard_audio_exit);

MODULE_LICENSE("GPL");

ALSA Programming

To understand how the user space alsa-lib library interacts with kernel space ALSA drivers, let's write a simple
application that sets the volume gain of the MP3 player. We will map the alsa-lib services used by the
application to the mixer control methods defined in Listing 13.1. Let's begin by loading the driver and examining
the mixer's capabilities:

bash> amixer contents

...
numid=3,iface=MIXER,name="MP3 Volume"

 ; type=INTEGER,...

...

In the volume-control application, first allocate space for the alsa-lib objects necessary to perform the volume-
control operation:

#include <alsa/asoundlib.h>

snd_ctl_elem_value_t *nav_control;

snd_ctl_elem_id_t *nav_id;
snd_ctl_elem_info_t *nav_info;

snd_ctl_elem_value_alloca(&nav_control);

snd_ctl_elem_id_alloca(&nav_id);
snd_ctl_elem_info_alloca(&nav_info);

Next, set the interface type to SND_CTL_ELEM_IFACE_MIXER as specified in the mycard_playback_vol structure
in Listing 13.1:

snd_ctl_elem_id_set_interface(nav_id, SND_CTL_ELEM_IFACE_MIXER);

Now set the numid for the MP3 volume obtained from the amixer output above:

snd_ctl_elem_id_set_numid(nav_id, 3); /* num_id=3 */

Open the mixer node, /dev/snd/controlC0. The third argument to snd_ctl_open() specifies the card number in

the node name:

snd_ctl_open(&nav_handle, card, 0);

/* Connect data structures */

snd_ctl_elem_info_set_id(nav_info, nav_id);
snd_ctl_elem_info(nav_handle, nav_info);

Elicit the type field in the snd_ctl_elem_info structure defined in mycard_pb_vol_info() in Listing 13.1 as
follows:

if (snd_ctl_elem_info_get_type(nav_info) !=

 SND_CTL_ELEM_TYPE_INTEGER) {
 printk("Mismatch in control type\n");

}

Get the supported codec volume range by communicating with the mycard_pb_vol_info() driver method:

long desired_volume = 5;

long min_volume = snd_ctl_elem_info_get_min(nav_info);
long max_volume = snd_ctl_elem_info_get_max(nav_info);

/* Ensure that the desired_volume is within min_volume and
 max_volume */
/* ... */

As per the definition of mycard_pb_vol_info() in Listing 13.1, the minimum and maximum values returned by

the above alsa-lib helper routines are 0 and 10, respectively.

Finally, set the desired volume and write it to the codec:

snd_ctl_elem_value_set_integer(nav_control, 0, desired_volume);
snd_ctl_elem_write(nav_handle, nav_control);

The call to snd_ctl_elem_write() results in the invocation of mycard_pb_vol_put(), which writes the desired
volume gain to the codec's VOLUME_REGISTER.

MP3 Decoding Complexity

The MP3 decoder application running on the player, as shown in Figure 13.4, requires a supply rate
of MP3 frames from the CF disk that can sustain the common MP3 sampling rate of 128KBps. This
is usually not a problem for most low-MIPs devices, but in case it is, consider buffering each song
in memory before decoding it. (MP3 frames at 128KBps roughly consume 1MB per minute of
music.)

MP3 decoding is lightweight and can usually be accomplished on-the-fly, but MP3 encoding is
heavy-duty and cannot be achieved in real time without hardware assist. Voice codecs such as
G.711 and G.729 used in Voice over IP (VoIP) environments can, however, encode and decode
audio data in real time.

Debugging

You may turn on options under Device Drivers Sound Advanced Linux Sound Architecture in the kernel
configuration menu to include ALSA debug code (CONFIG_SND_DEBUG), verbose printk() messages

(CONFIG_SND_VERBOSE_PRINTK), and verbose procfs content (CONFIG_SND_VERBOSE_PROCFS).

Procfs information pertaining to ALSA drivers resides in /proc/asound/. Look inside /sys/class/sound/ for the
device model information associated with each sound-class device.

If you think you have found a bug in an ALSA driver, post it to the alsa-devel mailing list (http://mailman.alsa-
project.org/mailman/listinfo/alsa-devel). The linux-audio-dev mailing list
(http://music.columbia.edu/mailman/listinfo/linux-audio-dev/), also called the Linux Audio Developers (LAD)
list, discusses questions related to the Linux-sound architecture and audio applications.

http://mailman.alsa-
http://music.columbia.edu/mailman/listinfo/linux-audio-dev/

Looking at the Sources

The sound core, audio buses, architectures, and the obsolete OSS suite all have their own separate
subdirectories under sound/. For the AC'97 interface implementation, look inside sound/pci/ac97/. For an
example I2S-based audio driver, look at sound/soc/at91/at91-ssc.c, the audio driver for Atmel's AT91-series
ARM-based embedded SoCs. Use sound/drivers/dummy.c as a starting point for developing your custom ALSA
driver if you cannot find a closer match.

Documentation/sound/* contains information on ALSA and OSS drivers. Documentation/sound/alsa/DocBook/
contains a DocBook on writing ALSA drivers. An ALSA configuration guide is available in
Documentation/sound/alsa/ALSA-Configuration.txt. The Sound-HOWTO, downloadable from
http://tldp.org/HOWTO/Sound-HOWTO/, answers several frequently asked questions pertaining to Linux support
for audio devices.

Madplay is a software MP3 decoder and player that is both ALSA- and OSS-aware. You can look at its sources
for tips on user-space audio programming.

Two no-frills OSS tools for basic playback and recording are rawplay and rawrec, whose sources are
downloadable from http://rawrec.sourceforge.net/.

You can find the home page of the Linux-ALSA project at www.alsa-project.org. Here, you will find the latest
news on ALSA drivers, details on the ALSA programming API, and information on subscribing to related mailing
lists. Sources of alsa-utils and alsa-lib, downloadable from this page, can aid you while developing ALSA-aware
applications.

Table 13.2 contains the main data structures used in this chapter and their location in the source tree. Table
13.3 lists the main kernel programming interfaces that you used in this chapter along with the location of their
definitions.

Table 13.2. Summary of Data Structures

Data Structure Location Description

snd_card include/sound/core.h Representation of a sound card

snd_pcm include/sound/pcm.h An instance of a PCM object

snd_pcm_ops include/sound/pcm.h Used to connect operations with a PCM
object

snd_pcm_substream include/sound/pcm.h Information about the current audio
stream

snd_pcm_runtime include/sound/pcm.h Runtime details of the audio stream

snd_kcontrol_new include/sound/control.h Representation of an ALSA control
element

Table 13.3. Summary of Kernel Programming Interfaces

Kernel Interface Location Description

snd_card_new() sound/core/init.c Instantiates an snd_card structure

snd_card_free() sound/core/init.c Frees an instantiated snd_card

http://tldp.org/HOWTO/Sound-HOWTO/
http://rawrec.sourceforge.net/

Kernel Interface Location Description

snd_card_register() sound/core/init.c Registers a sound card with the
ALSA framework

snd_pcm_lib_preallocate_pages_for_all() sound/core/pcm_memory.c Preallocates buffers for a sound
card

snd_pcm_lib_malloc_pages() sound/core/pcm_memory.c Allocates DMA buffers for a sound
card

snd_pcm_new() sound/core/pcm.c Creates an instance of a PCM
object

snd_pcm_set_ops() sound/core/pcm_lib.c Connects playback or capture
operations with a PCM object

snd_ctl_add() sound/core/control.c Associates a mixer control element
with a sound card

snd_ctl_new1() sound/core/control.c Allocates an snd_kcontrol
structure and initializes it with
supplied control operations

snd_card_proc_new() sound/core/info.c Creates a /proc entry and assigns
it to a card instance

snd_card_register() sound/core/init.c Registers a sound card with the
ALSA framework

snd_pcm_lib_preallocate_pages_for_all() sound/core/pcm_memory.c Preallocates buffers for a sound
card

snd_pcm_lib_malloc_pages() sound/core/pcm_memory.c Allocates DMA buffers for a sound
card

snd_pcm_new() sound/core/pcm.c Creates an instance of a PCM
object

snd_pcm_set_ops() sound/core/pcm_lib.c Connects playback or capture
operations with a PCM object

snd_ctl_add() sound/core/control.c Associates a mixer control element
with a sound card

snd_ctl_new1() sound/core/control.c Allocates an snd_kcontrol
structure and initializes it with
supplied control operations

snd_card_proc_new() sound/core/info.c Creates a /proc entry and assigns
it to a card instance

Chapter 14. Block Drivers

In This Chapter

Storage Technologies

416

Linux Block I/O Layer

421

I/O Schedulers

422

Block Driver Data Structures and Methods
423

Device Example: Simple Storage
Controller

426

Advanced Topics

434

Debugging
436

Looking at the Sources

437

Block devices are storage media capable of random access. Unlike character devices, block devices
can hold filesystem data. In this chapter, let's find out how Linux supports storage buses and
devices.

Storage Technologies

Let's start by taking a tour of the popular storage technologies found in today's computer systems. We'll also
associate these technologies with the corresponding device driver subsystems in the kernel source tree.

Integrated Drive Electronics (IDE) is the common storage interface technology used in the PC environment. ATA
(short for Advanced Technology Attachment) is the official name for the related specifications. The IDE/ATA

standard began with ATA-1; the latest version is ATA-7 and supports bandwidths of up to 133MBps. Intervening
versions of the specification are ATA-2, which introduced logical block addressing (LBA); ATA-3, which enabled
SMART-capable disks (discussed later); ATA-4, which brought support for Ultra DMA and the associated 33MBps
throughput; ATA-5, which increased maximum transfer speeds to 66MBps; and ATA-6, which provided for
100MBps data rates.

Storage devices such as CD-ROMs and tapes connect to the standard IDE cable using a special protocol called
the ATA Packet Interface (ATAPI).[1]ATAPI was introduced along with ATA-4.

[1] The ATAPI protocol is closer to SCSI than to IDE.

The floppy disk controller in PC systems has traditionally been part of the Super I/O chipset about which we
learned in Chapter 6, "Serial Drivers." These internal drives, however, have given way to faster external USB
floppy drives in today's PC environment.

Figure 14.1 shows an ATA-7 disk drive connected to an IDE host adapter that's part of the South Bridge chipset
on a PC system. Also shown connected are an ATAPI CD-ROM drive and a floppy drive.

Figure 14.1. Storage media in a PC system.

IDE/ATA is a parallel bus technology (sometimes called Parallel ATA or PATA) and cannot scale to high speeds,
as you learned while discussing PCIe in Chapter 10, "Peripheral Component Interconnect." Serial ATA (SATA) is
a modern serial bus evolution of PATA that supports transfer speeds in the realm of 300MBps and beyond. In
addition to offering higher throughput than PATA, SATA brings capabilities such as hot swapping. SATA
technology is steadily replacing PATA. See the sidebar "libATA" to learn about the new ATA subsystem in the
kernel that supports both SATA and PATA.

libATA

libATA is the new ATA subsystem in the Linux kernel. It consists of a set of ATA library routines
and a collection of low-level drivers that use them. libATA supports both SATA and PATA. SATA
drivers in libATA have been around for some time under drivers/scsi/, but PATA drivers and the
new drivers/ata/ directory that now houses all libATA sources were introduced with the 2.6.19
kernel release.

If your system is enabled with SATA storage, you need the services of libATA in tandem with the
SCSI subsystem. libATA support for PATA is still experimental, and by default, PATA drivers
continue to use the legacy IDE drivers that live in drivers/ide/.

Assume that your system is SATA-enabled via an Intel ICH7 South Bridge chipset. You need the
following libATA components to access your disk:

The libATA core— To enable this, set CONFIG_ATA during kernel configuration. For a list of

library functions offered by the core, grep for EXPORT_SYMBOL_GPL inside the drivers/ata/
directory.

1.

Advanced Host Controller Interface (AHCI) support— AHCI specifies the register
interface supported by SATA host adapters and is enabled by choosing CONFIG_AHCI at
configuration time.

2.

The host controller adapter driver— For the ICH7, enable CONFIG_ATA_PIIX.3.

Additionally, you need the mid-level and upper-level SCSI drivers (CONFIG_SCSI and friends). After

you have loaded all these kernel components, your SATA disk partitions appear to the system as
/dev/sd*, just like SCSI or USB mass storage partitions.

The home page of the libATA project is http://linux-ata.org/. A DocBook is available as part of the
kernel source tree in Documentation/DocBook/libata.tmpl. A libATA developer's guide is available
at www.kernel.org/pub/linux/kernel/people/jgarzik/libata.pdf.

Small Computer System Interface (SCSI) is the storage technology of choice in servers and high-end
workstations. SCSI is somewhat faster than SATA and supports speeds of the order of 320MBps. SCSI has
traditionally been a parallel interface standard, but, like ATA, has recently shifted to serial operation with the
advent of a bus technology called Serial Attached SCSI (SAS).

The kernel's SCSI subsystem is architected into three layers: top-level drivers for media such as disks, CD-
ROMs, and tapes; a middle-level layer that scans the SCSI bus and configures devices; and low-level host
adapter drivers. We learned about these layers in the section "Mass Storage" in Chapter 11, "Universal Serial
Bus." Refer back to Figure 11.4 in that chapter to see how the different components of the SCSI subsystem
interact with each other.[2] USB mass storage drives use flash memory internally but communicate with host
systems using the SCSI protocol.

[2] SCSI support is discussed in other parts of this book, too. The section "User Mode SCSI" in Chapter 19, "Drivers in User Space," discusses

the SCSI Generic (sg) interface that lets you directly dispatch commands from user space to SCSI devices. The section "iSCSI" in Chapter 20,

"More Devices and Drivers," briefly looks at the iSCSI protocol, which allows the transport of SCSI packets to a remote block device over a

TCP/IP network.

http://linux-ata.org/

Redundant array of inexpensive disks (RAID) is a technology built in to some SCSI and SATA controllers to
achieve redundancy and reliability. Various RAID levels have been defined. RAID-1, for example, specifies disk
mirroring, where data is duplicated on separate disks. Linux drivers are available for several RAID-capable disk
drives. The kernel also offers a multidisk (md) driver that implements most RAID levels in software.

Miniature storage is the name of the game in the embedded consumer electronics space. Transfer speeds in this
domain are much lower than that offered by the technologies discussed thus far. Secure Digital (SD) cards and
their smaller form-factor derivatives (miniSD and microSD) are popular storage media[3] in devices such as
cameras, cell phones, and music players. Cards complying with version 1.01 of the SD card specification support
transfer speeds of up to 10MBps. SD storage has evolved from an older, slower, but compatible technology
called MultiMediaCard (MMC) that supports data rates of 2.5MBps. The kernel contains an SD/MMC subsystem in
drivers/mmc/.

[3] See the sidebar "WiFi over SDIO" in Chapter 16, "Linux Without Wires," to learn about nonstorage technologies available in SD form factor.

The section "PCMCIA Storage" in Chapter 9, "PCMCIA and Compact Flash," looked at different PCMCIA/CF
flavors of storage cards and their corresponding kernel drivers. PCMCIA memory cards such as microdrives
support true IDE operation, whereas those that internally use solid-state memory emulate IDE and export an
IDE programming model to the kernel. In both these cases, the kernel's IDE subsystem can be used to enable
the card.

Table 14.1 summarizes important storage technologies and the location of the associated device drivers in the
kernel source tree.

Table 14.1. Storage Technologies and Associated Device Drivers

Storage Technology Description Source File

IDE/ATA Storage interface technology in the PC
environment. Supports data rates of
133MBps for ATA-7.

drivers/ide/ide-disk.c,
driver/ide/ide-io.c,
drivers/ide/ide-probe.c

or

drivers/ata/
(Experimental)

ATAPI Storage devices such as CD-ROMs and
tapes connect to the standard IDE cable
using the ATAPI protocol.

drivers/ide/ide-cd.c

or

drivers/ata/
(Experimental)

Floppy (internal) The floppy controller resides in the Super
I/O chip on the LPC bus in PC-compatible
systems. Supports transfer rates of the
order of 150KBps.

drivers/block/floppy.c

SATA Serial evolution of IDE/ATA. Supports
speeds of 300MBps and beyond.

drivers/ata/, drivers/scsi/

SCSI Storage technology popular in the server
environment. Supports transfer rates of
320MBps for Ultra320 SCSI.

drivers/scsi/

Storage Technology Description Source File

USB Mass Storage This refers to USB hard disks, pen drives,
CD-ROMs, and floppy drives. Look at the
section "Mass Storage" in Chapter 11.
USB 2.0 devices can communicate at
speeds of up to 60MBps.

drivers/usb/storage/,
drivers/scsi/

RAID:

Hardware RAID This is a capability built into high-end
SCSI/SATA disk controllers to achieve
redundancy and reliability.

drivers/scsi/, drivers/ata/

Software RAID On Linux, the multidisk (md) driver
implements several RAID levels in
software.

drivers/md/

SD/miniSD/microSD Small form-factor storage media popular
in consumer electronic devices such as
cameras and cell phones. Supports
transfer rates of up to 10MBps.

drivers/mmc/

MMC Older removable storage standard that's
compatible with SD cards. Supports data
rates of 2.5MBps.

drivers/mmc/

PCMCIA/ CF storage
cards

PCMCIA/CF form factor of miniature IDE
drives, or solid-state memory cards that
emulate IDE. See the section "PCMCIA
Storage" in Chapter 9.

drivers/ide/legacy/ide-cs.c

or

drivers/ata/pata_pcmcia.c
(experimental)

Block device emulation
over flash memory

Emulates a hard disk over flash memory.
See the section "Block Device Emulation"
in Chapter 17, "Memory Technology
Devices."

drivers/mtd/mtdblock.c,
drivers/mtd/mtd_blkdevs.c

Virtual block devices on Linux:

RAM disk Implements support to use a RAM region
as a block device.

drivers/block/rd.c

Loopback device Implements support to use a regular file
as a block device.

drivers/block/loop.c

USB Mass Storage This refers to USB hard disks, pen drives,
CD-ROMs, and floppy drives. Look at the
section "Mass Storage" in Chapter 11.
USB 2.0 devices can communicate at
speeds of up to 60MBps.

drivers/usb/storage/,
drivers/scsi/

RAID:

Hardware RAID This is a capability built into high-end
SCSI/SATA disk controllers to achieve
redundancy and reliability.

drivers/scsi/, drivers/ata/

Software RAID On Linux, the multidisk (md) driver
implements several RAID levels in
software.

drivers/md/

SD/miniSD/microSD Small form-factor storage media popular
in consumer electronic devices such as
cameras and cell phones. Supports
transfer rates of up to 10MBps.

drivers/mmc/

MMC Older removable storage standard that's
compatible with SD cards. Supports data
rates of 2.5MBps.

drivers/mmc/

PCMCIA/ CF storage
cards

PCMCIA/CF form factor of miniature IDE
drives, or solid-state memory cards that
emulate IDE. See the section "PCMCIA
Storage" in Chapter 9.

drivers/ide/legacy/ide-cs.c

or

drivers/ata/pata_pcmcia.c
(experimental)

Block device emulation
over flash memory

Emulates a hard disk over flash memory.
See the section "Block Device Emulation"
in Chapter 17, "Memory Technology
Devices."

drivers/mtd/mtdblock.c,
drivers/mtd/mtd_blkdevs.c

Virtual block devices on Linux:

RAM disk Implements support to use a RAM region
as a block device.

drivers/block/rd.c

Loopback device Implements support to use a regular file
as a block device.

drivers/block/loop.c

Chapter 14. Block Drivers

In This Chapter

Storage Technologies

416

Linux Block I/O Layer

421

I/O Schedulers

422

Block Driver Data Structures and Methods
423

Device Example: Simple Storage
Controller

426

Advanced Topics

434

Debugging
436

Looking at the Sources

437

Block devices are storage media capable of random access. Unlike character devices, block devices
can hold filesystem data. In this chapter, let's find out how Linux supports storage buses and
devices.

Storage Technologies

Let's start by taking a tour of the popular storage technologies found in today's computer systems. We'll also
associate these technologies with the corresponding device driver subsystems in the kernel source tree.

Integrated Drive Electronics (IDE) is the common storage interface technology used in the PC environment. ATA
(short for Advanced Technology Attachment) is the official name for the related specifications. The IDE/ATA

standard began with ATA-1; the latest version is ATA-7 and supports bandwidths of up to 133MBps. Intervening
versions of the specification are ATA-2, which introduced logical block addressing (LBA); ATA-3, which enabled
SMART-capable disks (discussed later); ATA-4, which brought support for Ultra DMA and the associated 33MBps
throughput; ATA-5, which increased maximum transfer speeds to 66MBps; and ATA-6, which provided for
100MBps data rates.

Storage devices such as CD-ROMs and tapes connect to the standard IDE cable using a special protocol called
the ATA Packet Interface (ATAPI).[1]ATAPI was introduced along with ATA-4.

[1] The ATAPI protocol is closer to SCSI than to IDE.

The floppy disk controller in PC systems has traditionally been part of the Super I/O chipset about which we
learned in Chapter 6, "Serial Drivers." These internal drives, however, have given way to faster external USB
floppy drives in today's PC environment.

Figure 14.1 shows an ATA-7 disk drive connected to an IDE host adapter that's part of the South Bridge chipset
on a PC system. Also shown connected are an ATAPI CD-ROM drive and a floppy drive.

Figure 14.1. Storage media in a PC system.

IDE/ATA is a parallel bus technology (sometimes called Parallel ATA or PATA) and cannot scale to high speeds,
as you learned while discussing PCIe in Chapter 10, "Peripheral Component Interconnect." Serial ATA (SATA) is
a modern serial bus evolution of PATA that supports transfer speeds in the realm of 300MBps and beyond. In
addition to offering higher throughput than PATA, SATA brings capabilities such as hot swapping. SATA
technology is steadily replacing PATA. See the sidebar "libATA" to learn about the new ATA subsystem in the
kernel that supports both SATA and PATA.

libATA

libATA is the new ATA subsystem in the Linux kernel. It consists of a set of ATA library routines
and a collection of low-level drivers that use them. libATA supports both SATA and PATA. SATA
drivers in libATA have been around for some time under drivers/scsi/, but PATA drivers and the
new drivers/ata/ directory that now houses all libATA sources were introduced with the 2.6.19
kernel release.

If your system is enabled with SATA storage, you need the services of libATA in tandem with the
SCSI subsystem. libATA support for PATA is still experimental, and by default, PATA drivers
continue to use the legacy IDE drivers that live in drivers/ide/.

Assume that your system is SATA-enabled via an Intel ICH7 South Bridge chipset. You need the
following libATA components to access your disk:

The libATA core— To enable this, set CONFIG_ATA during kernel configuration. For a list of

library functions offered by the core, grep for EXPORT_SYMBOL_GPL inside the drivers/ata/
directory.

1.

Advanced Host Controller Interface (AHCI) support— AHCI specifies the register
interface supported by SATA host adapters and is enabled by choosing CONFIG_AHCI at
configuration time.

2.

The host controller adapter driver— For the ICH7, enable CONFIG_ATA_PIIX.3.

Additionally, you need the mid-level and upper-level SCSI drivers (CONFIG_SCSI and friends). After

you have loaded all these kernel components, your SATA disk partitions appear to the system as
/dev/sd*, just like SCSI or USB mass storage partitions.

The home page of the libATA project is http://linux-ata.org/. A DocBook is available as part of the
kernel source tree in Documentation/DocBook/libata.tmpl. A libATA developer's guide is available
at www.kernel.org/pub/linux/kernel/people/jgarzik/libata.pdf.

Small Computer System Interface (SCSI) is the storage technology of choice in servers and high-end
workstations. SCSI is somewhat faster than SATA and supports speeds of the order of 320MBps. SCSI has
traditionally been a parallel interface standard, but, like ATA, has recently shifted to serial operation with the
advent of a bus technology called Serial Attached SCSI (SAS).

The kernel's SCSI subsystem is architected into three layers: top-level drivers for media such as disks, CD-
ROMs, and tapes; a middle-level layer that scans the SCSI bus and configures devices; and low-level host
adapter drivers. We learned about these layers in the section "Mass Storage" in Chapter 11, "Universal Serial
Bus." Refer back to Figure 11.4 in that chapter to see how the different components of the SCSI subsystem
interact with each other.[2] USB mass storage drives use flash memory internally but communicate with host
systems using the SCSI protocol.

[2] SCSI support is discussed in other parts of this book, too. The section "User Mode SCSI" in Chapter 19, "Drivers in User Space," discusses

the SCSI Generic (sg) interface that lets you directly dispatch commands from user space to SCSI devices. The section "iSCSI" in Chapter 20,

"More Devices and Drivers," briefly looks at the iSCSI protocol, which allows the transport of SCSI packets to a remote block device over a

TCP/IP network.

http://linux-ata.org/

Redundant array of inexpensive disks (RAID) is a technology built in to some SCSI and SATA controllers to
achieve redundancy and reliability. Various RAID levels have been defined. RAID-1, for example, specifies disk
mirroring, where data is duplicated on separate disks. Linux drivers are available for several RAID-capable disk
drives. The kernel also offers a multidisk (md) driver that implements most RAID levels in software.

Miniature storage is the name of the game in the embedded consumer electronics space. Transfer speeds in this
domain are much lower than that offered by the technologies discussed thus far. Secure Digital (SD) cards and
their smaller form-factor derivatives (miniSD and microSD) are popular storage media[3] in devices such as
cameras, cell phones, and music players. Cards complying with version 1.01 of the SD card specification support
transfer speeds of up to 10MBps. SD storage has evolved from an older, slower, but compatible technology
called MultiMediaCard (MMC) that supports data rates of 2.5MBps. The kernel contains an SD/MMC subsystem in
drivers/mmc/.

[3] See the sidebar "WiFi over SDIO" in Chapter 16, "Linux Without Wires," to learn about nonstorage technologies available in SD form factor.

The section "PCMCIA Storage" in Chapter 9, "PCMCIA and Compact Flash," looked at different PCMCIA/CF
flavors of storage cards and their corresponding kernel drivers. PCMCIA memory cards such as microdrives
support true IDE operation, whereas those that internally use solid-state memory emulate IDE and export an
IDE programming model to the kernel. In both these cases, the kernel's IDE subsystem can be used to enable
the card.

Table 14.1 summarizes important storage technologies and the location of the associated device drivers in the
kernel source tree.

Table 14.1. Storage Technologies and Associated Device Drivers

Storage Technology Description Source File

IDE/ATA Storage interface technology in the PC
environment. Supports data rates of
133MBps for ATA-7.

drivers/ide/ide-disk.c,
driver/ide/ide-io.c,
drivers/ide/ide-probe.c

or

drivers/ata/
(Experimental)

ATAPI Storage devices such as CD-ROMs and
tapes connect to the standard IDE cable
using the ATAPI protocol.

drivers/ide/ide-cd.c

or

drivers/ata/
(Experimental)

Floppy (internal) The floppy controller resides in the Super
I/O chip on the LPC bus in PC-compatible
systems. Supports transfer rates of the
order of 150KBps.

drivers/block/floppy.c

SATA Serial evolution of IDE/ATA. Supports
speeds of 300MBps and beyond.

drivers/ata/, drivers/scsi/

SCSI Storage technology popular in the server
environment. Supports transfer rates of
320MBps for Ultra320 SCSI.

drivers/scsi/

Storage Technology Description Source File

USB Mass Storage This refers to USB hard disks, pen drives,
CD-ROMs, and floppy drives. Look at the
section "Mass Storage" in Chapter 11.
USB 2.0 devices can communicate at
speeds of up to 60MBps.

drivers/usb/storage/,
drivers/scsi/

RAID:

Hardware RAID This is a capability built into high-end
SCSI/SATA disk controllers to achieve
redundancy and reliability.

drivers/scsi/, drivers/ata/

Software RAID On Linux, the multidisk (md) driver
implements several RAID levels in
software.

drivers/md/

SD/miniSD/microSD Small form-factor storage media popular
in consumer electronic devices such as
cameras and cell phones. Supports
transfer rates of up to 10MBps.

drivers/mmc/

MMC Older removable storage standard that's
compatible with SD cards. Supports data
rates of 2.5MBps.

drivers/mmc/

PCMCIA/ CF storage
cards

PCMCIA/CF form factor of miniature IDE
drives, or solid-state memory cards that
emulate IDE. See the section "PCMCIA
Storage" in Chapter 9.

drivers/ide/legacy/ide-cs.c

or

drivers/ata/pata_pcmcia.c
(experimental)

Block device emulation
over flash memory

Emulates a hard disk over flash memory.
See the section "Block Device Emulation"
in Chapter 17, "Memory Technology
Devices."

drivers/mtd/mtdblock.c,
drivers/mtd/mtd_blkdevs.c

Virtual block devices on Linux:

RAM disk Implements support to use a RAM region
as a block device.

drivers/block/rd.c

Loopback device Implements support to use a regular file
as a block device.

drivers/block/loop.c

USB Mass Storage This refers to USB hard disks, pen drives,
CD-ROMs, and floppy drives. Look at the
section "Mass Storage" in Chapter 11.
USB 2.0 devices can communicate at
speeds of up to 60MBps.

drivers/usb/storage/,
drivers/scsi/

RAID:

Hardware RAID This is a capability built into high-end
SCSI/SATA disk controllers to achieve
redundancy and reliability.

drivers/scsi/, drivers/ata/

Software RAID On Linux, the multidisk (md) driver
implements several RAID levels in
software.

drivers/md/

SD/miniSD/microSD Small form-factor storage media popular
in consumer electronic devices such as
cameras and cell phones. Supports
transfer rates of up to 10MBps.

drivers/mmc/

MMC Older removable storage standard that's
compatible with SD cards. Supports data
rates of 2.5MBps.

drivers/mmc/

PCMCIA/ CF storage
cards

PCMCIA/CF form factor of miniature IDE
drives, or solid-state memory cards that
emulate IDE. See the section "PCMCIA
Storage" in Chapter 9.

drivers/ide/legacy/ide-cs.c

or

drivers/ata/pata_pcmcia.c
(experimental)

Block device emulation
over flash memory

Emulates a hard disk over flash memory.
See the section "Block Device Emulation"
in Chapter 17, "Memory Technology
Devices."

drivers/mtd/mtdblock.c,
drivers/mtd/mtd_blkdevs.c

Virtual block devices on Linux:

RAM disk Implements support to use a RAM region
as a block device.

drivers/block/rd.c

Loopback device Implements support to use a regular file
as a block device.

drivers/block/loop.c

Linux Block I/O Layer

The block I/O layer was considerably overhauled between the 2.4 and 2.6 kernel releases. The motivation for
the redesign was that the block layer, more than other kernel subsystems, has the potential to impact overall
system performance.

Let's take a look at Figure 14.2 to learn the workings of the Linux block I/O layer. The storage media contains
files residing in a filesystem, such as EXT3 or Reiserfs. User applications invoke I/O system calls to access these
files. The resulting filesystem operations pass through the generic Virtual File System (VFS) layer before
entering the individual filesystem driver. The buffer cache speeds up filesystem access to block devices by
caching disk blocks. If a block is found in the buffer cache, the time required to access the disk to read the block
is saved. Data destined for each block device is lined up in a request queue. The filesystem driver populates the
request queue belonging to the desired block device, whereas the block driver receives and consumes requests
from the corresponding queue. In between, I/O schedulers manipulate the request queue so as to minimize disk
access latencies and maximize throughput.

Figure 14.2. Block I/O on Linux.

Let's next examine the different I/O schedulers available on Linux.

I/O Schedulers

Block devices suffer seek times, the latency to move the disk head from its existing position to the disk sector of
interest. The main goal of an I/O scheduler is to increase system throughput by minimizing these seek times. To
achieve this, I/O schedulers maintain the request queue in sorted order according to the disk sectors associated
with the constituent requests. New requests are inserted into the queue such that this order is maintained. If an
existing request in the queue is associated with an adjacent disk sector, the new request is merged with it.
Because of these properties, I/O schedulers bear an operational resemblance to elevators—they schedule
requests in a single direction until the last requester in the line is serviced.

The I/O scheduler in 2.4 kernels implemented a straightforward version of this algorithm and was called the
Linus elevator. This turned out to be inadequate under real-world conditions, however, and was replaced in the
2.6 kernel by a suite of four schedulers: Deadline, Anticipatory, Complete Fair Queuing, and Noop. The
scheduler used by default is Anticipatory, but this can be changed during kernel configuration or by changing
the value of /sys/block/[disk]/queue/scheduler. (Replace [disk] with hda if you are using an IDE disk, for
example.) Table 14.2 briefly describes Linux I/O schedulers.

Table 14.2. Linux I/O Schedulers

I/O Scheduler Description Source File

Linus elevator Straightforward implementation of the
standard merge-and-sort I/O scheduling
algorithm.

drivers/block/elevator.c
(in the 2.4 kernel tree)

Deadline In addition to what the Linus elevator
does, the Deadline scheduler associates
expiration times with each request in
order to ensure that a burst of requests
to the same disk region do not starve
requests to regions that are farther away.
Moreover, read operations are granted
more priority than write operations
because user processes usually block
until their read requests complete. The
Deadline scheduler thus ensures that
each I/O request is serviced within a time
limit, which is important for some
database loads.

block/deadline-
iosched.c (in the 2.6
kernel tree)

Anticipatory Similar to the Deadline scheduler, except
that after servicing read requests, the
Anticipatory scheduler waits for a
predetermined amount of time
anticipating further requests. This
scheduling technique is suited for
workstation/interactive loads.

block/as-iosched.c (in
the 2.6 kernel tree)

Complete Fair Queuing
(CFQ)

Similar to the Linus elevator, except that
the CFQ scheduler maintains one request
queue per originating process, rather
than one generic queue. This ensures that
each process (or process group) gets a
fair portion of the I/O and prevents one
process from starving others.

block/cfq-iosched.c (in
the 2.6 kernel tree)

Noop The Noop scheduler doesn't spend time block/noop-iosched.c

I/O Scheduler Description Source File
Noop The Noop scheduler doesn't spend time

traversing the request queue searching
for optimal insertion points. Instead, it
simply adds new requests to the tail of
the request queue. This scheduler is thus
ideal for semiconductor storage media
that have no moving parts and, hence, no
seek latencies. An example is a Disk-On-
Module (DOM), which internally uses flash
memory.

block/noop-iosched.c
(in the 2.6 kernel tree)

At a conceptual level, I/O scheduling resembles process scheduling. Whereas I/O scheduling provides an illusion
to processes that they own the disk, process scheduling gives processes the illusion that they own the CPU.
Both I/O and process schedulers on Linux have undergone extensive changes in recent times. Process
scheduling is discussed in Chapter 19.

Noop The Noop scheduler doesn't spend time
traversing the request queue searching
for optimal insertion points. Instead, it
simply adds new requests to the tail of
the request queue. This scheduler is thus
ideal for semiconductor storage media
that have no moving parts and, hence, no
seek latencies. An example is a Disk-On-
Module (DOM), which internally uses flash
memory.

block/noop-iosched.c
(in the 2.6 kernel tree)

At a conceptual level, I/O scheduling resembles process scheduling. Whereas I/O scheduling provides an illusion
to processes that they own the disk, process scheduling gives processes the illusion that they own the CPU.
Both I/O and process schedulers on Linux have undergone extensive changes in recent times. Process
scheduling is discussed in Chapter 19.

Block Driver Data Structures and Methods

Let's now shift focus to the main topic of this chapter, block device drivers. In this section, we take a look at the
important data structures and driver methods that you are likely to encounter while implementing a block
device driver. We use these structures and methods in the next section when we implement a block driver for a
fictitious storage controller.

The following are the main block driver data structures:

The kernel represents a disk using the gendisk (short for generic disk) structure defined in

include/linux/genhd.h:

struct gendisk {

 int major; /* Device major number */
 int first_minor; /* Starting minor number */

 int minors; /* Maximum number of minors.

 You have one minor number
 per disk partition */

 char disk_name[32]; /* Disk name */
 /* ... */

 struct block_device_operations *fops;
 /* Block device operations.
 Described soon. */

 struct request_queue *queue; /* The request queue associated
 with this disk. Discussed

 next. */
 /* ... */

};

1.

The I/O request queue associated with each block driver is described using the request_queue structure
defined in include/linux/blkdev.h. This is a big structure, but its only constituent field that you might use is
the request structure, which is described next.

2.

Each request in a request_queue is represented using a request structure defined in
include/linux/blkdev.h:

struct request {

 /* ... */

 struct request_queue *q; /* The container request queue */
 /* ... */

 sector_t sector; /* Sector from which data access

 is requested */

 /* ... */
 unsigned long nr_sectors; /* Number of sectors left to

 submit */

 /* ... */
 struct bio *bio; /* The associated bio. Discussed

 soon. */

 /* ... */

 char *buffer; /* The buffer for data transfer */

3.

 /* ... */

 struct request *next_rq; /* Next request in the queue */

};

block_device_operations is the block driver counterpart of the file_operations structure used by

character drivers. It contains the following entry points associated with a block driver:

Standard methods such as open(), release(), and ioctl()

Specialized methods such as media_changed() and revalidate_disk() that support removable
block devices

block_device_operations is defined as follows in include/linux/fs.h:

 struct block_device_operations {

 int (*open) (struct inode *, struct file *); /* Open */
 int (*release) (struct inode *, struct file *);/* Close */

 int (*ioctl) (struct inode *, struct file *,
 unsigned, unsigned long); /* I/O Control */

 /* ... */
 int (*media_changed) (struct gendisk *); /* Check if media is

 available or
 ejected */

 int (*revalidate_disk) (struct gendisk *); /* Gear up for newly
 inserted media */
 /* ... */

 };

4.

When we looked at the request structure, we saw that it was associated with a bio. A bio structure is a
low-level description of block I/O operations at page-level granularity. It's defined in include/linux/bio.h as
follows:

struct bio {
 sector_t bi_sector; /* Sector from which data

 access is requested */
 struct bio *bi_next; /* List of bio nodes */

 /* .. */
 unsigned long bi_rw; /* Bottom bits of bi_rw contain
 the data-transfer direction */

 /* ... */

 struct bio_vec *bi_io_vec; /* Pointer to an array of
 bio_vec structures */

 unsigned short bi_vcnt; /* Size of the bio_vec array */

 unsigned short bi_idx; /* Index of the current bio_vec

 in the array */
 /* ... */

};

Block data is internally represented as an I/O vector using an array of bio_vec structures. Each element

of the bio_vec array is made up of a (page, page_offset, length) tuple that describes a segment of the

I/O block. Maintaining I/O requests as a vector of pages brings several advantages, including a leaner
implementation and efficient scatter/gather.

5.

Before ending this section, let's briefly look at block driver entry points. Block drivers are broadly built using
three types of methods:

The usual initialization and exit methods.

Methods that are part of the block_device_operations described previously.

A request method. Block drivers, unlike char devices, do not support read()/write() methods for data

transfer. Instead, they perform disk access using a special routine called the request method.

The block core layer offers a set of library routines that driver methods can leverage. The sample driver in the
next section calls on the services of several of these library routines.

Device Example: Simple Storage Controller

Consider the embedded device shown in Figure 14.3. The SoC contains a built-in storage controller that
communicates with a block device. The architecture is similar to SD/MMC media, but our sample storage
controller is described by the elementary register set listed in Table 14.3. The SECTOR_NUMBER_REGISTER

specifies the sector from which data access is requested.[4] The SECTOR_COUNT_REGISTER contains the number of

sectors to be transferred. Data is moved via the DATA_REGISTER. The COMMAND_REGISTER programs the action
that the storage controller has to take (for example, whether to read from the media or write to it). The
STATUS_REGISTER contains bits that signal whether the controller is busy performing an operation.

[4] The storage media in our sample device has a flat sector-space geometry. IDE controllers, on the other hand, support a cylinder head

sector (CHS) geometry specified by a device head register, a low cylinder register, and a high cylinder register, in addition to the sector

number register.

Figure 14.3. Storage on an embedded device.

Table 14.3. Register Layout of the Storage Controller

Register Name Description of Contents

SECTOR_NUMBER_REGISTER The sector on which the next disk operation is to be
performed.

SECTOR_COUNT_REGISTER Number of sectors to be read or written.

COMMAND_REGISTER The action to be taken (for example, read or write).

STATUS_REGISTER Results of operations, interrupt status, and error flags.

DATA_REGISTER In the read path, the storage controller fetches data from
the disk to internal buffers. The driver accesses the
internal buffer via this register. In the write path, data
written by the driver to this register is transferred to the
internal buffer, from where the controller copies it to disk.

Let's call the storage controller myblkdev. This simple device is neither interrupt driven nor supports DMA. We'll
also assume that the media is not removable. Our task is to write a block driver for myblkdev. Our driver is
minimal, albeit complete. It does not handle power management and is not particularly performance-sensitive.

Initialization

Listing 14.1 contains the driver initialization method, myblkdev_init (), which performs the following steps:

1. Registers the block device using register_blkdev(). This block library routine assigns an unused major
number to myblkdev and adds an entry for the device in /proc/devices.

2. Associates a request method with the block device. It does this by supplying the address of
myblkdev_request() to blk_init_queue(). The call to blk_init_queue() returns the request_queue for

myblkdev. Refer back to Figure 14.2 to see how the request_queue sits relative to the driver. The second
argument to blk_init_queue(), myblkdev_lock, is a spinlock to protect the request_queue from

concurrent access.

3. Hardware performs disk transactions in units of sectors, whereas software subsystems, such as
filesystems, deal with data in terms of blocks. The common sector size is 512 bytes; the usual block size is
4096 bytes. You need to inform the block layer about the sector size supported by your storage hardware
and the maximum number of sectors that your driver can receive per request. myblkdev_init()

accomplishes these by invoking blk_queue_hardsect_size() and blk_queue_max_sectors(),
respectively.

4. Allocates a gendisk corresponding to myblkdev using alloc_disk() and populates it. One important

gendisk field that myblkdev_init() supplies is the address of the driver's block_device_operations.
Another parameter that myblkdev_init() fills in is the storage capacity of myblkdev in units of sectors.

This is accomplished by calling set_capacity(). Each gendisk also contains a flag that signals the
properties of the underlying storage hardware. If the drive is removable, for example, the gendisk's flag

field should be marked GENHD_FL_REMOVABLE.

5. Associates the gendisk prepared in Step 4 with the request_queue obtained in Step 2. Also, connects the

gendisk with the device's major/minor numbers and a name.

6. Adds the disk to the block I/O layer by invoking add_disk(). When this is done, the driver has to be ready

to receive requests. So, this is usually the last step of the initialization sequence.

The block device is now available to the system as /dev/myblkdev. If the device supports multiple disk
partitions, they appear as /dev/myblkdevX, where X is the partition number.

Listing 14.1. Initializing the Driver

Code View:
#include <linux/blkdev.h>

#include <linux/genhd.h>

static struct gendisk *myblkdisk; /* Representation of a disk */

static struct request_queue *myblkdev_queue;

 /* Associated request queue */

int myblkdev_major = 0; /* Ask the block subsystem

 to choose a major number */

static DEFINE_SPINLOCK(myblkdev_lock);/* Spinlock that protects

 myblkdev_queue from

 concurrent access */

int myblkdisk_size = 256*1024; /* Disk size in kilobytes. For

 a PC hard disk, one way to

 glean this is via the BIOS */

int myblkdev_sect_size = 512; /* Hardware sector size */

/* Initialization */

static int __init

myblkdev_init(void)

{

 /* Register this block driver with the kernel */

 if ((myblkdev_major = register_blkdev(myblkdev_major,

 "myblkdev")) <= 0) {

 return -EIO;

 }

 /* Allocate a request_queue associated with this device */

 myblkdev_queue = blk_init_queue(myblkdev_request, &myblkdev_lock);

 if (!myblkdev_queue) return -EIO;

 /* Set the hardware sector size and the max number of sectors */

 blk_queue_hardsect_size(myblkdev_queue, myblkdev_sect_size);

 blk_queue_max_sectors(myblkdev_queue, 512);

 /* Allocate an associated gendisk */

 myblkdisk = alloc_disk(1);

 if (!myblkdisk) return -EIO;

 /* Fill in parameters associated with the gendisk */

 myblkdisk->fops = &myblkdev_fops;

 /* Set the capacity of the storage media in terms of number of

 sectors */

 set_capacity(myblkdisk, myblkdisk_size*2);

 myblkdisk->queue = myblkdev_queue;

 myblkdisk->major = myblkdev_major;

 myblkdisk->first_minor = 0;

 sprintf(myblkdisk->disk_name, "myblkdev");

 /* Add the gendisk to the block I/O subsystem */

 add_disk(myblkdisk);

 return 0;

}

/* Exit */

static void __exit

myblkdev_exit(void)

{

 /* Invalidate partitioning information and perform cleanup */

 del_gendisk(myblkdisk);

 /* Drop references to the gendisk so that it can be freed */

 put_disk(myblkdisk);

 /* Dissociate the driver from the request_queue. Internally calls

 elevator_exit() */

 blk_cleanup_queue(myblkdev_queue);

 /* Unregister the block device */

 unregister_blkdev(myblkdev_major, "myblkdev");

}

module_init(myblkdev_init);

module_exit(myblkdev_exit);

MODULE_LICENSE("GPL");

Block Device Operations

Let's next take a look at the main methods contained in a block driver's block_device_operations.

A block driver's open() method is called during operations such as mounting a filesystem residing on the media
or performing a filesystem check (fsck). Many of the tasks accomplished during open() are hardware-

dependent. The CD-ROM driver, for example, locks the drive door. The SCSI driver checks whether the device
has set a write-protect tab, and, if so, fails if a write-enabled open is requested. If the device is removable,
open() invokes the service routine check_disk_change() to check whether the media has changed.

If your driver needs to support specific commands, implement support for it using the ioctl() method. A floppy

driver, for example, supports a command to eject the media.

The media_changed() method checks whether the storage media has changed, so this is not relevant for fixed
devices such as myblkdev. The SCSI disk driver's media_changed() method, for example, detects whether an

inserted USB pen drive has changed.

The sole block device operation supported by myblkdev is the ioctl() method, myblkdev_ioctl(). The block
layer itself handles generic ioctls and invokes the driver's ioctl() method only to handle device-specific

commands. In Listing 14.2, myblkdev_ioctl() implements the GET_DEVICE_ID command that elicits a device
ID from the controller. The command is issued via the COMMAND_REGISTER, and the ID data is obtained from the
DATA_REGISTER.

Listing 14.2. Block Device Operations

Code View:
#define GET_DEVICE_ID 0xAA00 /* Ioctl command definition */

/* The ioctl operation */

static int

myblkdev_ioctl (struct inode *inode, struct file *file,

 unsigned int cmd, unsigned long arg)

{

 unsigned char status;

 switch (cmd) {

 case GET_DEVICE_ID:

 outb(GET_IDENTITY_CMD, COMMAND_REGISTER);

 /* Wait as long as the controller is busy */

 while ((status = inb(STATUS_REGISTER)) & BUSY_STATUS);

 /* Obtain ID and return it to user space */

 return put_user(inb(DATA_REGISTER), (long __user *)arg);

 default:

 return -EINVAL;

 }

}

/* Block device operations */

static struct block_device_operations myblkdev_fops = {

 .owner = THIS_MODULE, /* Owner of this structure */

 .ioctl = myblkdev_ioctl,

 /* The following operations are not implemented for our example

 storage controller: open(), release(), unlocked_ioctl(),

 compat_ioctl(), direct_access(), getgeo(), revalidate_disk(), and

 media_changed() */

};

Disk Access

As mentioned previously, block drivers perform disk access operations using a request() method. The block I/O

subsystem invokes a driver's request() method whenever it desires to process requests waiting in the driver's
request_queue. The request()method does not run in the context of the user process requesting the data

transfer, however. The address of the associated request_queue is passed as an argument to the request()
method.

As you saw earlier, the kernel holds a request lock before calling the request() method. This is to protect the

associated request queue from concurrent access. Because of this, if your request() method has to call any
functions that may go to sleep, it has to drop the lock before doing so and reacquire it before returning.

Listing 14.3 contains our driver's request method, myblkdev_request(). This function uses the services of

elv_next_request() to obtain the next request from the request_queue. If the queue contains no more

pending requests, elv_next_request() returns NULL. elv_next_request() is named so because, as you

learned previously, I/O scheduling algorithms are variations of the basic modus operandi adopted by elevators
to service requests. After handling a request, the driver asks the block layer to end I/O on that request by
calling end_request(). You can specify success or an error code using the second argument to end_request().

Requests collected from the request_queue contain the starting sector from which data access is requested
(req->sector in Listing 14.3, the number of sectors on which I/O needs to be performed (req->nr_sectors),

the buffer that contains the data to be transferred (req->buffer), and the direction of data movement

(rq_data_dir(req)). As shown in Listing 14.3, myblkdev_request() performs the required register

programming with the help of these parameters.

Listing 14.3. The Request Function

Code View:
#define READ_SECTOR_CMD 1

#define WRITE_SECTOR_CMD 2

#define GET_IDENTITY_CMD 3

#define BUSY_STATUS 0x10

#define SECTOR_NUMBER_REGISTER 0x20000000

#define SECTOR_COUNT_REGISTER 0x20000001

#define COMMAND_REGISTER 0x20000002

#define STATUS_REGISTER 0x20000003

#define DATA_REGISTER 0x20000004

/* Request method */

static void

myblkdev_request(struct request_queue *rq)

{

 struct request *req;

 unsigned char status;

 int i, good = 0;

 /* Loop through the requests waiting in line */

 while ((req = elv_next_request(rq)) != NULL) {

 /* Program the start sector and the number of sectors */

 outb(req->sector, SECTOR_NUMBER_REGISTER);

 outb(req->nr_sectors, SECTOR_COUNT_REGISTER);

 /* We are interested only in filesystem requests. A SCSI command

 is another possible type of request. For the full list, look

 at the enumeration of rq_cmd_type_bits in

 include/linux/blkdev.h */

 if (blk_fs_request(req)) {

 switch(rq_data_dir(req)) {

 case READ:

 /* Issue Read Sector Command */

 outb(READ_SECTOR_CMD, COMMAND_REGISTER);

 /* Traverse all requested sectors, byte by byte */

 for (i = 0; i < 512*req->nr_sectors; i++) {

 /* Wait until the disk is ready. Busy duration should be

 in the order of microseconds. Sitting in a tight loop

 for simplicity; more intelligence required in the real

 world */

 while ((status = inb(STATUS_REGISTER)) & BUSY_STATUS);

 /* Read data from disk to the buffer associated with the

 request */

 req->buffer[i] = inb(DATA_REGISTER);

 }

 good = 1;

 break;

 case WRITE:

 /* Issue Write Sector Command */

 outb(WRITE_SECTOR_CMD, COMMAND_REGISTER);

 /* Traverse all requested sectors, byte by byte */

 for (i = 0; i < 512*req->nr_sectors; i++) {

 /* Wait until the disk is ready. Busy duration should be

 in the order of microseconds. Sitting in a tight loop

 for simplicity; more intelligence required in the real

 world */

 while ((status = inb(STATUS_REGISTER)) & BUSY_STATUS);

 /* Write data to disk from the buffer associated with the

 request */

 outb(req->buffer[i], DATA_REGISTER);

 }

 good = 1;

 break;

 }

 }

 end_request(req, good);

 }

}

Advanced Topics

Unlike our sample storage driver that transfers data byte by byte, performance-sensitive block drivers rely on
DMA for data transfer. Consider, for example, the request() method of the disk array driver for Compaq
SMART2 controllers drivers/block/-cpqarray.c reproduced here from the 2.6.23.1 kernel sources:

Code View:
static do_ida_request(struct request_queue *q)
{

 struct request *creq;

 struct scatterlist tmp_sg[SG_MAX];
 cmdlist_t *c;

 ctrl_info_t *h = q->queuedata;

 int seg;

 /* ... */
 creq = elv_next_request(q);

 /* ... */
 c->rq = creq;

 seg = blk_rq_map_sg(q, creq, tmp_sg);
 /* ... */

 for (i=0; i<seq; i++)
 {

 c->req.sg[i].size = tmp_sg[i].length;
 c->req.sg[i].addr = (__u32) pci_map_page(h->pci_dev,
 tmp_sg[i].page,

 tmp_sg[i].offset,
 tmp_sg[i].length, dir);

 }
 /* ... */

}

DMA operations work at bio level. As you saw earlier, I/O requests are made up of bios, each of which contains

an array of bio_vecs, which in turn hold information about the constituent memory pages. Assuming that bio

points to the bio structure associated with an I/O request, bio->bi_sector contains the starting sector from
which data access is requested, bio_cur_sectors(bio) returns the number of sectors on which I/O is to be

performed, and bio_data_dir(bio) provides the direction of data transfer. The addresses of the physical pages

associated with the data buffer are described by the array of bio_vecs pointed to by bio->bi_io_vec. To
iterate over each bio in a request, you can use the rq_for_each_bio()macro. To further loop through each

page segment in a bio, use bio_for_each_segment().

In the preceding code snippet, blk_rq_map_sg() internally invokes rq_for_each_bio() and
bio_for_each_segment()to loop through all pages constituting the request and builds a scatter/gather list,

tmp_sg. Streaming DMA mappings for each page in the created scatter/gather list is performed by

pci_map_page().

Unlike our sample driver that busy-waits for requested operations to finish, the cpqarray driver implements an
interrupt handler, do_ida_intr(), to receive alerts from the hardware upon completion of commands.

Some drivers, such as the ramdisk driver (drivers/block/rd.c) and the loopback driver (drivers/block/loop.c),

work over virtual block devices that do not benefit from the optimizing sort and merge operations on the
request queue. Such drivers entirely bypass the request queue and directly obtain bios from the block layer

using a make_request() function. So, instead of registering a request queue handler using blk_init_queue(),

drivers/block/rd.c supplies a make_request() routine using blk_queue_make_request() as follows:

static int __init rd_init(void)

{

 /* ... */

 blk_queue_make_request(rd_queue[i], &rd_make_request);
 /* ... */

}

static int rd_make_request(struct request_queue *q, struct bio *bio)

{

 /* ... */
}

Debugging

The hdparm utility elicits various PATA/SATA disk parameters from the underlying kernel driver. To benchmark
disk read speeds on a SATA drive, for example, do this:

bash> hdparm -T -t /dev/sda

/dev/sda:
 Timing cached reads: 2564 MB in 2.00 seconds = 1283.57 MB/sec

 Timing buffered disk reads: 132 MB in 3.03 seconds = 43.61 MB/sec

For the full capabilities of hdparm, read the man pages.

Self-Monitoring, Analysis, and Reporting Technology (SMART) is a system built in to many modern ATA and
SCSI disks to monitor failures and perform self-tests. A user-space daemon named smartd collects the
information gathered by SMART-capable disks with the help of the underlying device driver. Look at the man
pages of smartd, smartctl, and smartd.conf to learn how to obtain health status from SMART-enabled disks.

If your distribution doesn't prepackage hdparm and SMART tools, you may download them from
http://sourceforge.net/projects/hdparm/ and http://sourceforge.net/projects/smartmontools/, respectively.

Files under /proc/ide/ contain information about IDE disk drives on your system. To obtain the geometry of the
first IDE disk, for example, look at the contents of /proc/ide/ide0/hda/geometry. Information pertaining to SCSI
devices is available under /proc/scsi/. You can gather disk partition information from /proc/partitions.

The sysfs directory of interest for IDE devices is /sys/bus/ide/ and for SCSI is /sys/bus/scsi/. In addition, each
block device active on the system owns a subdirectory under /sys/block/, which contains associated request
queue parameters, constituent partition details, and state information.

Some kernel configuration options are available that trigger the emission of debug output from the block
subsystem. CONFIG_BLK_DEV_IO_TRACE provides the ability to trace the block layer. CONFIG_SCSI_CONSTANTS

and CONFIG_SCSI_LOGGING turn on SCSI error reporting and logging, respectively.

The linux-ide mailing list is the forum to discuss questions related to the Linux-IDE subsystem. Subscribe to the
linux-scsi mailing list and browse through its archives for discussions pertaining to the Linux-SCSI subsystem.

http://sourceforge.net/projects/hdparm/
http://sourceforge.net/projects/smartmontools/

Looking at the Sources

Table 14.1 contains the location of kernel driver sources for various storage technologies. Take a look at
Documentation/ide.txt, Documentation/scsi/*, and Documentation/cdrom/ for information about associated
storage drivers.

The top-level block/ directory contains I/O scheduling algorithms and the block core layer. Table 14.2 lists the
source files in this directory that implement various I/O schedulers. Look at Documentation/block/ for related
documentation.

Table 14.4 contains the main data structures used in this chapter and their location in the source tree. Table
14.5 lists the main kernel programming interfaces that you used in this chapter, along with the location of their
definitions.

Table 14.4. Summary of Data Structures

Data Structure Location Description

gendisk include/linux/genhd.h Representation of a disk.

request_queue include/linux/blkdev.h The I/O request queue
associated with a gendisk.

request include/linux/blkdev.h Each request in a
request_queue is described
using this structure.

block_device_operations include/linux/fs.h Block device driver methods.

bio include/linux/bio.h Low-level description of block
I/O operations.

Table 14.5. Summary of Kernel Programming Interfaces

Kernel Interface Location Description

register_blkdev() block/genhd.c Registers a block driver with the
kernel

unregister_blkdev() block/genhd.c Unregisters a block driver from
the kernel

alloc_disk() block/genhd.c Allocates a gendisk

add_disk() block/genhd.c Adds a populated gendisk to the

kernel block layer

del_gendisk() fs/partitions/check.c Frees a gendisk

blk_init_queue() block/ll_rw_blk.c Allocates a request_queue and

registers a request() function
to process the requests in the
queue

blk_cleanup_queue() block/ll_rw_blk.c Reverse of blk_init_queue()

Kernel Interface Location Description

blk_queue_make_request() block/ll_rw_blk.c Registers a make_request()
function, which bypasses the
request queue and directly
obtains requests from the block
layer

rq_for_each_bio() include/linux/blkdev.h Iterates over each bio in a
request

bio_for_each_segment() include/linux/bio.h Loops through each page
segment in a bio

blk_rq_map_sg() block/ll_rw_blk.c Iterates through the bio

segments constituting a request
and builds a scatter/gather list

blk_queue_max_sectors() block/ll_rw_blk.c Sets the maximum sectors for a
request in the associated
request queue

blk_queue_hardsect_size() block/ll_rw_blk.c Sector size supported by the
storage hardware.

set_capacity() include/linux/genhd.h Sets the capacity of the storage
media in terms of number of
sectors

blk_fs_request() include/linux/blkdev.h Checks whether a request
obtained from the request queue
is a filesystem request

elv_next_request() block/elevator.c Obtains the next entry from the
request queue

end_request() block/ll_rw_blk.c Ends I/O on a request

blk_queue_make_request() block/ll_rw_blk.c Registers a make_request()
function, which bypasses the
request queue and directly
obtains requests from the block
layer

rq_for_each_bio() include/linux/blkdev.h Iterates over each bio in a
request

bio_for_each_segment() include/linux/bio.h Loops through each page
segment in a bio

blk_rq_map_sg() block/ll_rw_blk.c Iterates through the bio

segments constituting a request
and builds a scatter/gather list

blk_queue_max_sectors() block/ll_rw_blk.c Sets the maximum sectors for a
request in the associated
request queue

blk_queue_hardsect_size() block/ll_rw_blk.c Sector size supported by the
storage hardware.

set_capacity() include/linux/genhd.h Sets the capacity of the storage
media in terms of number of
sectors

blk_fs_request() include/linux/blkdev.h Checks whether a request
obtained from the request queue
is a filesystem request

elv_next_request() block/elevator.c Obtains the next entry from the
request queue

end_request() block/ll_rw_blk.c Ends I/O on a request

Chapter 15. Network Interface Cards

In This Chapter

Driver Data Structures

440

Talking with Protocol Layers

448

Buffer Management and Concurrency
Control

450

Device Example: Ethernet NIC
451

ISA Network Drivers
457

Asynchronous Transfer Mode

458

Network Throughput
459

Looking at the Sources

461

Connectivity imparts intelligence. You rarely come across a computer system today that does not
support some form of networking. In this chapter, let's focus on device drivers for network
interface cards (NICs) that carry Internet Protocol (IP) traffic on a local area network (LAN). Most
of the chapter is bus agnostic, but wherever bus specifics are necessary, it assumes PCI. To give
you a flavor of other network technologies, we also touch on Asynchronous Transfer Mode (ATM).
We end the chapter by pondering on performance and throughput.

NIC drivers are different from other driver classes in that they do not rely on /dev or /sys to
communicate with user space. Rather, applications interact with a NIC driver via a network
interface (for example, eth0 for the first Ethernet interface) that abstracts an underlying protocol
stack.

Driver Data Structures

When you write a device driver for a NIC, you have to operate on three classes of data structures:

Structures that form the building blocks of the network protocol stack. The socket buffer or struct
sk_buff defined in include/linux/sk_buff.h is the key structure used by the kernel's TCP/IP stack.

1.

Structures that define the interface between the NIC driver and the protocol stack. struct net_device
defined in include/linux/netdevice.h is the core structure that constitutes this interface.

2.

Structures related to the I/O bus. PCI and its derivatives are common buses used by today's NICs.3.

We take a detailed look at socket buffers and the net_device interface in the next two sections. We covered

PCI data structures in Chapter 10, "Peripheral Component Interconnect," so we won't revisit them here.

Socket Buffers

sk_buffs provide efficient buffer handling and flow-control mechanisms to Linux networking layers. Like DMA

descriptors that contain metadata on DMA buffers, sk_buffs hold control information describing attached
memory buffers that carry network packets (see Figure 15.1). sk_buffs are enormous structures having dozens
of elements, but in this chapter we confine ourselves to those that interest the network device driver writer. An
sk_buff links itself to its associated packet buffer using five main fields:

head, which points to the start of the packet

data, which points to the start of packet payload

tail, which points to the end of packet payload

end, which points to the end of the packet

len, the amount of data that the packet contains

Figure 15.1. sk_buff operations.

Assume skb points to an sk_buff, skb->head, skb->data, skb->tail, and skb->end slide over the associated

packet buffer as the packet traverses the protocol stack in either direction. skb->data, for example, points to
the header of the protocol that is currently processing the packet. When a packet reaches the IP layer via the
receive path, skb->data points to the IP header; when the packet passes on to TCP, however, skb->data
moves to the start of the TCP header. And as the packet drives through various protocols adding or discarding
header data, skb->len gets updated, too. sk_buffs also contain pointers other than the four major ones
previously mentioned. skb->nh, for example, remembers the position of the network protocol header

irrespective of the current position of skb->data.

To illustrate how a NIC driver works with sk_buffs, Figure 15.1 shows data transitions on the receive data path.

For convenience of illustration, the figure simplistically assumes that the operations shown are executed in
sequence. However, for operational efficiency in the real world, the first two steps (dev_alloc_skb() and

skb_reserve()) are performed while initially preallocating a ring of receive buffers; the third step is

accomplished by the NIC hardware as it directly DMA's the received packet into a preallocated sk_buff; and the

final two steps (skb_put() and netif_rx()) are executed from the receive interrupt handler.

To create an sk_buff to hold a received packet, Figure 15.1 uses dev_alloc_skb(). This is an interrupt-safe

routine that allocates memory for an sk_buff and associates it with a packet payload buffer. dev_kfree_skb()
accomplishes the reverse of dev_alloc_skb(). Figure 15.1 next calls skb_reserve() to add a 2-byte padding

between the start of the packet buffer and the beginning of the payload. This starts the IP header at a
performance-friendly 16-byte boundary because the preceding Ethernet headers are 14 bytes long. The rest of
the code statements in Figure 15.1 fill the payload buffer with the received packet and move skb->data, skb-
>tail, and skb->len to reflect this operation.

There are more sk_buff access routines relevant to some NIC drivers. skb_clone(), for example, creates a
copy of a supplied skb_buff without copying the contents of the associated packet buffer. Look inside

net/core/skbuff.c for the full list of sk_buff library functions.

The Net Device Interface

NIC drivers use a standard interface to interact with the TCP/IP stack. The net_device structure, which is even
more gigantic than the sk_buff structure, defines this communication interface. To prepare ourselves for
exploring the innards of the net_device structure, let's first follow the steps traced by a NIC driver during

initialization. Refer to init_mycard() in Listing 15.1 as we move along:

The driver allocates a net_device structure using alloc_netdev(). More commonly, it uses a suitable

wrapper around alloc_netdev(). An Ethernet NIC driver, for example, calls alloc_etherdev(). A WiFi
driver (discussed in the next chapter) invokes alloc_ieee80211(), and an IrDa driver calls upon

alloc_irdadev(). All these functions take the size of a private data area as argument and create this
area in addition to the net_device itself:

struct net_device *netdev;

struct priv_struct *mycard_priv;
netdev = alloc_etherdev(sizeof(struct
 priv_struct));

mycard_priv = netdev->priv; /* Private area created
 by alloc_etherdev() */

Next, the driver populates various fields in the net_device that it allocated and registers the populated

net_device with the network layer using register_netdev(netdev).

The driver reads the NIC's Media Access Control (MAC) address from an accompanying EEPROM and
configures Wake-On-LAN (WOL) if required. Ethernet controllers usually have a companion nonvolatile
EEPROM to hold information such as their MAC address and WOL pattern, as shown in Figure 15.2. The
former is a unique 48-bit address that is globally assigned. The latter is a magic sequence; if found in
received data, it rouses the NIC if it's in suspend mode.

If the NIC needs on-card firmware to operate, the driver downloads it using request_firmware(), as
discussed in the section "Microcode Download" in Chapter 4, "Laying the Groundwork."

Let's now look at the methods that define the net_device interface. We categorize them under six heads for
simplicity. Wherever relevant, this section points you to the example NIC driver developed in Listing 15.1 of the
section "Device Example: Ethernet NIC."

Activation

The net_device interface requires conventional methods such as open(), close(), and ioctl(). The kernel

opens an interface when you activate it using a tool such as ifconfig:

bash> ifconfig eth0 up

open() sets up receive and transmit DMA descriptors and other driver data structures. It also registers the NIC's

interrupt handler by calling request_irq(). The net_device structure is passed as the devid argument to
request_irq() so that the interrupt handler gets direct access to the associated net_device. (See

mycard_open() and mycard_interrupt() in Listing 15.1 to find out how this is done.)

The kernel calls close() when you pull down an active network interface. This accomplishes the reverse of

open().

Data Transfer

Data transfer methods form the crux of the net_device interface. In the transmit path, the driver supplies a
method called hard_start_xmit, which the protocol layer invokes to pass packets down for onward

transmission:

Code View:
netdev->hard_start_xmit = &mycard_xmit_frame; /* Transmit Method. See Listing 15.1 */

Until recently, network drivers didn't provide a net_device method for collecting received data. Instead, they

asynchronously interrupted the protocol layer with packet payload. This old interface has, however, given way
to a New API (NAPI) that is a mixture of an interrupt-driven driver push and a poll-driver protocol pull. A NAPI-
aware driver thus needs to supply a poll() method and an associated weight that controls polling fairness:

netdev->poll = &mycard_poll; /* Poll Method. See Listing 15.1 */
netdev->weight = 64;

We elaborate on data-transfer methods in the section "Talking with Protocol Layers."

Watchdog

The net_device interface provides a hook to return an unresponsive NIC to operational state. If the protocol

layer senses no transmissions for a predetermined amount of time, it assumes that the NIC has hung and
invokes a driver-supplied recovery method to reset the card. The driver sets the watchdog timeout through
netdev->watchdog_timeo and registers the address of the recovery function via netdev->tx_timeout:

netdev->tx_timeout = &mycard_timeout; /* Method to reset the NIC */
netdev->watchdog_timeo = 8*HZ; /* Reset if no response

 detected for 8 seconds */

Because the recovery method executes in timer-interrupt context, it usually schedules a task outside of that
context to reset the NIC.

Statistics

To enable user land to collect network statistics, the NIC driver populates a net_device_stats structure and

provides a get_stats() method to retrieve it. Essentially the driver does the following:

Updates different types of statistics from relevant entry points:

#include <linux/netdevice.h>
struct net_device_stats mycard_stats;

static irqreturn_t
mycard_interrupt(int irq, void *dev_id)

{

 /* ... */
 if (packet_received_without_errors) {

 mycard_stats.rx_packets++; /* One more received

 packet */

 }

 /* ... */
}

1.

Implements the get_stats() method to retrieve the statistics:

static struct net_device_stats

*mycard_get_stats(struct net_device *netdev)
{

 /* House keeping */
 /* ... */
 return(&mycard_stats);

}

2.

Supplies the retrieve method to higher layers:

netdev->get_stats = &mycard_get_stats;
/* ... */

register_netdev(netdev);

3.

To collect statistics from your NIC, trigger invocation of mycard_get_stats() by executing an appropriate user
mode command. For example, to find the number of packets received through the eth0 interface, do this:

bash> cat /sys/class/net/eth0/statistics/rx_packets

124664

WiFi drivers need to track several parameters not relevant to conventional NICs, so they implement a statistic
collection method called get_wireless_stats() in addition to get_stats(). The mechanism for registering
get_wireless_stats() for the benefit of WiFi-aware user space utilities is discussed in the section "WiFi" in the

next chapter.

Configuration

NIC drivers need to support user space tools that are responsible for setting and getting device parameters.
Ethtool configures parameters for Ethernet NICs. To support ethtool, the underlying NIC driver does the
following:

1.

Populates an ethtool_ops structure, defined in include/linux/ethtool.h with prescribed entry points:

#include <linux/ethtool.h>

/* Ethtool_ops methods */

struct ethtool_ops mycard_ethtool_ops = {

 /* ... */

 .get_eeprom = mycard_get_eeprom, /* Dump EEPROM
 contents */

 /* ... */

};

1.

Implements the methods that are part of ethtool_ops:

static int
mycard_get_eeprom(struct net_device *netdev,

 struct ethtool_eeprom *eeprom,

 uint8_t *bytes)

{
 /* Access the accompanying EEPROM and pull out data */

 /* ... */
}

2.

Exports the address of its ethtool_ops:

netdev->ethtool_ops = &mycard_ethtool_ops;

/* ... */
register_netdev(netdev);

3.

After these are done, ethtool can operate over your Ethernet NIC. To dump EEPROM contents using ethtool, do
this:

bash> ethtool -e eth0

Offset Values
------ ------

0x0000 00 0d 60 79 32 0a 00 0b ff ff 10 20 ff ff ff ff
...

Ethtool comes packaged with some distributions; but if you don't have it, download it from
http://sourceforge.net/projects/gkernel/. Refer to the man page for its full capabilities.

There are more configuration-related methods that a NIC driver provides to higher layers. An example is the
method to change the MTU size of the network interface. To support this, supply the relevant method to
net_device:

netdev->change_mtu = &mycard_change_mtu;
/* ... */

register_netdev(netdev);

The kernel invokes mycard_change_mtu() when you execute a suitable user command to alter the MTU of your

card:

bash> echo 1500 > /sys/class/net/eth0/mtu

http://sourceforge.net/projects/gkernel/

Bus Specific

Next come bus-specific details such as the start address and size of the NIC's on-card memory. For a PCI NIC
driver, this configuration will look like this:

netdev->mem_start = pci_resource_start(pdev, 0);

netdev->mem_end = netdev->mem_start + pci_resource_len(pdev, 0);

We discussed PCI resource functions in Chapter 10.

Chapter 15. Network Interface Cards

In This Chapter

Driver Data Structures

440

Talking with Protocol Layers

448

Buffer Management and Concurrency
Control

450

Device Example: Ethernet NIC
451

ISA Network Drivers
457

Asynchronous Transfer Mode

458

Network Throughput
459

Looking at the Sources

461

Connectivity imparts intelligence. You rarely come across a computer system today that does not
support some form of networking. In this chapter, let's focus on device drivers for network
interface cards (NICs) that carry Internet Protocol (IP) traffic on a local area network (LAN). Most
of the chapter is bus agnostic, but wherever bus specifics are necessary, it assumes PCI. To give
you a flavor of other network technologies, we also touch on Asynchronous Transfer Mode (ATM).
We end the chapter by pondering on performance and throughput.

NIC drivers are different from other driver classes in that they do not rely on /dev or /sys to
communicate with user space. Rather, applications interact with a NIC driver via a network
interface (for example, eth0 for the first Ethernet interface) that abstracts an underlying protocol
stack.

Driver Data Structures

When you write a device driver for a NIC, you have to operate on three classes of data structures:

Structures that form the building blocks of the network protocol stack. The socket buffer or struct
sk_buff defined in include/linux/sk_buff.h is the key structure used by the kernel's TCP/IP stack.

1.

Structures that define the interface between the NIC driver and the protocol stack. struct net_device
defined in include/linux/netdevice.h is the core structure that constitutes this interface.

2.

Structures related to the I/O bus. PCI and its derivatives are common buses used by today's NICs.3.

We take a detailed look at socket buffers and the net_device interface in the next two sections. We covered

PCI data structures in Chapter 10, "Peripheral Component Interconnect," so we won't revisit them here.

Socket Buffers

sk_buffs provide efficient buffer handling and flow-control mechanisms to Linux networking layers. Like DMA

descriptors that contain metadata on DMA buffers, sk_buffs hold control information describing attached
memory buffers that carry network packets (see Figure 15.1). sk_buffs are enormous structures having dozens
of elements, but in this chapter we confine ourselves to those that interest the network device driver writer. An
sk_buff links itself to its associated packet buffer using five main fields:

head, which points to the start of the packet

data, which points to the start of packet payload

tail, which points to the end of packet payload

end, which points to the end of the packet

len, the amount of data that the packet contains

Figure 15.1. sk_buff operations.

Assume skb points to an sk_buff, skb->head, skb->data, skb->tail, and skb->end slide over the associated

packet buffer as the packet traverses the protocol stack in either direction. skb->data, for example, points to
the header of the protocol that is currently processing the packet. When a packet reaches the IP layer via the
receive path, skb->data points to the IP header; when the packet passes on to TCP, however, skb->data
moves to the start of the TCP header. And as the packet drives through various protocols adding or discarding
header data, skb->len gets updated, too. sk_buffs also contain pointers other than the four major ones
previously mentioned. skb->nh, for example, remembers the position of the network protocol header

irrespective of the current position of skb->data.

To illustrate how a NIC driver works with sk_buffs, Figure 15.1 shows data transitions on the receive data path.

For convenience of illustration, the figure simplistically assumes that the operations shown are executed in
sequence. However, for operational efficiency in the real world, the first two steps (dev_alloc_skb() and

skb_reserve()) are performed while initially preallocating a ring of receive buffers; the third step is

accomplished by the NIC hardware as it directly DMA's the received packet into a preallocated sk_buff; and the

final two steps (skb_put() and netif_rx()) are executed from the receive interrupt handler.

To create an sk_buff to hold a received packet, Figure 15.1 uses dev_alloc_skb(). This is an interrupt-safe

routine that allocates memory for an sk_buff and associates it with a packet payload buffer. dev_kfree_skb()
accomplishes the reverse of dev_alloc_skb(). Figure 15.1 next calls skb_reserve() to add a 2-byte padding

between the start of the packet buffer and the beginning of the payload. This starts the IP header at a
performance-friendly 16-byte boundary because the preceding Ethernet headers are 14 bytes long. The rest of
the code statements in Figure 15.1 fill the payload buffer with the received packet and move skb->data, skb-
>tail, and skb->len to reflect this operation.

There are more sk_buff access routines relevant to some NIC drivers. skb_clone(), for example, creates a
copy of a supplied skb_buff without copying the contents of the associated packet buffer. Look inside

net/core/skbuff.c for the full list of sk_buff library functions.

The Net Device Interface

NIC drivers use a standard interface to interact with the TCP/IP stack. The net_device structure, which is even
more gigantic than the sk_buff structure, defines this communication interface. To prepare ourselves for
exploring the innards of the net_device structure, let's first follow the steps traced by a NIC driver during

initialization. Refer to init_mycard() in Listing 15.1 as we move along:

The driver allocates a net_device structure using alloc_netdev(). More commonly, it uses a suitable

wrapper around alloc_netdev(). An Ethernet NIC driver, for example, calls alloc_etherdev(). A WiFi
driver (discussed in the next chapter) invokes alloc_ieee80211(), and an IrDa driver calls upon

alloc_irdadev(). All these functions take the size of a private data area as argument and create this
area in addition to the net_device itself:

struct net_device *netdev;

struct priv_struct *mycard_priv;
netdev = alloc_etherdev(sizeof(struct
 priv_struct));

mycard_priv = netdev->priv; /* Private area created
 by alloc_etherdev() */

Next, the driver populates various fields in the net_device that it allocated and registers the populated

net_device with the network layer using register_netdev(netdev).

The driver reads the NIC's Media Access Control (MAC) address from an accompanying EEPROM and
configures Wake-On-LAN (WOL) if required. Ethernet controllers usually have a companion nonvolatile
EEPROM to hold information such as their MAC address and WOL pattern, as shown in Figure 15.2. The
former is a unique 48-bit address that is globally assigned. The latter is a magic sequence; if found in
received data, it rouses the NIC if it's in suspend mode.

If the NIC needs on-card firmware to operate, the driver downloads it using request_firmware(), as
discussed in the section "Microcode Download" in Chapter 4, "Laying the Groundwork."

Let's now look at the methods that define the net_device interface. We categorize them under six heads for
simplicity. Wherever relevant, this section points you to the example NIC driver developed in Listing 15.1 of the
section "Device Example: Ethernet NIC."

Activation

The net_device interface requires conventional methods such as open(), close(), and ioctl(). The kernel

opens an interface when you activate it using a tool such as ifconfig:

bash> ifconfig eth0 up

open() sets up receive and transmit DMA descriptors and other driver data structures. It also registers the NIC's

interrupt handler by calling request_irq(). The net_device structure is passed as the devid argument to
request_irq() so that the interrupt handler gets direct access to the associated net_device. (See

mycard_open() and mycard_interrupt() in Listing 15.1 to find out how this is done.)

The kernel calls close() when you pull down an active network interface. This accomplishes the reverse of

open().

Data Transfer

Data transfer methods form the crux of the net_device interface. In the transmit path, the driver supplies a
method called hard_start_xmit, which the protocol layer invokes to pass packets down for onward

transmission:

Code View:
netdev->hard_start_xmit = &mycard_xmit_frame; /* Transmit Method. See Listing 15.1 */

Until recently, network drivers didn't provide a net_device method for collecting received data. Instead, they

asynchronously interrupted the protocol layer with packet payload. This old interface has, however, given way
to a New API (NAPI) that is a mixture of an interrupt-driven driver push and a poll-driver protocol pull. A NAPI-
aware driver thus needs to supply a poll() method and an associated weight that controls polling fairness:

netdev->poll = &mycard_poll; /* Poll Method. See Listing 15.1 */
netdev->weight = 64;

We elaborate on data-transfer methods in the section "Talking with Protocol Layers."

Watchdog

The net_device interface provides a hook to return an unresponsive NIC to operational state. If the protocol

layer senses no transmissions for a predetermined amount of time, it assumes that the NIC has hung and
invokes a driver-supplied recovery method to reset the card. The driver sets the watchdog timeout through
netdev->watchdog_timeo and registers the address of the recovery function via netdev->tx_timeout:

netdev->tx_timeout = &mycard_timeout; /* Method to reset the NIC */
netdev->watchdog_timeo = 8*HZ; /* Reset if no response

 detected for 8 seconds */

Because the recovery method executes in timer-interrupt context, it usually schedules a task outside of that
context to reset the NIC.

Statistics

To enable user land to collect network statistics, the NIC driver populates a net_device_stats structure and

provides a get_stats() method to retrieve it. Essentially the driver does the following:

Updates different types of statistics from relevant entry points:

#include <linux/netdevice.h>
struct net_device_stats mycard_stats;

static irqreturn_t
mycard_interrupt(int irq, void *dev_id)

{

 /* ... */
 if (packet_received_without_errors) {

 mycard_stats.rx_packets++; /* One more received

 packet */

 }

 /* ... */
}

1.

Implements the get_stats() method to retrieve the statistics:

static struct net_device_stats

*mycard_get_stats(struct net_device *netdev)
{

 /* House keeping */
 /* ... */
 return(&mycard_stats);

}

2.

Supplies the retrieve method to higher layers:

netdev->get_stats = &mycard_get_stats;
/* ... */

register_netdev(netdev);

3.

To collect statistics from your NIC, trigger invocation of mycard_get_stats() by executing an appropriate user
mode command. For example, to find the number of packets received through the eth0 interface, do this:

bash> cat /sys/class/net/eth0/statistics/rx_packets

124664

WiFi drivers need to track several parameters not relevant to conventional NICs, so they implement a statistic
collection method called get_wireless_stats() in addition to get_stats(). The mechanism for registering
get_wireless_stats() for the benefit of WiFi-aware user space utilities is discussed in the section "WiFi" in the

next chapter.

Configuration

NIC drivers need to support user space tools that are responsible for setting and getting device parameters.
Ethtool configures parameters for Ethernet NICs. To support ethtool, the underlying NIC driver does the
following:

1.

Populates an ethtool_ops structure, defined in include/linux/ethtool.h with prescribed entry points:

#include <linux/ethtool.h>

/* Ethtool_ops methods */

struct ethtool_ops mycard_ethtool_ops = {

 /* ... */

 .get_eeprom = mycard_get_eeprom, /* Dump EEPROM
 contents */

 /* ... */

};

1.

Implements the methods that are part of ethtool_ops:

static int
mycard_get_eeprom(struct net_device *netdev,

 struct ethtool_eeprom *eeprom,

 uint8_t *bytes)

{
 /* Access the accompanying EEPROM and pull out data */

 /* ... */
}

2.

Exports the address of its ethtool_ops:

netdev->ethtool_ops = &mycard_ethtool_ops;

/* ... */
register_netdev(netdev);

3.

After these are done, ethtool can operate over your Ethernet NIC. To dump EEPROM contents using ethtool, do
this:

bash> ethtool -e eth0

Offset Values
------ ------

0x0000 00 0d 60 79 32 0a 00 0b ff ff 10 20 ff ff ff ff
...

Ethtool comes packaged with some distributions; but if you don't have it, download it from
http://sourceforge.net/projects/gkernel/. Refer to the man page for its full capabilities.

There are more configuration-related methods that a NIC driver provides to higher layers. An example is the
method to change the MTU size of the network interface. To support this, supply the relevant method to
net_device:

netdev->change_mtu = &mycard_change_mtu;
/* ... */

register_netdev(netdev);

The kernel invokes mycard_change_mtu() when you execute a suitable user command to alter the MTU of your

card:

bash> echo 1500 > /sys/class/net/eth0/mtu

http://sourceforge.net/projects/gkernel/

Bus Specific

Next come bus-specific details such as the start address and size of the NIC's on-card memory. For a PCI NIC
driver, this configuration will look like this:

netdev->mem_start = pci_resource_start(pdev, 0);

netdev->mem_end = netdev->mem_start + pci_resource_len(pdev, 0);

We discussed PCI resource functions in Chapter 10.

Talking with Protocol Layers

In the preceding section, you discovered the driver methods demanded by the net_device interface. Let's now
take a closer look at how network data flows over this interface.

Receive Path

You learned in Chapter 4 that softirqs are bottom half mechanisms used by performance-sensitive subsystems.
NIC drivers use NET_RX_SOFTIRQ to offload the work of posting received data packets to protocol layers. The

driver achieves this by calling netif_rx() from its receive interrupt handler:

netif_rx(skb); /* struct sk_buff *skb */

NAPI, alluded to earlier, improves this conventional interrupt-driven receive algorithm to lower demands on CPU
utilization. When network load is heavy, the system might get bogged down by the large number of interrupts
that it takes. NAPI's strategy is to use a polled mode when network activity is heavy but fall back to interrupt
mode when the traffic gets light. NAPI-aware drivers switch between interrupt and polled modes based on
network load. This is done as follows:

In interrupt mode, the interrupt handler posts received packets to protocol layers by scheduling
NET_RX_SOFTIRQ. It then disables NIC interrupts and switches to polled mode by adding the device to a
poll list:

if (netif_rx_schedule_prep(netdev)) /* Housekeeping */ {
 /* Disable NIC interrupt */

 disable_nic_interrupt();
 /* Post the packet to the protocol layer and

 add the device to the poll list */
 __netif_rx_schedule(netdev);

}

1.

The driver provides a poll() method via its net_device structure.2.

In the polled mode, the driver's poll() method processes packets in the ingress queue. When the queue

becomes empty, the driver re-enables interrupts and switches back to interrupt mode by calling
netif_rx_complete().

3.

Look at mycard_interrupt(), init_mycard(), and mycard_poll() in Listing 15.1 to see NAPI in action.

Transmit Path

For data transmission, the interaction between protocol layers and the NIC driver is straightforward. The
protocol stack invokes the driver's hard_start_xmit() method with the outgoing sk_buff as argument. The

driver gets the packet out of the door by DMA-ing packet data to the NIC. DMA and the management of related
data structures for PCI NIC drivers were discussed in Chapter 10.

The driver programs the NIC to interrupt the processor after it finishes transmitting a predetermined number of
packets. Only when a transmit-complete interrupt occurs signaling completion of a transmit operation can the

driver reclaim or free resources such as DMA descriptors, DMA buffers, and sk_buffs associated with the

transmitted packet.

Flow Control

The driver conveys its readiness or reluctance to accept protocol data by, respectively, calling
netif_start_queue() and netif_stop_queue().

During device open(), the NIC driver calls netif_start_queue() to ask the protocol layer to start adding

transmit packets to the egress queue. During normal operation, however, the driver might require egress
queuing to stop on occasion. Examples include the time window when the driver is replenishing data structures,
or when it's closing the device. Throttling the downstream flow is accomplished by calling netif_stop_queue().
To request the networking stack to restart egress queuing, say when there are sufficient free buffers, the NIC
driver invokes netif_wake_queue(). To check the current flow-control state, toss a call to

netif_queue_stopped().

Buffer Management and Concurrency Control

A high-performance NIC driver is a complex piece of software requiring intricate data structure management. As
discussed in the section "Data Transfer" in Chapter 10, a NIC driver maintains linked lists (or "rings") of
transmit and receive DMA descriptors, and implements free and in-use pools for buffer management. The driver
typically implements a multipronged strategy to maintain buffer levels: preallocate a ring of DMA descriptors
and associated sk_buffs during device open, replenish free pools by allocating new memory if available buffers

dip below a predetermined watermark, and reclaim used buffers into the free pool when the NIC generates
transmit-complete and receive interrupts.

Each element in the NIC driver's receive ring, for example, is populated as follows:

/* Allocate an sk_buff and the associated data buffer.
 See Figure 15.1 */

skb = dev_alloc_skb(MAX_NIC_PACKET_SIZE);

/* Align the data pointer */
 skb_reserve(skb, NET_IP_ALIGN);

/* DMA map for NIC access. The following invocation assumes a PCI

 NIC. pdev is a pointer to the associated pci_dev structure */
pci_map_single(pdev, skb->data, MAX_NIC_PACKET_SIZE,

 PCI_DMA_FROMDEVICE);
/* Create a descriptor containing this sk_buff and add it

 to the RX ring */
/* ... */

During reception, the NIC directly DMA's data to an sk_buff in the preceding preallocated ring and interrupts
the processor. The receive interrupt handler, in turn, passes the packet to higher protocol layers. Developing
ring data structures will make this discussion as well as the example driver in the next section loaded, so refer
to the sources of the Intel PRO/1000 driver in the drivers/net/e1000/ directory for a complete illustration.

Concurrent access protection goes hand-in-hand with managing such complex data structures in the face of
multiple execution threads such as transmit, receive, transmit-complete interrupts, receive interrupts, and NAPI
polling. We discussed several concurrency control techniques in Chapter 2, "A Peek Inside the Kernel."

Device Example: Ethernet NIC

Now that you have the background, it's time to write a NIC driver by gluing the pieces discussed so far. Listing
15.1 implements a skeletal Ethernet NIC driver. It only implements the main net_device methods. For help in
developing the rest of the methods, refer to the e1000 driver mentioned earlier. Listing 15.1 is generally
independent of the underlying I/O bus but is slightly tilted to PCI. If you are writing a PCI NIC driver, you have
to blend Listing 15.1 with the example PCI driver implemented in Chapter 10.

Listing 15.1. An Ethernet NIC Driver

Code View:
#include <linux/netdevice.h>

#include <linux/etherdevice.h>

#include <linux/skbuff.h>

#include <linux/ethtool.h>

struct net_device_stats mycard_stats; /* Statistics */

/* Fill ethtool_ops methods from a suitable place in the driver */

struct ethtool_ops mycard_ethtool_ops = {

 /* ... */

 .get_eeprom = mycard_get_eeprom, /* Dump EEPROM contents */

 /* ... */

};

/* Initialize/probe the card. For PCI cards, this is invoked

 from (or is itself) the probe() method. In that case, the

 function is declared as:

 static struct net_device *init_mycard(struct pci_dev *pdev, const

 struct pci_device_id *id)

*/

static struct net_device *

init_mycard()

{

 struct net_device *netdev;

 struct priv_struct mycard_priv;

 /* ... */

 netdev = alloc_etherdev(sizeof(struct priv_struct));

 /* Common methods */

 netdev->open = &mycard_open;

 netdev->stop = &mycard_close;

 netdev->do_ioctl = &mycard_ioctl;

 /* Data transfer */

 netdev->hard_start_xmit = &mycard_xmit_frame; /* Transmit */

 netdev->poll = &mycard_poll; /* Receive - NAPI */

 netdev->weight = 64; /* Fairness */

 /* Watchdog */

 netdev->tx_timeout = &mycard_timeout; /* Recovery function */

 netdev->watchdog_timeo = 8*HZ; /* 8-second timeout */

 /* Statistics and configuration */

 netdev->get_stats = &mycard_get_stats; /* Statistics support */

 netdev->ethtool_ops = &mycard_ethtool_ops; /* Ethtool support */

 netdev->set_mac_address = &mycard_set_mac; /* Change MAC */

 netdev->change_mtu = &mycard_change_mtu; /* Alter MTU */

 strncpy(netdev->name, pci_name(pdev),

 sizeof(netdev->name) - 1); /* Name (for PCI) */

 /* Bus-specific parameters. For a PCI NIC, it looks as follows */

 netdev->mem_start = pci_resource_start(pdev, 0);

 netdev->mem_end = netdev->mem_start + pci_resource_len(pdev, 0);

 /* Register the interface */

 register_netdev(netdev);

 /* ... */

 /* Get MAC address from attached EEPROM */

 /* ... */

 /* Download microcode if needed */

 /* ... */

}

/* The interrupt handler */

static irqreturn_t

mycard_interrupt(int irq, void *dev_id)

{

 struct net_device *netdev = dev_id;

 struct sk_buff *skb;

 unsigned int length;

 /* ... */

 if (receive_interrupt) {

 /* We were interrupted due to packet reception. At this point,

 the NIC has already DMA'ed received data to an sk_buff that

 was pre-allocated and mapped during device open. Obtain the

 address of the sk_buff depending on your data structure

 design and assign it to 'skb'. 'length' is similarly obtained

 from the NIC by reading the descriptor used to DMA data from

 the card. Now, skb->data contains the receive data. */

 /* ... */

 /* For PCI cards, perform a pci_unmap_single() on the

 received buffer in order to allow the CPU to access it */

 /* ... */

 /* Allow the data go to the tail of the packet by moving

 skb->tail down by length bytes and increasing

 skb->len correspondingly */

 skb_put(skb, length)

 /* Pass the packet to the TCP/IP stack */

#if !defined (USE_NAPI) /* Do it the old way */

 netif_rx(skb);

#else /* Do it the NAPI way */

 if (netif_rx_schedule_prep(netdev))) {

 /* Disable NIC interrupt. Implementation not shown. */

 disable_nic_interrupt();

 /* Post the packet to the protocol layer and

 add the device to the poll list */

 __netif_rx_schedule(netdev);

 }

#endif

 } else if (tx_complete_interrupt) {

 /* Transmit Complete Interrupt */

 /* ... */

 /* Unmap and free transmit resources such as

 DMA descriptors and buffers. Free sk_buffs or

 reclaim them into a free pool */

 /* ... */

 }

}

/* Driver open */

static int

mycard_open(struct net_device *netdev)

{

 /* ... */

 /* Request irq */

 request_irq(irq, mycard_interrupt, IRQF_SHARED,

 netdev->name, dev);

 /* Fill transmit and receive rings */

 /* See the section,

 "Buffer Management and Concurrency Control" */

 /* ... */

 /* Provide free descriptor addresses to the card */

 /* ... */

 /* Convey your readiness to accept data from the

 networking stack */

 netif_start_queue(netdev);

 /* ... */

}

/* Driver close */

static int

mycard_close(struct net_device *netdev)

{

 /* ... */

 /* Ask the networking stack to stop sending down data */

 netif_stop_queue(netdev);

 /* ... */

}

/* Called when the device is unplugged or when the module is

 released. For PCI cards, this is invoked from (or is itself)

 the remove() method. In that case, the function is declared as:

 static void __devexit mycard_remove(struct pci_dev *pdev)

*/

static void __devexit

mycard_remove()

{

 struct net_device *netdev;

 /* ... */

 /* For a PCI card, obtain the associated netdev as follows,

 assuming that the probe() method performed a corresponding

 pci_set_drvdata(pdev, netdev) after allocating the netdev */

 netdev = pci_get_drvdata(pdev); /*

 unregister_netdev(netdev); /* Reverse of register_netdev() */

 /* ... */

 free_netdev(netdev); /* Reverse of alloc_netdev() */

 /* ... */

}

/* Suspend method. For PCI devices, this is part of

 the pci_driver structure discussed in Chapter 10 */

static int

mycard_suspend(struct pci_dev *pdev, pm_message_t state)

{

 /* ... */

 netif_device_detach(netdev);

 /* ... */

}

/* Resume method. For PCI devices, this is part of

 the pci_driver structure discussed in Chapter 10 */

static int

mycard_resume(struct pci_dev *pdev)

{

 /* ... */

 netif_device_attach(netdev);

 /* ... */

}

/* Get statistics */

static struct net_device_stats *

mycard_get_stats(struct net_device *netdev)

{

 /* House keeping */

 /* ... */

 return(&mycard_stats);

}

/* Dump EEPROM contents. This is an ethtool_ops operation */

static int

mycard_get_eeprom(struct net_device *netdev,

 struct ethtool_eeprom *eeprom, uint8_t *bytes)

{

 /* Read data from the accompanying EEPROM */

 /* ... */

}

/* Poll method */

static int

mycard_poll(struct net_device *netdev, int *budget)

{

 /* Post packets to the protocol layer using

 netif_receive_skb() */

 /* ... */

 if (no_more_ingress_packets()){

 /* Remove the device from the polled list */

 netif_rx_complete(netdev);

 /* Fall back to interrupt mode. Implementation not shown */

 enable_nic_interrupt();

 return 0;

 }

}

/* Transmit method */

static int

mycard_xmit_frame(struct sk_buff *skb, struct net_device *netdev)

{

 /* DMA the transmit packet from the associated sk_buff

 to card memory */

 /* ... */

 /* Manage buffers */

 /* ... */

}

Ethernet PHY

Ethernet controllers implement the MAC layer and have to be used in tandem with a Physical layer
(PHY) transceiver. The former corresponds to the datalink layer of the Open Systems Interconnect
(OSI) model, while the latter implements the physical layer. Several SoCs have built-in MACs that
connect to external PHYs. The Media Independent Interface (MII) is a standard interface that
connects a Fast Ethernet MAC to a PHY. The Ethernet device driver communicates with the PHY
over MII to configure parameters such as PHY ID, line speed, duplex mode, and auto negotiation.
Look at include/linux/mii.h for MII register definitions.

ISA Network Drivers

Let's now take a peek at an ISA NIC. The CS8900 is a 10Mbps Ethernet controller chip from Crystal
Semiconductor (now Cirrus Logic). This chip is commonly used to Ethernet-enable embedded devices, especially
for debug purposes. Figure 15.2 shows a connection diagram surrounding a CS8900. Depending on the
processor on your board and the chip-select used to drive the chip, the CS8900 registers map to different
regions in the CPU's I/O address space. The device driver for this controller is an ISA-type driver (look at the
section "ISA and MCA" in Chapter 20, "More Devices and Drivers") that probes candidate address regions to
detect the controller's presence. The ISA probe method elicits the controller's I/O base address by looking for a
signature such as the chip ID.

Figure 15.2. Connection diagram surrounding a CS8900 Ethernet controller.

[View full size image]

Look at drivers/net/cs89x0.c for the source code of the CS8900 driver. cs89x0_probe1() probes I/O address

ranges to sense a CS8900. It then reads the current configuration of the chip. During this step, it accesses the
CS8900's companion EEPROM and gleans the controller's MAC address. Like the driver in Listing 15.1, cs89x0.c
is also built using netif_*() and skb_*() interface routines.

Some platforms that use the CS8900 allow DMA. ISA devices, unlike PCI cards, do not have DMA mastering
capabilities, so they need an external DMA controller to transfer data.

Asynchronous Transfer Mode

ATM is a high-speed, connection-oriented, back-bone technology. ATM guarantees high quality of service (QoS)
and low latencies, so it's used for carrying audio and video traffic in addition to data.

Here's a quick summary of the ATM protocol: ATM communication takes place in units of 53-byte cells. Each cell
begins with a 5-byte header that carries a virtual path identifier (VPI) and a virtual circuit identifier (VCI). ATM
connections are either switched virtual circuits (SVCs) or permanent virtual circuits (PVCs). During SVC
establishment, VPI/VCI pairs are configured in intervening ATM switches to route incoming cells to appropriate
egress ports. For PVCs, the VPI/VCI pairs are permanently configured in the ATM switches and not set up and
torn down for each connection.

There are three ways you can run TCP/IP over ATM, all of which are supported by Linux-ATM:

Classical IP over ATM (CLIP) as specified in RFC[1] 1577.

[1] Request For Comments (RFC) are documents that specify networking standards.

1.

Emulating a LAN over an ATM network. This is called LAN Emulation (LANE).2.

Multi Protocol over ATM (MPoA). This is a routing technique that improves performance.3.

Linux-ATM is an experimental collection of kernel drivers, user space utilities, and daemons. You will find ATM
drivers and protocols under drivers/atm/ and net/atm/, respectively, in the source tree. http://linux-
atm.sourceforge.net/ hosts user-space programs required to use Linux-ATM. Linux also incorporates an ATM
socket API consisting of SVC sockets (AF_ATMSVC) and PVC sockets (AF_ATMPVC).

A protocol called Multiprotocol Label Switching (MPLS) is replacing ATM. The Linux-MPLS project, hosted at
http://mpls-linux.sourceforge.net/, is not yet part of the mainline kernel.

We look at some ATM-related throughput issues in the next section.

http://linux-
http://mpls-linux.sourceforge.net/

Network Throughput

Several tools are available to benchmark network performance. Netperf, available for free from
www.netperf.org, can set up complex TCP/UDP connection scenarios. You can use scripts to control
characteristics such as protocol parameters, number of simultaneous sessions, and size of data blocks.
Benchmarking is accomplished by comparing the resulting throughput with the maximum practical bandwidth
that the networking technology yields. For example, a 155Mbps ATM adapter produces a maximum IP
throughput of 135Mbps, taking into account the ATM cell header size, overheads due to the ATM Adaptation
Layer (AAL), and the occasional maintenance cells sent by the physical Synchronous Optical Networking
(SONET) layer.

To obtain optimal throughput, you have to design your NIC driver for high performance. In addition, you need
an in-depth understanding of the network protocol that your driver ferries.

Driver Performance

Let's take a look at some driver design issues that can affect the horsepower of your NIC:

Minimizing the number of instructions in the main data path is a key criterion while designing drivers for
fast NICs. Consider a 1Gbps Ethernet adapter with 1MB of on-board memory. At line rate, the card
memory can hold up to 8 milliseconds of received data. This directly translates to the maximum allowable
instruction path length. Within this path length, incoming packets have to be reassembled, DMAed to
memory, processed by the driver, protected from concurrent access, and delivered to higher layer
protocols.

During programmed I/O (PIO), data travels all the way from the device to the CPU, before it gets written
to memory. Moreover, the CPU gets interrupted whenever the device needs to transfer data, and this
contributes to latencies and context switch delays. DMAs do not suffer from these bottlenecks, but can
turn out to be more expensive than PIOs if the data to be transferred is less than a threshold. This is
because small DMAs have high relative overheads for building descriptors and flushing corresponding
processor cache lines for data coherency. A performance-sensitive device driver might use PIO for small
packets and DMA for larger ones, after experimentally determining the threshold.

For PCI network cards having DMA mastering capability, you have to determine the optimal DMA burst
size, which is the time for which the card controls the bus at one stretch. If the card bursts for a long
duration, it may hog the bus and prevent the processor from keeping up with data DMA-ed previously. PCI
drivers program the burst size via a register in the PCI configuration space. Normally the NIC's burst size
is programmed to be the same as the cache line size of the processor, which is the number of bytes that
the processor reads from system memory each time there is a cache miss. In practice, however, you
might need to connect a bus analyzer to determine the beneficial burst duration because factors such as
the presence of a split bus (multiple bus types like ISA and PCI) on your system can influence the optimal
value.

Many high-speed NICs offer the capability to offload the CPU-intensive computation of TCP checksums
from the protocol stack. Some support DMA scatter-gather that we visited in Chapter 10. The driver needs
to leverage these capabilities to achieve the maximum practical bandwidth that the underlying network
yields.

Sometimes, a driver optimization might create unexpected speed bumps if it's not sensitive to the
implementation details of higher protocols. Consider an NFS-mounted filesystem on a computer equipped

with a high-speed NIC. Assume that the NIC driver takes only occasional transmit complete interrupts to
minimize latencies, but that the NFS server implementation uses freeing of its transmit buffers as a flow-
control mechanism. Because the driver frees NFS transmit buffers only during the sparsely generated
transmit complete interrupts, file copies over NFS crawl, even as Internet downloads zip along yielding
maximum throughput.

Protocol Performance

Let's now dig into some protocol-specific characteristics that can boost or hurt network throughput:

TCP window size can impact throughput. The window size provides a measure of the amount of data that
can be transmitted before receiving an acknowledgment. For fast NICs, a small window size might result in
TCP sitting idle, waiting for acknowledgments of packets already transmitted. Even with a large window
size, a small number of lost TCP packets can affect performance because lost frames can use up the
window at line speeds. In the case of UDP, the window size is not relevant because it does not support
acknowledgments. However, a small packet loss can spiral into a big rate drop due to the absence of flow-
control mechanisms.

As the block size of application data written to TCP sockets increases, the number of buffers copied from
user space to kernel space decreases. This lowers the demand on processor utilization and is good for
performance. If the block size crosses the MTU corresponding to the network protocol, however, processor
cycles get wasted on fragmentation. The desirable block size is thus the outgoing interface MTU, or the
largest packet that can be sent without fragmentation through an IP path if Path MTU discovery
mechanisms are in operation. While running IP over ATM, for example, because the ATM adaptation layer
has a 64K MTU, there is virtually no upper bound on block size. (RFC 1626 defaults this to 9180.) If you
are running IP over ATM LANE, however, the block size should mirror the MTU size of the respective LAN
technology being emulated. It should thus be 1500 for standard Ethernet, 8000 for jumbo Gigabit
Ethernet, and 18K for 16Mbps Token Ring.

Looking at the Sources

The drivers/net/ directory contains sources of various NIC drivers. Look inside drivers/net/e1000/ for an
example NIC driver. You will find network protocol implementations in the net/ directory. sk_buff access
routines are in net/core/skbuff.c. Library routines that aid the implementation of your driver's net_device

interface stay in net/core/dev.c and include/linux/netdevice.h.

TUN/TAP Driver

The TUN/TAP device driver drivers/net/tun.c, used for protocol tunneling, is an example of a
combination of a virtual network driver and a pseudo char driver. The pseudo char device
(/dev/net/tun) acts as the underlying hardware for the virtual network interface (tunX), so instead
of transmitting frames to a physical network, the TUN network driver sends it to an application
that is reading from /dev/net/tun. Similarly, instead of receiving data from a physical network, the
TUN driver accepts it from an application writing to /dev/net/tun. Look at
Documentation/networking/tuntap.txt for more explanations and usage scenarios. Since both
network and char portions of the driver do not have to deal with the complexities of hardware
interaction, it serves as a very readable, albeit simplistic, driver example.

Files under /sys/class/net/ let you operate on NIC driver parameters. Use the nodes under /proc/sys/net/ to
configure protocol-specific variables. To set the maximum TCP transmit window size, for example, echo the
desired value to /proc/sys/net/core/wmem_max. The /proc/net/ directory has a collection of system-specific
network information. Examine /proc/net/dev for statistics on all NICs on your system and look at /proc/net/arp
for the ARP table.

Table 15.1 contains the main data structures used in this chapter and their location in the source tree. Table
15.2 lists the main kernel programming interfaces that you used in this chapter along with the location of their
definitions.

Table 15.1. Summary of Data Structures

Data Structure Location Description

sk_buff include/linux/skbuff.h sk_buffs provide efficient buffer

handling and flow-control mechanisms to
Linux networking layers.

net_device include/linux/netdevice.h Interface between NIC drivers and the
TCP/IP stack.

net_device_stats include/linux/netdevice.h Statistics pertaining to a network device.

ethtool_ops include/linux/ethtool.h Entry points to tie a NIC driver to the
ethtool utility.

Table 15.2. Summary of Kernel Programming Interfaces

Kernel Interface Location Description

alloc_netdev() net/core/dev.c Allocates a net_device

Kernel Interface Location Description

alloc_etherdev()
alloc_ieee80211()

alloc_irdadev()

net/ethernet/eth.c

net/ieee80211/ieee80211_module.c

net/irda/irda_device.c

Wrappers to alloc_netdev()

free_netdev() net/core/dev.c Reverse of alloc_netdev()

register_netdev() net/core/dev.c Registers a net_device

unregister_netdev() net/core/dev.c Unregisters a net_device

dev_alloc_skb() include/linux/skbuff.h Allocates memory for an sk_buff and
associates it with a packet payload buffer

dev_kfree_skb() include/linux/skbuff.h
net/core/skbuff.c

Reverse of dev_alloc_skb()

skb_reserve() include/linux/skbuff.h Adds a padding between the start of a
packet buffer and the beginning of payload

skb_clone() net/core/skbuff.c Creates a copy of a supplied sk_buff

without copying the contents of the
associated packet buffer

skb_put() include/linux/skbuff.h Allows packet data to go to the tail of the
packet

netif_rx() net/core/dev.c Passes a network packet to the TCP/IP
stack

netif_rx_schedule_prep()

__netif_rx_schedule()

include/linux/netdevice.h
net/core/dev.c

Passes a network packet to the TCP/IP
stack (NAPI)

netif_receive_skb() net/core/dev.c Posts packet to the protocol layer from the
poll() method (NAPI)

netif_rx_complete() include/linux/netdevice.h Removes a device from polled list (NAPI)

netif_device_detach() net/core/dev.c Detaches the device (commonly called
during power suspend)

netif_device_attach() net/core/dev.c Attaches the device (commonly called
during power resume)

netif_start_queue() include/linux/netdevice.h Conveys readiness to accept data from the
networking stack

netif_stop_queue() include/linux/netdevice.h Asks the networking stack to stop sending
down data

netif_wake_queue() include/linux/netdevice.h Restarts egress queuing

netif_queue_stopped() include/linux/netdevice.h Checks flow-control state

alloc_etherdev()
alloc_ieee80211()

alloc_irdadev()

net/ethernet/eth.c

net/ieee80211/ieee80211_module.c

net/irda/irda_device.c

Wrappers to alloc_netdev()

free_netdev() net/core/dev.c Reverse of alloc_netdev()

register_netdev() net/core/dev.c Registers a net_device

unregister_netdev() net/core/dev.c Unregisters a net_device

dev_alloc_skb() include/linux/skbuff.h Allocates memory for an sk_buff and
associates it with a packet payload buffer

dev_kfree_skb() include/linux/skbuff.h
net/core/skbuff.c

Reverse of dev_alloc_skb()

skb_reserve() include/linux/skbuff.h Adds a padding between the start of a
packet buffer and the beginning of payload

skb_clone() net/core/skbuff.c Creates a copy of a supplied sk_buff

without copying the contents of the
associated packet buffer

skb_put() include/linux/skbuff.h Allows packet data to go to the tail of the
packet

netif_rx() net/core/dev.c Passes a network packet to the TCP/IP
stack

netif_rx_schedule_prep()

__netif_rx_schedule()

include/linux/netdevice.h
net/core/dev.c

Passes a network packet to the TCP/IP
stack (NAPI)

netif_receive_skb() net/core/dev.c Posts packet to the protocol layer from the
poll() method (NAPI)

netif_rx_complete() include/linux/netdevice.h Removes a device from polled list (NAPI)

netif_device_detach() net/core/dev.c Detaches the device (commonly called
during power suspend)

netif_device_attach() net/core/dev.c Attaches the device (commonly called
during power resume)

netif_start_queue() include/linux/netdevice.h Conveys readiness to accept data from the
networking stack

netif_stop_queue() include/linux/netdevice.h Asks the networking stack to stop sending
down data

netif_wake_queue() include/linux/netdevice.h Restarts egress queuing

netif_queue_stopped() include/linux/netdevice.h Checks flow-control state

Chapter 16. Linux Without Wires

In This Chapter

Bluetooth

467

Infrared

478

WiFi

489

Cellular Networking

496

Current Trends

500

Several small-footprint devices are powered by the dual combination of a wireless technology and Linux.
Bluetooth, Infrared, WiFi, and cellular networking are established wireless technologies that have healthy Linux
support. Bluetooth eliminates cables, injects intelligence into dumb devices, and opens a flood gate of novel
applications. Infrared is a low-cost, low-range, medium-rate, wireless technology that can network laptops,
connect handhelds, or dispatch a document to a printer. WiFi is the wireless equivalent of an Ethernet LAN.
Cellular networking using General Packet Radio Service (GPRS) or code division multiple access (CDMA) keeps
you Internet-enabled on the go, as long as your wanderings are confined to service provider coverage area.

Because these wireless technologies are widely available in popular form factors, you are likely to end up,
sooner rather than later, with a card that does not work on Linux right away. Before you start working on
enabling an unsupported card, you need to know in detail how the kernel implements support for the
corresponding technology. In this chapter, let's learn how Linux enables Bluetooth, Infrared, WiFi, and cellular
networking.

Wireless Trade-Offs

Bluetooth, Infrared, WiFi, and GPRS serve different niches. The trade-offs can be gauged in terms of speed,
range, cost, power consumption, ease of hardware/software co-design, and PCB real estate usage.

Table 16.1 gives you an idea of these parameters, but you will have to contend with several variables when you
measure the numbers on the ground. The speeds listed are the theoretical maximums. The power consumptions
indicated are relative, but in the real world they also depend on the vendor's implementation techniques, the
technology subclass, and the operating mode. Cost economics depend on the chip form factor and whether the
chip contains built-in microcode that implements some of the protocol layers. The board real estate consumed
depends not just on the chipset, but also on transceivers, antennae, and whether you build using off-the-shelf
(OTS) modules.

Bluetooth
720Kbps
10m to 100m
**
**
**
**
Infrared Data
4Mbps (Fast IR)
Up to 1 meter within a 30-degree cone
*
*
*
*
WiFi
54Mbps
150 meters (indoors)

GPRS
170Kbps
Service provider coverage

*

Note: The last four columns give relative measurement (depending on the number of * symbols) rather than absolute
values.

Table 16.1. Wireless Trade-Offs

 Speed Range Power Cost Co-Design
Effort

Board
Real
Estate

Some sections in this chapter focus more on "system programming" than device drivers. This is because the
corresponding regions of the protocol stack (for example, Bluetooth RFCOMM and Infrared networking) are
already present in the kernel and you are more likely to perform associated user mode customizations than
develop protocol content or device drivers.

Bluetooth

Bluetooth is a short-range cable-replacement technology that carries both data and voice. It supports speeds of
up to 723Kbps (asymmetric) and 432Kbps (symmetric). Class 3 Bluetooth devices have a range of 10 meters,
and Class 1 transmitters can communicate up to 100 meters.

Bluetooth is designed to do away with wires that constrict and clutter your environment. It can, for example,
turn your wristwatch into a front-end for a bulky Global Positioning System (GPS) hidden inside your backpack.
Or it can, for instance, let you navigate a presentation via your handheld. Again, Bluetooth can be the answer if
you want your laptop to be a hub that can Internet-enable your Bluetooth-aware MP3 player. If your wristwatch,
handheld, laptop, or MP3 player is running Linux, knowledge of the innards of the Linux Bluetooth stack will help
you extract maximum mileage out of your device.

As per the Bluetooth specification, the protocol stack consists of the layers shown in Figure 16.1 . The radio, link
controller, and link manager roughly correspond to the physical, data link, and network layers in the Open
Systems Interconnect (OSI) standard reference model. The Host Control Interface (HCI) is the protocol that
carries data to/from the hardware and, hence, maps to the transport layer. The Bluetooth Logical Link Control
and Adaptation Protocol (L2CAP) falls in the session layer. Serial port emulation using Radio Frequency
Communication (RFCOMM), Ethernet emulation using Bluetooth Network Encapsulation Protocol (BNEP), and the
Service Discovery Protocol (SDP) are part of the feature-rich presentation layer. At the top of the stack reside
various application environments called profiles. The radio, link controller, and link manager are usually part of
Bluetooth hardware, so operating system support starts at the HCI layer.

Figure 16.1. The Bluetooth stack.

A common method of interfacing Bluetooth hardware with a microcontroller is by connecting the chipset's data
lines to the controller's UART pins. Figure 13.4 of Chapter 13 , "Audio Drivers," shows a Bluetooth chip on an
MP3 player communicating with the processor via a UART. USB is another oft-used vehicle for communicating
with Bluetooth chipsets. Figure 11.2 of Chapter 11 , "Universal Serial Bus," shows a Bluetooth chip on an
embedded device interfacing with the processor over USB. Irrespective of whether you use UART or USB (we
will look at both kinds of devices later), the packet format used to transport Bluetooth data is HCI.

BlueZ

The BlueZ Bluetooth implementation is part of the mainline kernel and is the official Linux Bluetooth stack.

Figure 16.2 shows how BlueZ maps Bluetooth protocol layers to kernel modules, kernel threads, user space
daemons, configuration tools, utilities, and libraries. The main BlueZ components are explained here:

bluetooth.ko contains the core BlueZ infrastructure. All other BlueZ modules utilize its services. It's also
responsible for exporting the Bluetooth family of sockets (AF_BLUETOOTH) to user space and for populating
related sysfs entries.

1.

For transporting Bluetooth HCI packets over UART, the corresponding BlueZ HCI implementation is
hci_uart.ko. For USB transport, it's hci_usb.ko .

2.

l2cap.ko implements the L2CAP adaptation layer that is responsible for segmentation and reassembly. It
also multiplexes between different higher-layer protocols.

3.

To run TCP/IP applications over Bluetooth, you have to emulate Ethernet ports over L2CAP using BNEP.
This is accomplished by bnep.ko. To service BNEP connections, BlueZ spawns a kernel thread called
kbnepd .

4.

To run serial port applications such as terminal emulators over Bluetooth, you need to emulate serial ports
over L2CAP. This is accomplished by rfcomm.ko. RFCOMM also functions as the pillar that supports
networking over PPP. To service incoming RFCOMM connections, rfcomm.ko spawns a kernel thread called
krfcommd. To set up and maintain connections to individual RFCOMM channels on target devices, use the
rfcomm utility.

5.

The Human Interface Devices (HID) layer is implemented via hidp.ko . The user mode daemon, hidd , lets
BlueZ handle input devices such as Bluetooth mice.

6.

Audio is handled via the Synchronous Connection Oriented (SCO) layer implemented by sco.ko .7.

Figure 16.2. Bluetooth protocol layers mapped to BlueZ kernel modules.

[View full size image]

Let's now trace the kernel code flow for two example Bluetooth devices: a Compact Flash (CF) card and a USB
adapter.

Device Example: CF Card

The Sharp Bluetooth Compact Flash card is built using a Silicon Wave chipset and uses a serial transport to
carry HCI packets. There are three different ways by which HCI packets can be transported serially:

H4 (UART), which is used by the Sharp CF card. H4 is the standard method to transfer Bluetooth data over
UARTs as defined by the Bluetooth specification. Look at drivers/bluetooth/hci_h4.c for the BlueZ
implementation.

1.

2.

H3 (RS232). Devices using H3 are hard to find. BlueZ has no support for H3.2.

BlueCore Serial Protocol (BCSP), which is a proprietary protocol from Cambridge Silicon Radio (CSR) that
supports error checking and retransmission. BCSP is used on non-USB devices based on CSR BlueCore
chips including PCMCIA and CF cards. The BlueZ BCSP implementation lives in drivers/-
bluetooth/hci_bcsp.c .

3.

The read data path for the Sharp Bluetooth card is shown in Figure 16.3 . The first point of contact between the
card and the kernel is at the UART driver. As you saw in Figure 9.5 of Chapter 9 , "PCMCIA and Compact Flash,"
the serial Card Services driver, drivers/serial/serial_cs.c , allows the rest of the operating system to see the
Sharp card as if it were a serial device. The serial driver passes on the received HCI packets to BlueZ. BlueZ
implements HCI processing in the form of a kernel line discipline. As you learned in Chapter 6 , "Serial Drivers,"
line disciplines reside above the serial driver and shape its behavior. The HCI line discipline invokes associated
protocol routines (H4 in this case) for assistance in data processing. From then on, L2CAP and higher BlueZ
layers take charge.

Figure 16.3. Read data path from a Sharp Bluetooth CF card.

[View full size image]

Device Example: USB Adapter

Let's now look at a device that uses USB to transport HCI packets. The Belkin Bluetooth USB adapter is one
such gadget. In this case, the Linux USB layer (drivers/usb/*), the HCI USB transport driver
(drivers/bluetooth/hci_usb.c), and the BlueZ protocol stack (net/bluetooth/*) are the main players that get the
data rolling. Let's see how these three kernel layers interact.

As you learned in Chapter 11 , USB devices exchange data using one or more of four pipes. For Bluetooth USB
devices, each pipe is responsible for carrying a particular type of data:

1.

Control pipes are used to transport HCI commands.1.

Interrupt pipes are responsible for carrying HCI events.2.

Bulk pipes transfer asynchronous connectionless (ACL) Bluetooth data.3.

Isochronous pipes carry SCO audio data.4.

You also saw in Chapter 11 that when a USB device is plugged into a system, the host controller driver
enumerates it using a control pipe and assigns endpoint addresses between 1 and 127. The configuration
descriptor read by the USB subsystem during enumeration contains information about the device, such as its
class , subclass , and protocol . The Bluetooth specification defines the (class , subclass , protocol)

codes of Bluetooth USB devices as (0xE, 0x01, 0x01) . The HCI USB transport driver (hci_usb) registers these

values with the USB core during initialization. When the Belkin USB adapter is plugged in, the USB core reads
the (class , subclass , protocol) information from the device configuration descriptor. Because this
information matches the values registered by hci_usb , this driver gets attached to the Belkin USB adapter.
hci_usb reads Bluetooth data from the four USB pipes described previously and passes it on to the BlueZ
protocol stack. Linux applications now run seamlessly over this device, as shown in Figure 16.2 .

RFCOMM

RFCOMM emulates serial ports over Bluetooth. Applications such as terminal emulators and protocols such as
PPP can run unchanged over the virtual serial interfaces created by RFCOMM.

Device Example: Pill Dispenser

To take an example, assume that you have a Bluetooth-aware pill dispenser. When you pop a pill out of the
dispenser, it sends a message over a Bluetooth RFCOMM channel. A Linux cell phone, such as the one shown in
Figure 6.5 of Chapter 6 , reads this alert using a simple application that establishes an RFCOMM connection to
the pill dispenser. The phone then dispatches this information to the health-care provider's server on the
Internet via its GPRS interface.

A skeletal application on the Linux cell phone that reads data arriving from the pill dispenser using the BlueZ
socket API is shown in Listing 16.1 . The listing assumes that you are familiar with the basics of socket
programming.

Listing 16.1. Communicating with a Pill Dispenser over RFCOMM

Code View:
#include <sys/socket.h>

#include <bluetooth/rfcomm.h> /* For struct sockaddr_rc */

void

sense_dispenser()

{

 int pillfd;

 struct sockaddr_rc pill_rfcomm;

 char buffer[1024];

 /* ... */

 /* Create a Bluetooth RFCOMM socket */

 if ((pillfd = socket(PF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM))

 < 0) {

 printf("Bad Bluetooth RFCOMM socket");

 exit(1);

 }

 /* Connect to the pill dispenser */

 pill_rfcomm.rc_family = AF_BLUETOOTH;

 pill_rfcomm.rc_bdaddr = PILL_DISPENSER_BLUETOOTH_ADDR;

 pill_rfcomm.rc_channel = PILL_DISPENSER_RFCOMM_CHANNEL;

 if (connect(pillfd, (struct sockaddr *)&pill_rfcomm,

 sizeof(pill_rfcomm))) {

 printf("Cannot connect to Pill Dispenser\n");

 exit(1);

 }

 printf("Connection established to Pill Dispenser\n");

 /* Poll until data is ready */

 select(pillfd, &fds, NULL, NULL, &timeout);

 /* Data is available on this RFCOMM channel */

 if (FD_ISSET(pillfd, fds)) {

 /* Read pill removal alerts from the dispenser */

 read(pillfd, buffer, sizeof(buffer));

 /* Take suitable action; e.g., send a message to the health

 care provider's server on the Internet via the GPRS

 interface */

 /* ... */

 }

 /* ... */

}

Networking

Trace down the code path from the telnet/ftp/ssh box in Figure 16.2 to see how networking is architected over
BlueZ Bluetooth. As you can see, there are two different ways to network over Bluetooth:

By running TCP/IP directly over BNEP. The resulting network is called a personal area network (PAN).1.

By running TCP/IP over PPP over RFCOMM. This is called dialup networking (DUN).2.

The kernel implementation of Bluetooth networking is unlikely to interest the device driver writer and is not
explored. Table 16.2 shows the steps required to network two laptops using PAN, however. Networking with
DUN resembles this and is not examined. The laptops are respectively Bluetooth-enabled using the Sharp CF
card and the Belkin USB adapter discussed earlier. You can slip the CF card into the first laptop's PCMCIA slot
using a passive CF-to-PCMCIA adapter. Look at Figure 16.2 in tandem with Table 16.2 to understand the
mappings to corresponding BlueZ components. Table 16.2 uses bash-sharp> and bash-belkin> as the

respective shell prompts of the two laptops.

1.

On the laptop with the Sharp Bluetooth CF card

Start the HCI and service discovery daemons:

bash-sharp> hcid

bash-sharp> sdpd

Because this device possesses a UART interface, you have to attach the BlueZ stack to the appropriate
serial port. In this case, assume that serial_cs has allotted /dev/ttyS3 to the card:

bash-sharp> hciattach ttyS3 any

1.

Verify that the HCI interface is up:

bash-sharp> hciconfig -a

 hci0: Type: UART

 BD Address: 08:00:1F:10:3B:13 ACL MTU: 60:20 SCO MTU: 31:1

 UP RUNNING PSCAN ISCAN
 ...

Manufacturer: Silicon Wave (11)

2.

Verify that basic BlueZ modules are loaded:

bash-sharp> lsmod

 Module Size Used by
 hci_uart 16728 3

 l2cap 26144 2
 bluetooth 47684 6 hci_uart,l2cap
 ...

3.

Insert the BlueZ module that implements network encapsulation:

bash-sharp> modprobe bnep

4.

Listen for incoming PAN connections:[1]

bash-sharp> pand –s

5.

On the laptop with the Belkin USB Bluetooth adapter

Start daemons, such as hcid and sdpd, and insert necessary kernel modules, such as bluetooth.ko and
l2cap.ko .

1.

Because this is a USB device, you don't need to invoke hciattach, but make sure that the hci_usb.ko
module is inserted.

2.

Verify that the HCI interface is up:

Code View:
bash-belkin> hciconfig -a

 hci0: Type: USB BD Address: 00:02:72:B0:33:AB ACL MTU: 192:8 SCO MTU: 64:8
 UP RUNNING PSCAN ISCAN

3.

 ...

 Manufacturer: Cambridge Silicon Radio (10)

Search and discover devices in the neighborhood:

bash-belkin> hcitool -i hci0 scan --flush

 Scanning....
 08:00:1F:10:3B:13 bash-sharp

4.

Establish a PAN with the first laptop. You can get its Bluetooth address (08:00:1F:10:3B:13) from its
hciconfig output:

bash-belkin> pand -c 08:00:1F:10:3B:13

5.

If you now look at the ifconfig output on the two laptops, you will find that a new interface named bnep0 has made an

appearance at both ends. Assign IP addresses to both interfaces and get ready to telnet and FTP!

Table 16.2.
Networking

Two
Laptops
Using

Bluetooth
PAN

[1] A useful command-line option to pand is --persist , which automatically attempts to reconnect when a connection drops. Dig into the man

pages for more invocation options.

Human Interface Devices

Look at sections "USB and Bluetooth Keyboards " and "USB and Bluetooth Mice " in Chapter 7 , "Input Drivers,"
for a discussion on Bluetooth human interface devices.

Audio

Let's take the example of an HBH-30 Sony Ericsson Bluetooth headset to understand Bluetooth SCO audio.
Before the headset can start communicating with a Linux device, the Bluetooth link layer on the latter has to
discover the former. For this, put the headset in discover mode by pressing the button earmarked for device
discovery. In addition, you have to configure BlueZ with the headset's personal identification number (PIN) by
adding it to /etc/bluetooth/pin. An application on the Linux device that uses BlueZ SCO APIs can now send audio
data to the headset. The audio data should be in a format that the headset understands. The HBH-30 uses the
A-law PCM (pulse code modulation) format. There are public domain utilities for converting audio into various
PCM formats.

Bluetooth chipsets commonly have PCM interface pins in addition to the HCI transport interface. If a device
supports, for instance, both Bluetooth and Global System for Mobile Communication (GSM), the PCM lines from
the GSM chipset may be directly wired to the Bluetooth chip's PCM audio lines. You might then have to configure
the Bluetooth chip to receive and send SCO audio packets over its HCI interface instead of its PCM interface.

Debugging

There are two BlueZ tools useful for debugging:

1.

hcidump taps HCI packets flowing back and forth, and parses them into human-readable form. Here's an
example dump while a device inquiry is in progress:

bash> hcidump -i hci0

HCIDump - HCI packet analyzer ver 1.11

device: hci0 snap_len: 1028 filter: 0xffffffff

 HCI Command: Inquiry (0x01|0x0001) plen 5

 HCI Event: Command Status (0x0f) plen 4
 HCI Event: Inquiry Result (0x02) plen 15

 ...

 HCI Event: Inquiry Complete (0x01) plen 1 < HCI Command:
 Remote Name Request (0x01|0x0019) plen 10

 ...

1.

The virtual HCI driver (hci_vhci.ko), as shown in Figure 16.2 , emulates a Bluetooth interface if you do
not have actual hardware.

2.

Looking at the Sources

Look inside drivers/bluetooth/ for BlueZ low-level drivers. Explore net/bluetooth/ for insights into the BlueZ
protocol implementation.

Bluetooth applications fall under different profiles based on how they behave. For example, the cordless
telephony profile specifies how a Bluetooth device can implement a cordless phone. We discussed profiles for
PAN and serial access, but there are many more profiles out there such as fax profile, General Object Exchange
Profile (GOEP) and SIM Access Profile (SAP). The bluez-utils package, downloadable from www.bluez.org ,
provides support for several Bluetooth profiles.

The official Bluetooth website is www.bluetooth.org . It contains Bluetooth specification documents and
information about the Bluetooth Special Interest Group (SIG).

Affix is an alternate Bluetooth stack on Linux. You can download Affix from http://affix.sourceforge.net/ .

Chapter 16. Linux Without Wires

In This Chapter

Bluetooth

467

Infrared

478

WiFi

489

Cellular Networking

496

Current Trends

500

Several small-footprint devices are powered by the dual combination of a wireless technology and Linux.
Bluetooth, Infrared, WiFi, and cellular networking are established wireless technologies that have healthy Linux
support. Bluetooth eliminates cables, injects intelligence into dumb devices, and opens a flood gate of novel
applications. Infrared is a low-cost, low-range, medium-rate, wireless technology that can network laptops,
connect handhelds, or dispatch a document to a printer. WiFi is the wireless equivalent of an Ethernet LAN.
Cellular networking using General Packet Radio Service (GPRS) or code division multiple access (CDMA) keeps
you Internet-enabled on the go, as long as your wanderings are confined to service provider coverage area.

Because these wireless technologies are widely available in popular form factors, you are likely to end up,
sooner rather than later, with a card that does not work on Linux right away. Before you start working on
enabling an unsupported card, you need to know in detail how the kernel implements support for the
corresponding technology. In this chapter, let's learn how Linux enables Bluetooth, Infrared, WiFi, and cellular
networking.

Wireless Trade-Offs

Bluetooth, Infrared, WiFi, and GPRS serve different niches. The trade-offs can be gauged in terms of speed,
range, cost, power consumption, ease of hardware/software co-design, and PCB real estate usage.

Table 16.1 gives you an idea of these parameters, but you will have to contend with several variables when you
measure the numbers on the ground. The speeds listed are the theoretical maximums. The power consumptions
indicated are relative, but in the real world they also depend on the vendor's implementation techniques, the
technology subclass, and the operating mode. Cost economics depend on the chip form factor and whether the
chip contains built-in microcode that implements some of the protocol layers. The board real estate consumed
depends not just on the chipset, but also on transceivers, antennae, and whether you build using off-the-shelf
(OTS) modules.

Bluetooth
720Kbps
10m to 100m
**
**
**
**
Infrared Data
4Mbps (Fast IR)
Up to 1 meter within a 30-degree cone
*
*
*
*
WiFi
54Mbps
150 meters (indoors)

GPRS
170Kbps
Service provider coverage

*

Note: The last four columns give relative measurement (depending on the number of * symbols) rather than absolute
values.

Table 16.1. Wireless Trade-Offs

 Speed Range Power Cost Co-Design
Effort

Board
Real
Estate

Some sections in this chapter focus more on "system programming" than device drivers. This is because the
corresponding regions of the protocol stack (for example, Bluetooth RFCOMM and Infrared networking) are
already present in the kernel and you are more likely to perform associated user mode customizations than
develop protocol content or device drivers.

Bluetooth

Bluetooth is a short-range cable-replacement technology that carries both data and voice. It supports speeds of
up to 723Kbps (asymmetric) and 432Kbps (symmetric). Class 3 Bluetooth devices have a range of 10 meters,
and Class 1 transmitters can communicate up to 100 meters.

Bluetooth is designed to do away with wires that constrict and clutter your environment. It can, for example,
turn your wristwatch into a front-end for a bulky Global Positioning System (GPS) hidden inside your backpack.
Or it can, for instance, let you navigate a presentation via your handheld. Again, Bluetooth can be the answer if
you want your laptop to be a hub that can Internet-enable your Bluetooth-aware MP3 player. If your wristwatch,
handheld, laptop, or MP3 player is running Linux, knowledge of the innards of the Linux Bluetooth stack will help
you extract maximum mileage out of your device.

As per the Bluetooth specification, the protocol stack consists of the layers shown in Figure 16.1 . The radio, link
controller, and link manager roughly correspond to the physical, data link, and network layers in the Open
Systems Interconnect (OSI) standard reference model. The Host Control Interface (HCI) is the protocol that
carries data to/from the hardware and, hence, maps to the transport layer. The Bluetooth Logical Link Control
and Adaptation Protocol (L2CAP) falls in the session layer. Serial port emulation using Radio Frequency
Communication (RFCOMM), Ethernet emulation using Bluetooth Network Encapsulation Protocol (BNEP), and the
Service Discovery Protocol (SDP) are part of the feature-rich presentation layer. At the top of the stack reside
various application environments called profiles. The radio, link controller, and link manager are usually part of
Bluetooth hardware, so operating system support starts at the HCI layer.

Figure 16.1. The Bluetooth stack.

A common method of interfacing Bluetooth hardware with a microcontroller is by connecting the chipset's data
lines to the controller's UART pins. Figure 13.4 of Chapter 13 , "Audio Drivers," shows a Bluetooth chip on an
MP3 player communicating with the processor via a UART. USB is another oft-used vehicle for communicating
with Bluetooth chipsets. Figure 11.2 of Chapter 11 , "Universal Serial Bus," shows a Bluetooth chip on an
embedded device interfacing with the processor over USB. Irrespective of whether you use UART or USB (we
will look at both kinds of devices later), the packet format used to transport Bluetooth data is HCI.

BlueZ

The BlueZ Bluetooth implementation is part of the mainline kernel and is the official Linux Bluetooth stack.

Figure 16.2 shows how BlueZ maps Bluetooth protocol layers to kernel modules, kernel threads, user space
daemons, configuration tools, utilities, and libraries. The main BlueZ components are explained here:

bluetooth.ko contains the core BlueZ infrastructure. All other BlueZ modules utilize its services. It's also
responsible for exporting the Bluetooth family of sockets (AF_BLUETOOTH) to user space and for populating
related sysfs entries.

1.

For transporting Bluetooth HCI packets over UART, the corresponding BlueZ HCI implementation is
hci_uart.ko. For USB transport, it's hci_usb.ko .

2.

l2cap.ko implements the L2CAP adaptation layer that is responsible for segmentation and reassembly. It
also multiplexes between different higher-layer protocols.

3.

To run TCP/IP applications over Bluetooth, you have to emulate Ethernet ports over L2CAP using BNEP.
This is accomplished by bnep.ko. To service BNEP connections, BlueZ spawns a kernel thread called
kbnepd .

4.

To run serial port applications such as terminal emulators over Bluetooth, you need to emulate serial ports
over L2CAP. This is accomplished by rfcomm.ko. RFCOMM also functions as the pillar that supports
networking over PPP. To service incoming RFCOMM connections, rfcomm.ko spawns a kernel thread called
krfcommd. To set up and maintain connections to individual RFCOMM channels on target devices, use the
rfcomm utility.

5.

The Human Interface Devices (HID) layer is implemented via hidp.ko . The user mode daemon, hidd , lets
BlueZ handle input devices such as Bluetooth mice.

6.

Audio is handled via the Synchronous Connection Oriented (SCO) layer implemented by sco.ko .7.

Figure 16.2. Bluetooth protocol layers mapped to BlueZ kernel modules.

[View full size image]

Let's now trace the kernel code flow for two example Bluetooth devices: a Compact Flash (CF) card and a USB
adapter.

Device Example: CF Card

The Sharp Bluetooth Compact Flash card is built using a Silicon Wave chipset and uses a serial transport to
carry HCI packets. There are three different ways by which HCI packets can be transported serially:

H4 (UART), which is used by the Sharp CF card. H4 is the standard method to transfer Bluetooth data over
UARTs as defined by the Bluetooth specification. Look at drivers/bluetooth/hci_h4.c for the BlueZ
implementation.

1.

2.

H3 (RS232). Devices using H3 are hard to find. BlueZ has no support for H3.2.

BlueCore Serial Protocol (BCSP), which is a proprietary protocol from Cambridge Silicon Radio (CSR) that
supports error checking and retransmission. BCSP is used on non-USB devices based on CSR BlueCore
chips including PCMCIA and CF cards. The BlueZ BCSP implementation lives in drivers/-
bluetooth/hci_bcsp.c .

3.

The read data path for the Sharp Bluetooth card is shown in Figure 16.3 . The first point of contact between the
card and the kernel is at the UART driver. As you saw in Figure 9.5 of Chapter 9 , "PCMCIA and Compact Flash,"
the serial Card Services driver, drivers/serial/serial_cs.c , allows the rest of the operating system to see the
Sharp card as if it were a serial device. The serial driver passes on the received HCI packets to BlueZ. BlueZ
implements HCI processing in the form of a kernel line discipline. As you learned in Chapter 6 , "Serial Drivers,"
line disciplines reside above the serial driver and shape its behavior. The HCI line discipline invokes associated
protocol routines (H4 in this case) for assistance in data processing. From then on, L2CAP and higher BlueZ
layers take charge.

Figure 16.3. Read data path from a Sharp Bluetooth CF card.

[View full size image]

Device Example: USB Adapter

Let's now look at a device that uses USB to transport HCI packets. The Belkin Bluetooth USB adapter is one
such gadget. In this case, the Linux USB layer (drivers/usb/*), the HCI USB transport driver
(drivers/bluetooth/hci_usb.c), and the BlueZ protocol stack (net/bluetooth/*) are the main players that get the
data rolling. Let's see how these three kernel layers interact.

As you learned in Chapter 11 , USB devices exchange data using one or more of four pipes. For Bluetooth USB
devices, each pipe is responsible for carrying a particular type of data:

1.

Control pipes are used to transport HCI commands.1.

Interrupt pipes are responsible for carrying HCI events.2.

Bulk pipes transfer asynchronous connectionless (ACL) Bluetooth data.3.

Isochronous pipes carry SCO audio data.4.

You also saw in Chapter 11 that when a USB device is plugged into a system, the host controller driver
enumerates it using a control pipe and assigns endpoint addresses between 1 and 127. The configuration
descriptor read by the USB subsystem during enumeration contains information about the device, such as its
class , subclass , and protocol . The Bluetooth specification defines the (class , subclass , protocol)

codes of Bluetooth USB devices as (0xE, 0x01, 0x01) . The HCI USB transport driver (hci_usb) registers these

values with the USB core during initialization. When the Belkin USB adapter is plugged in, the USB core reads
the (class , subclass , protocol) information from the device configuration descriptor. Because this
information matches the values registered by hci_usb , this driver gets attached to the Belkin USB adapter.
hci_usb reads Bluetooth data from the four USB pipes described previously and passes it on to the BlueZ
protocol stack. Linux applications now run seamlessly over this device, as shown in Figure 16.2 .

RFCOMM

RFCOMM emulates serial ports over Bluetooth. Applications such as terminal emulators and protocols such as
PPP can run unchanged over the virtual serial interfaces created by RFCOMM.

Device Example: Pill Dispenser

To take an example, assume that you have a Bluetooth-aware pill dispenser. When you pop a pill out of the
dispenser, it sends a message over a Bluetooth RFCOMM channel. A Linux cell phone, such as the one shown in
Figure 6.5 of Chapter 6 , reads this alert using a simple application that establishes an RFCOMM connection to
the pill dispenser. The phone then dispatches this information to the health-care provider's server on the
Internet via its GPRS interface.

A skeletal application on the Linux cell phone that reads data arriving from the pill dispenser using the BlueZ
socket API is shown in Listing 16.1 . The listing assumes that you are familiar with the basics of socket
programming.

Listing 16.1. Communicating with a Pill Dispenser over RFCOMM

Code View:
#include <sys/socket.h>

#include <bluetooth/rfcomm.h> /* For struct sockaddr_rc */

void

sense_dispenser()

{

 int pillfd;

 struct sockaddr_rc pill_rfcomm;

 char buffer[1024];

 /* ... */

 /* Create a Bluetooth RFCOMM socket */

 if ((pillfd = socket(PF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM))

 < 0) {

 printf("Bad Bluetooth RFCOMM socket");

 exit(1);

 }

 /* Connect to the pill dispenser */

 pill_rfcomm.rc_family = AF_BLUETOOTH;

 pill_rfcomm.rc_bdaddr = PILL_DISPENSER_BLUETOOTH_ADDR;

 pill_rfcomm.rc_channel = PILL_DISPENSER_RFCOMM_CHANNEL;

 if (connect(pillfd, (struct sockaddr *)&pill_rfcomm,

 sizeof(pill_rfcomm))) {

 printf("Cannot connect to Pill Dispenser\n");

 exit(1);

 }

 printf("Connection established to Pill Dispenser\n");

 /* Poll until data is ready */

 select(pillfd, &fds, NULL, NULL, &timeout);

 /* Data is available on this RFCOMM channel */

 if (FD_ISSET(pillfd, fds)) {

 /* Read pill removal alerts from the dispenser */

 read(pillfd, buffer, sizeof(buffer));

 /* Take suitable action; e.g., send a message to the health

 care provider's server on the Internet via the GPRS

 interface */

 /* ... */

 }

 /* ... */

}

Networking

Trace down the code path from the telnet/ftp/ssh box in Figure 16.2 to see how networking is architected over
BlueZ Bluetooth. As you can see, there are two different ways to network over Bluetooth:

By running TCP/IP directly over BNEP. The resulting network is called a personal area network (PAN).1.

By running TCP/IP over PPP over RFCOMM. This is called dialup networking (DUN).2.

The kernel implementation of Bluetooth networking is unlikely to interest the device driver writer and is not
explored. Table 16.2 shows the steps required to network two laptops using PAN, however. Networking with
DUN resembles this and is not examined. The laptops are respectively Bluetooth-enabled using the Sharp CF
card and the Belkin USB adapter discussed earlier. You can slip the CF card into the first laptop's PCMCIA slot
using a passive CF-to-PCMCIA adapter. Look at Figure 16.2 in tandem with Table 16.2 to understand the
mappings to corresponding BlueZ components. Table 16.2 uses bash-sharp> and bash-belkin> as the

respective shell prompts of the two laptops.

1.

On the laptop with the Sharp Bluetooth CF card

Start the HCI and service discovery daemons:

bash-sharp> hcid

bash-sharp> sdpd

Because this device possesses a UART interface, you have to attach the BlueZ stack to the appropriate
serial port. In this case, assume that serial_cs has allotted /dev/ttyS3 to the card:

bash-sharp> hciattach ttyS3 any

1.

Verify that the HCI interface is up:

bash-sharp> hciconfig -a

 hci0: Type: UART

 BD Address: 08:00:1F:10:3B:13 ACL MTU: 60:20 SCO MTU: 31:1

 UP RUNNING PSCAN ISCAN
 ...

Manufacturer: Silicon Wave (11)

2.

Verify that basic BlueZ modules are loaded:

bash-sharp> lsmod

 Module Size Used by
 hci_uart 16728 3

 l2cap 26144 2
 bluetooth 47684 6 hci_uart,l2cap
 ...

3.

Insert the BlueZ module that implements network encapsulation:

bash-sharp> modprobe bnep

4.

Listen for incoming PAN connections:[1]

bash-sharp> pand –s

5.

On the laptop with the Belkin USB Bluetooth adapter

Start daemons, such as hcid and sdpd, and insert necessary kernel modules, such as bluetooth.ko and
l2cap.ko .

1.

Because this is a USB device, you don't need to invoke hciattach, but make sure that the hci_usb.ko
module is inserted.

2.

Verify that the HCI interface is up:

Code View:
bash-belkin> hciconfig -a

 hci0: Type: USB BD Address: 00:02:72:B0:33:AB ACL MTU: 192:8 SCO MTU: 64:8
 UP RUNNING PSCAN ISCAN

3.

 ...

 Manufacturer: Cambridge Silicon Radio (10)

Search and discover devices in the neighborhood:

bash-belkin> hcitool -i hci0 scan --flush

 Scanning....
 08:00:1F:10:3B:13 bash-sharp

4.

Establish a PAN with the first laptop. You can get its Bluetooth address (08:00:1F:10:3B:13) from its
hciconfig output:

bash-belkin> pand -c 08:00:1F:10:3B:13

5.

If you now look at the ifconfig output on the two laptops, you will find that a new interface named bnep0 has made an

appearance at both ends. Assign IP addresses to both interfaces and get ready to telnet and FTP!

Table 16.2.
Networking

Two
Laptops
Using

Bluetooth
PAN

[1] A useful command-line option to pand is --persist , which automatically attempts to reconnect when a connection drops. Dig into the man

pages for more invocation options.

Human Interface Devices

Look at sections "USB and Bluetooth Keyboards " and "USB and Bluetooth Mice " in Chapter 7 , "Input Drivers,"
for a discussion on Bluetooth human interface devices.

Audio

Let's take the example of an HBH-30 Sony Ericsson Bluetooth headset to understand Bluetooth SCO audio.
Before the headset can start communicating with a Linux device, the Bluetooth link layer on the latter has to
discover the former. For this, put the headset in discover mode by pressing the button earmarked for device
discovery. In addition, you have to configure BlueZ with the headset's personal identification number (PIN) by
adding it to /etc/bluetooth/pin. An application on the Linux device that uses BlueZ SCO APIs can now send audio
data to the headset. The audio data should be in a format that the headset understands. The HBH-30 uses the
A-law PCM (pulse code modulation) format. There are public domain utilities for converting audio into various
PCM formats.

Bluetooth chipsets commonly have PCM interface pins in addition to the HCI transport interface. If a device
supports, for instance, both Bluetooth and Global System for Mobile Communication (GSM), the PCM lines from
the GSM chipset may be directly wired to the Bluetooth chip's PCM audio lines. You might then have to configure
the Bluetooth chip to receive and send SCO audio packets over its HCI interface instead of its PCM interface.

Debugging

There are two BlueZ tools useful for debugging:

1.

hcidump taps HCI packets flowing back and forth, and parses them into human-readable form. Here's an
example dump while a device inquiry is in progress:

bash> hcidump -i hci0

HCIDump - HCI packet analyzer ver 1.11

device: hci0 snap_len: 1028 filter: 0xffffffff

 HCI Command: Inquiry (0x01|0x0001) plen 5

 HCI Event: Command Status (0x0f) plen 4
 HCI Event: Inquiry Result (0x02) plen 15

 ...

 HCI Event: Inquiry Complete (0x01) plen 1 < HCI Command:
 Remote Name Request (0x01|0x0019) plen 10

 ...

1.

The virtual HCI driver (hci_vhci.ko), as shown in Figure 16.2 , emulates a Bluetooth interface if you do
not have actual hardware.

2.

Looking at the Sources

Look inside drivers/bluetooth/ for BlueZ low-level drivers. Explore net/bluetooth/ for insights into the BlueZ
protocol implementation.

Bluetooth applications fall under different profiles based on how they behave. For example, the cordless
telephony profile specifies how a Bluetooth device can implement a cordless phone. We discussed profiles for
PAN and serial access, but there are many more profiles out there such as fax profile, General Object Exchange
Profile (GOEP) and SIM Access Profile (SAP). The bluez-utils package, downloadable from www.bluez.org ,
provides support for several Bluetooth profiles.

The official Bluetooth website is www.bluetooth.org . It contains Bluetooth specification documents and
information about the Bluetooth Special Interest Group (SIG).

Affix is an alternate Bluetooth stack on Linux. You can download Affix from http://affix.sourceforge.net/ .

Infrared

Infrared (IR) rays are optical waves lying between the visible and the microwave regions of the electromagnetic
spectrum. One use of IR is in point-to-point data communication. Using IR, you can exchange visiting cards
between PDAs, network two laptops, or dispatch a document to a printer. IR has a range of up to 1 meter within
a 30-degree cone, spreading from –15 to +15 degrees.

There are two popular flavors of IR communication: Standard IR (SIR), which supports speeds of up to 115.20
Kbaud; and Fast IR (FIR), which has a bandwidth of 4Mbps.

Figure 16.4 shows IR connection on a laptop. UART1 in the Super I/O chipset is IR-enabled, so an IR transceiver
is directly connected to it. Laptops having no IR support in their Super I/O chip may rely on an external IR
dongle (see the section "Device Example: IR Dongle") similar to the one connected to UART0. Figure 16.5 shows
IR connection on an embedded SoC having a built-in IR dongle connected to a system UART.

Figure 16.4. IrDA on a laptop.

Figure 16.5. IrDA on an embedded device (for example, EP7211).

Linux supports IR communication on two planes:

Intelligent data-transfer via protocols specified by the Infrared Data Association (IrDA). This is
implemented by the Linux-IrDA project.

1.

Controlling applications via a remote control. This is implemented by the Linux Infrared Remote Control
(LIRC) project.

2.

This section primarily explores Linux-IrDA but takes a quick look at LIRC before wrapping up.

Linux-IrDA

The Linux-IrDA project (http://irda.sourceforge.net/) brings IrDA capabilities to the kernel. To get an idea of
how Linux-IrDA components relate vis-à-vis the IrDA stack and possible hardware configurations, let's criss-
cross through Figure 16.6:

Device drivers constitute the bottom layer. SIR chipsets that are 16550-compatible can reuse the native
Linux serial driver after shaping its behavior using the IrDA line discipline, IrTTY. An alternative to this
combo is the IrPort driver. FIR chipsets have their own special drivers.

1.

Next comes the core protocol stack. This consists of the IR Link Access Protocol (IrLAP), IR Link
Management Protocol (IrLMP), Tiny Transport Protocol (TinyTP), and the IrDA socket (IrSock) interface.
IrLAP provides a reliable transport as well as the state machine to discover neighboring devices. IrLMP is a
multiplexer over IrLAP. TinyTP provides segmentation, reassembly, and flow control. IrSock offers a
socket interface over IrLMP and TinyTP.

2.

3.

http://irda.sourceforge.net/

Higher regions of the stack marry IrDA to data-transfer applications. IrLAN and IrNET enable networking,
while IrComm allows serial communication.

3.

You also need the applications that ultimately make or break the technology. An example is openobex
(http://openobex.sourceforge.net/), which implements the OBject EXchange (OBEX) protocol used to
exchange objects such as documents and visiting cards. To configure Linux-IrDA, you need the irda-utils
package that comes bundled with many distributions. This provides tools such as irattach, irdadump, and
irdaping.

4.

Figure 16.6. Communicating over Linux-IrDA.

[View full size image]

http://openobex.sourceforge.net/

Device Example: Super I/O Chip

To get a first taste of Linux-IrDA, let's get two laptops talking to each other over IR. Each laptop is IR-enabled
via National Semiconductor's NSC PC87382 Super I/O chip.[2] UART1 in Figure 16.4 shows the connection
scenario. The PC87382 chip can work in both SIR and FIR modes. We will look at each in turn.

[2] Super I/O chipsets typically support several peripherals besides IrDA, such as serial ports, parallel ports, Musical Instrument Digital

Interface (MIDI), and floppy controllers.

SIR chips offer a UART interface to the host computer. For communicating in SIR mode, attach the associated
UART port (/dev/ttyS1 in this example) of each laptop to the IrDA stack:

bash> irattach /dev/ttyS1 -s

Verify that IrDA kernel modules (irda.ko, sir_dev.ko, and irtty_sir.ko) are loaded and that the irda_sir_wq
kernel thread is running. The irda0 interface should also have made an appearance in the ifconfig output. The

-s option to irattach triggers a search for IR activity in the neighborhood. If you slide the laptops such that

their IR transceivers lie within the range cone, they will be able to spot each other:

bash> cat /proc/net/irda/discovery

nickname: localhost, hint: 0x4400, saddr: 0x55529048, daddr: 0x8fefb350

The other laptop makes a similar announcement, but with the source and destination addresses (saddr and

daddr) reversed. You may set the desired communication speed using stty on ttyS1. To set the baud rate to
19200, do this:

bash> stty speed 19200 < /dev/ttyS1

The easiest way to cull IR activity from the air is by using the debug tool, irdadump. Here's a sample dump
obtained during the preceding connection establishment, which shows the negotiated parameters:

Code View:
bash> irdadump -i irda0

...
22:05:07.831424 snrm:cmd ca=fe pf=1 6fb7ff33 > 2c0ce8b6 new-ca=40

LAP QoS: Baud Rate=19200bps Max Turn Time=500ms Data Size=2048B Window Size=7 Add
BOFS=0 Min Turn Time=5000us Link Disc=12s (32)
22:05:07.987043 ua:rsp ca=40 pf=1 6fb7ff33 < 2c0ce8b6

LAP QoS: Baud Rate=19200bps Max Turn Time=500ms Data Size=2048B Window Size=7 Add
BOFS=0 Min Turn Time=5000us Link Disc=12s (31)

...

You can also obtain debug information out of the IrDA stack by controlling the verbosity level in
/proc/sys/net/irda/debug.

To set the laptops in FIR mode, dissociate ttyS1 from the native serial driver and instead attach it to the NSC
FIR driver, nsc-ircc.ko:

bash> setserial /dev/ttyS1 uart none

bash> modprobe nsc-ircc dongle_id=0x09

bash> irattach irda0 -s

dongle_id depends on your IR hardware and can be found from your hardware documentation. As you did for

SIR, take a look at /proc/net/irda/discovery to see whether things are okay thus far. Sometimes, FIR
communication hangs at higher speeds. If irdadump shows a communication freeze, either put on your kernel
hacking hat and fix the code, or try lowering the negotiated speed by tweaking
/proc/sys/net/irda/max_baud_rate.

Note that unlike the Bluetooth physical layer that can establish one-to-many connections, IR can support only a
single connection per physical device at a time.

Device Example: IR Dongle

Dongles are IR devices that plug into serial or USB ports. Some microcontrollers (such as Cirrus Logic's EP7211
shown in Figure 16.5) that have on-chip IR controllers wired to their UARTs are also considered dongles.

Dongle drivers are a set of control methods responsible for operations such as changing the communication
speed. They have four entry points: open(), reset(), change_speed(), and close(). These entry points are

defined as part of a dongle_driver structure and are invoked from the context of the IrDA kernel thread,

irda_sir_wq. Dongle driver methods are allowed to block because they are invoked from process context with no
locks held. The IrDA core offers three helper functions to dongle drivers: sirdev_raw_write() and

sirdev_raw_read() to exchange control data with the associated UART, and sirdev_set_dtr_rts() to wiggle

modem control lines connected to the UART.

Because you're probably more likely to add kernel support for dongles than modify other parts of Linux-IrDA,
let's implement an example dongle driver. Assume that you're enabling a yet-unsupported simple serial IR
dongle that communicates only at 19200 or 57600 baud. Assume also that when the user wants to toggle the
baud rate between these two values, you have to hold the UART's Request-to-Send (RTS) pin low for 50
microseconds and pull it back high for 25 microseconds. Listing 16.2 implements a dongle driver for this device.

Listing 16.2. An Example Dongle Driver

Code View:
#include <linux/delay.h>

#include <net/irda/irda.h>

#include "sir-dev.h" /* Assume that this sample driver lives in

 drivers/net/irda/ */

/* Open Method. This is invoked when an irattach is issued on the

 associated UART */

static int

mydongle_open(struct sir_dev *dev)

{

 struct qos_info *qos = &dev->qos;

 /* Power the dongle by setting modem control lines, DTR/RTS. */

 sirdev_set_dtr_rts(dev, TRUE, TRUE);

 /* Speeds that mydongle can accept */

 qos->baud_rate.bits &= IR_19200|IR_57600;

 irda_qos_bits_to_value(qos); /* Set QoS */

 return 0;

}

/* Change baud rate */

static int

mydongle_change_speed(struct sir_dev *dev, unsigned speed)

{

 if ((speed == 19200) || (speed = 57600)){

 /* Toggle the speed by pulsing RTS low

 for 50 us and back high for 25 us */

 sirdev_set_dtr_rts(dev, TRUE, FALSE);

 udelay(50);

 sirdev_set_dtr_rts(dev, TRUE, TRUE);

 udelay(25);

 return 0;

 } else {

 return -EINVAL;

 }

}

/* Reset */

static int

mydongle_reset(struct sir_dev *dev)

{

 /* Reset the dongle as per the spec, for example,

 by pulling DTR low for 50 us */

 sirdev_set_dtr_rts(dev, FALSE, TRUE);

 udelay(50);

 sirdev_set_dtr_rts(dev, TRUE, TRUE);

 dev->speed = 19200; /* Reset speed is 19200 baud */

 return 0;

}

/* Close */

static int

mydongle_close(struct sir_dev *dev)

{

 /* Power off the dongle as per the spec,

 for example, by pulling DTR and RTS low.. */

 sirdev_set_dtr_rts(dev, FALSE, FALSE);

 return 0;

}

/* Dongle Driver Methods */

static struct dongle_driver mydongle = {

 .owner = THIS_MODULE,

 .type = MY_DONGLE, /* Add this to the enumeration

 in include/linux/irda.h */

 .open = mydongle_open, /* Open */

 .reset = mydongle_reset, /* Reset */

 .set_speed = mydongle_change_speed, /* Change Speed */

 .close = mydongle_close, /* Close */

};

/* Initialize */

static int __init

mydongle_init(void)

{

 /* Register the entry points */

 return irda_register_dongle(&mydongle);

}

/* Release */

static void __exit

mydongle_cleanup(void)

{

 /* Unregister entry points */

 irda_unregister_dongle(&mydongle);

}

module_init(mydongle_init);

module_exit(mydongle_cleanup);

For real-life examples, look at drivers/net/irda/tekram.c and drivers/net/irda/ep7211_ir.c.

Now that you have the physical layer running, let's venture to look at IrDA protocols.

IrComm

IrComm emulates serial ports. Applications such as terminal emulators and protocols such as PPP can run
unchanged over the virtual serial interfaces created by IrComm. IrComm is implemented by two related
modules, ircomm.ko and ircomm_tty.ko. The former provides core protocol support, while the latter creates and
manages the emulated serial port nodes /dev/ircommX.

Networking

There are three ways to get TCP/IP applications running over IrDA:

Asynchronous PPP over IrComm1.

Synchronous PPP over IrNET2.

Ethernet emulation with IrLAN3.

Networking over IrComm is equivalent to running asynchronous PPP over a serial port, so there is nothing out of
the ordinary in this scenario.

Asynchronous PPP needs to mark the start and end of frames using techniques such as byte stuffing, but if PPP
is running over data links such as Ethernet, it need not be burdened with the overhead of a framing protocol.
This is called synchronous PPP and is used to configure networking over IrNET.[3] Passage through the PPP layer
provides features such as on-demand IP address configuration, compression, and authentication.

[3] For a scholarly discussion on networking over IrNET, read www.hpl.hp.com/personal/Jean_Tourrilhes/Papers/IrNET.Demand.html.

To start IrNET, insert irnet.ko. This also creates the character device node /dev/irnet, which is a control channel
over which you can attach the PPP daemon:

bash> pppd /dev/irnet 9600 noauth a.b.c.d:a.b.c.e

This yields the pppX network interfaces at either ends with the respective IP addresses set to a.b.c.d and

a.b.c.e. The interfaces can now beam TCP/IP packets.

IrLAN provides raw Ethernet emulation over IrDA. To network your laptops using IrLAN, do the following at both
ends:

Insert irlan.ko. This creates the network interface, irlanX, where X is the assigned interface number.

Configure the irlanX interfaces. To set the IP address, do this:

bash> ifconfig irlanX a.b.c.d

Or automate it by adding the following line to /etc/sysconfig/network-scripts/-ifcfg-irlan0:[4]

[4] The location of this file is distribution-dependent.

DEVICE=irlanX IPADDR=a.b.c.d

You can now telnet between the laptops over the irlanX interfaces.

IrDA Sockets

To develop custom applications over IrDA, use the IrSock interface. To create a socket over TinyTP, do this:

int fd = socket(AF_IRDA, SOCK_STREAM, 0);

For a datagram socket over IrLMP, do this:

int fd = socket(AF_IRDA, SOCK_DGRAM, 0);

Look at the irsockets/ directory in the irda-utils package for code examples.

Linux Infrared Remote Control

The goal of the LIRC project is to let you control your Linux computer via a remote. For example, you can use
LIRC to control applications that play MP3 music or DVD movies via buttons on your remote. LIRC is architected
into

A base LIRC module called lirc_dev.1.

A hardware-specific physical layer driver. IR hardware that interface via serial ports use lirc_serial. To
allow lirc_serial to do its job without interference from the kernel serial driver, dissociate the latter as you
did earlier for FIR:

bash> setserial /dev/ttySX uart none

You may have to replace lirc_serial with a more suitable low-level LIRC driver depending on your IR
device.

2.

A user mode daemon called lircd that runs over the low-level LIRC driver. Lircd decodes signals arriving
from the remote and is the centerpiece of LIRC. Support for many remotes are implemented in the form of
user-space drivers that are part of lircd. Lircd exports a UNIX-domain socket interface /dev/lircd to higher
applications. Connecting to lircd via /dev/lircd is the key to writing LIRC-aware applications.

3.

An LIRC mouse daemon called lircmd that runs on top of lircd. Lircmd converts messages from lircd to
mouse events. These events can be read from a named pipe /dev/lircm and input to programs such as
gpm or X Windows.

4.

5.

4.

Tools such as irrecord and irsend. The former records signals received from your remote and helps you
generate IR configuration files for a new remote. The latter streams IR commands from your Linux
machine.

5.

Visit the LIRC home page hosted at www.lirc.org to download all these and to obtain insights on its design and
usage.

IR Char Drivers

If your embedded device requires only simple Infrared receive capabilities, it might be using a
miniaturized IR receiver (such as the TSOP1730 chip from Vishay Semiconductors). An example
application device is an IR locator installed in hospital rooms to read data emitted by IR badges
worn by nurses. In this scenario, the IrDA stack is not relevant because of the absence of IrDA
protocol interactions. It may also be an overkill to port LIRC to the locator if it's using a lean
proprietary protocol to parse received data. An easy solution might be to implement a tiny read-
only char or misc driver that exports raw IR data to a suitable application via /dev or /sys
interfaces.

Looking at the Sources

Look inside drivers/net/irda/ for IrDA low-level drivers, net/irda/ for the protocol implementation, and
include/net/irda/ for the header files. Experiment with proc/sys/net/irda/* to tune the IrDA stack and explore
/proc/net/irda/* for state information pertaining to different IrDA layers.

Table 16.3 contains the main data structures used in this section and their location in the source tree. Table
16.4 lists the main kernel programming interfaces that you used in this section along with the location of their
definitions.

Table 16.3. Summary of Data Structures

Data Structure Location Description

dongle_driver drivers/net/irda/sir-dev.h Dongle driver entry points

sir_dev drivers/net/irda/sir-dev.h Representation of an SIR device

qos_info include/net/irda/qos.h Quality-of-Service information

Table 16.4. Summary of Kernel Programming Interfaces

Kernel Interface Location Description

irda_register_dongle() drivers/net/irda/sir_dongle.c Registers a dongle driver

irda_unregister_dongle() drivers/net/irda/sir_dongle.c Unregisters a dongle driver

sirdev_set_dtr_rts() drivers/net/irda/sir_dev.c Wiggles modem control lines on
the serial port attached to the IR
device

sirdev_raw_write() drivers/net/irda/sir_dev.c Writes to the serial port
attached to the IR device

Kernel Interface Location Description

sirdev_raw_read() drivers/net/irda/sir_dev.c Reads from the serial port
attached to the IR device

sirdev_raw_read() drivers/net/irda/sir_dev.c Reads from the serial port
attached to the IR device

WiFi

WiFi, or wireless local-area network (WLAN), is an alternative to wired LAN and is generally used within a
campus. The IEEE 802.11a WLAN standard uses the 5GHz ISM (Industrial, Scientific, Medical) band and
supports speeds of up to 54Mbps. The 802.11b and the 802.11g standards use the 2.4GHz band and support
speeds of 11Mbps and 54Mbps, respectively.

WLAN resembles wired Ethernet in that both are assigned MAC addresses from the same address pool and both
appear to the operating system as regular network interfaces. For example, Address Resolution Protocol (ARP)
tables contain WLAN MAC addresses alongside Ethernet MAC addresses.

WLAN and wired Ethernet differ significantly at the link layer, however:

The 802.11 WLAN standard uses collision avoidance (CSMA/CA) rather than collision detection (CSMA/CD)
used by wired Ethernet.

WLAN frames, unlike Ethernet frames, are acknowledged.

Due to security issues inherent in wireless networking, WLAN uses an encryption mechanism called Wired
Equivalent Privacy (WEP) to provide a level of security equivalent to wired Ethernet. WEP combines a 40-
bit or a 104-bit key with a random 24-bit initialization vector to encrypt and decrypt data.

WLAN supports two communication modes:

Ad-hoc mode, where a small group of nearby stations directly communicate without using an access point.1.

Infrastructure mode, where data exchanges pass via an access point. Access points periodically broadcast
a service set identifier (SSID or ESSID) that identifies one WLAN network from another.

2.

Let's find out how Linux supports WLAN.

Configuration

The Wireless Extensions project defines a generic Linux API to configure WLAN device drivers in a device-
independent manner. It also provides a set of common tools to set and access information from WLAN drivers.
Individual drivers implement support for Wireless Extensions to connect themselves with the common interface
and, hence, with the tools.

With Wireless Extensions, there are primarily three ways to talk to WLAN drivers:

Standard operations using the iwconfig utility. To glue your driver to iwconfig, you need to implement
prescribed functions corresponding to commands that set parameters such as ESSID and WEP keys.

1.

2.

1.

Special-purpose operations using iwpriv. To use iwpriv over your driver, define private ioctls relevant to
your hardware and implement the corresponding handler functions.

2.

WiFi-specific statistics through /proc/net/wireless. For this, implement the get_wireless_stats() method

in your driver. This is in addition to the get_stats() method implemented by NIC drivers for generic

statistics collection as described in the section "Statistics" in Chapter 15, "Network Interface Cards."

3.

WLAN drivers tie these three pieces of information inside a structure called iw_handler_def, defined in

include/net/iw_handler.h. The address of this structure is supplied to the kernel via the device's net_device

structure (discussed in Chapter 15) during initialization. Listing 16.3 shows a skeletal WLAN driver implementing
support for Wireless Extensions. The comments in the listing explain the associated code.

Listing 16.3. Supporting Wireless Extensions

Code View:
#include <net/iw_handler.h>

#include <linux/wireless.h>

/* Populate the iw_handler_def structure with the location and number

 of standard and private handlers, argument details of private

 handlers, and location of get_wireless_stats() */

static struct iw_handler_def mywifi_handler_def = {

 .standard = mywifi_std_handlers,

 .num_standard = sizeof(mywifi_std_handlers) /

 sizeof(iw_handler),

 .private = (iw_handler *) mywifi_pvt_handlers,

 .num_private = sizeof(mywifi_pvt_handlers) /

 sizeof(iw_handler),

 .private_args = (struct iw_priv_args *)mywifi_pvt_args,

 .num_private_args = sizeof(mywifi_pvt_args) /

 sizeof(struct iw_priv_args),

 .get_wireless_stats = mywifi_stats,

};

/* Handlers corresponding to iwconfig */

static iw_handler mywifi_std_handlers[] = {

 NULL, /* SIOCSIWCOMMIT */

 mywifi_get_name, /* SIOCGIWNAME */

 NULL, /* SIOCSIWNWID */

 NULL, /* SIOCGIWNWID */

 mywifi_set_freq, /* SIOCSIWFREQ */

 mywifi_get_freq, /* SIOCGIWFREQ */

 mywifi_set_mode, /* SIOCSIWMODE */

 mywifi_get_mode, /* SIOCGIWMODE */

 /* ... */

};

#define MYWIFI_MYPARAMETER SIOCIWFIRSTPRIV

/* Handlers corresponding to iwpriv */

static iw_handler mywifi_pvt_handlers[] = {

 mywifi_set_myparameter,

 /* ... */

};

/* Argument description of private handlers */

static const struct iw_priv_args mywifi_pvt_args[] = {

 { MYWIFI_MYPARAMATER,

 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "myparam"},

}

struct iw_statistics mywifi_stats; /* WLAN Statistics */

/* Method to set operational frequency supplied via mywifi_std_handlers. Similarly

implement the rest of the methods */

mywifi_set_freq()

{

 /* Set frequency as specified in the data sheet */

 /* ... */

}

/* Called when you read /proc/net/wireless */

static struct iw_statistics *

mywifi_stats(struct net_device *dev)

{

 /* Fill the fields in mywifi_stats */

 /* ... */

 return(&mywifi_stats);

}

/*Device initialization. For PCI-based cards, this is called from the

 probe() method. Revisit init_mycard() in Listing 15.1 in Chapter 15

 for a full discussion */

static int

init_mywifi_card()

{

 struct net_device *netdev;

 /* Allocate WiFi network device. Internally calls

 alloc_etherdev() */

 netdev = alloc_ieee80211(sizeof(struct mywifi_priv));

 /* ... */

 /* Register Wireless Extensions support */

 netdev->wireless_handlers = &mywifi_handler_def;

 /* ... */

 register_netdev(netdev);

}

With Wireless Extensions support compiled in, you can use iwconfig to configure the ESSID and the WEP key,
peek at supported private commands, and dump network statistics:

bash> iwconfig eth1 essid blue key 1234-5678-9012-3456-7890-1234-56

bash> iwconfig eth1

eth1 IEEE 802.11b ESSID:"blue" Nickname:"ipw2100"

 Mode:Managed Frequency:2.437 GHz Access Point: 00:40:96:5E:07:2E
 ...

 Encryption key:1234-5678-9012-3456-7890-1234-56

 Security mode:open

 ...
bash> dhcpcd eth1

bash> ifconfig

eth1 Link encap:Ethernet Hwaddr 00:13:E8:02:EE:18

 inet addr:192.168.0.41 Bcasr:192.168.0.255

 Mask:255.255.255.0

 ...
bash> iwpriv eth1

eth1 Available private ioctls:

 myparam (8BE2): set 2 int & get 0

bash> cat /proc/net/wireless

Inter-| sta-| Quality | Discarded packets | Missed | WE

 face | tus |link level noise|nwid crypt frag retry misc| beacon | 19
 eth1: 0004 100. 207. 0. 0 0 0 2 1 0

Local iwconfig parameters such as the ESSID and WEP key should match the configuration at the access point.

There is another project called cfg80211 having similar goals as Wireless Extensions. This has been merged into
the mainline kernel starting with the 2.6.22 kernel release.

Device Drivers

There are hundreds of WLAN original equipment manufacturers (OEMs) in the market, and cards come in
several form factors such as PCI, Mini PCI, CardBus, PCMCIA, Compact Flash, USB, and SDIO (see the sidebar
"WiFi over SDIO") . However, the number of controller chips that lie at the heart of these devices, and hence the
number of Linux device drivers, are relatively less in number. The Intersil Prism chipset, Lucent Hermes chipset,
Atheros chipset, and Intel Pro/Wireless are among the popular WLAN controllers. The following are example
devices built using these controllers:

Intersil Prism2 WLAN Compact Flash Card— The Orinoco WLAN driver, part of the kernel source tree,
supports both Prism-based and Hermes-based cards. Look at orinoco.c and hermes.c in
drivers/net/wireless/ for the sources. orinoco_cs provides PCMCIA/CF Card Services support.

The Cisco Aironet CardBus adapter— This card uses an Atheros chipset. The Madwifi project
(http://madwifi.org/) offers a Linux driver that works on hardware built using Atheros controllers. The
Madwifi source base is not part of the kernel source tree primarily due to licensing issues. One of the
modules of the Madwifi driver called Hardware Access Layer (HAL) is closed source. This is because the
Atheros chip is capable of operating at frequencies that are outside permissible ISM bands and can work at
various power levels. The U.S. Federal Communications Commission (FCC) mandates that such settings
should not be easily changeable by users. Part of HAL is distributed as binary-only to comply with FCC
regulations. This binary-only portion is independent of the kernel version.

Intel Pro/Wireless Mini PCI (and PCIe Mini) cards embedded on many laptops— The kernel
source tree contains drivers for these cards. The drivers for the 2100 and 2200 BG series cards are
drivers/net/wireless/ipw2100.c and drivers/net/wireless/ipw2200.c, respectively. These devices need on-
card firmware to work. You can download the firmware from http://ipw2100.sourceforge.net/ or
http://ipw2200.sourceforge.net/ depending on whether you have a 2100 or a 2200. The section
"Microcode Download" in Chapter 4, "Laying the Groundwork," described the steps needed to download

http://madwifi.org/
http://ipw2100.sourceforge.net/
http://ipw2200.sourceforge.net/

firmware on to these cards. Intel's distribution terms for the firmware are restrictive.

WLAN USB devices— The Atmel USB WLAN driver (http://atmelwlandriver.sourceforge.net/) supports
USB WLAN devices built using Atmel chipsets.

The WLAN driver's task is to let your card appear as a normal network interface. Driver implementations are
generally split into the following parts:

The interface that communicates with the Linux networking stack— We discussed this in detail in
the section "The Net Device Interface" in Chapter 15. You can use Listing 15.1 in that chapter as a
template to implement this portion of your WLAN driver.

1.

Form factor–specific code— If your card is a PCI card, it has to be architected to conform to the kernel
PCI subsystem as described in Chapter 10, "Peripheral Component Interconnect." Similarly, PCMCIA and
USB cards have to tie in with their respective core layers.

2.

Chipset specific part— This is the cornerstone of the WLAN driver and is based on register specifications
in the chip's data sheet. Many companies do not release adequate documentation for writing open source
device drivers, however, so this portion of some Linux WLAN drivers is at least partly based on reverse-
engineering.

3.

Support for Wireless Extensions— Listing 16.3, shown earlier, implements an example.4.

Hardware-independent portions of the 802.11 stack are reusable across drivers, so they are implemented as a
collection of common library functions in the net/ieee80211/ directory. ieee80211 is the core protocol module,
but if you want to configure WEP keys via the iwconfig command, you have to load ieee80211_crypt and
ieee80211_crypt_wep, too. To generate debugging output from the 802.11 stack, enable
CONFIG_IEEE80211_DEBUG while configuring your kernel. You can use /proc/net/ieee80211/debug_level as a
knob to fine-tune the type of debug messages that you want to see. Starting with the 2.6.22 release, the kernel
has an alternate 802.11 stack (net/mac80211/) donated by a company called Devicescape. WiFi device drivers
may migrate to this new stack in the future.

WiFi over SDIO

Like PCMCIA cards whose functionality has extended from storage to various other technologies,
SD cards are no longer confined to the consumer electronics memory space. The Secure Digital
Input/Output (SDIO) standard brings technologies such as WiFi, Bluetooth, and GPS to the SD
realm. The Linux-SDIO project hosted at http://sourceforge.net/projects/sdio-linux/ offers drivers
for several SDIO cards.

Go to www.sdcard.org to browse the SD Card Association's website. The latest standards adopted
by the association are microSD and miniSD, which are miniature form factor versions of the SD
card.

Looking at the Sources

http://atmelwlandriver.sourceforge.net/
http://sourceforge.net/projects/sdio-linux/

WiFi device drivers live in drivers/net/wireless/. Look inside net/wireless/ for the implementations of Wireless
Extensions and the new cfg80211 configuration interface. The two Linux 802.11 stacks live under
net/ieee80211/ and net/mac80211/, respectively.

Cellular Networking

Global System for Mobile Communications (GSM) is a prominent digital cellular standard. GSM networks are
called 2G or second-generation networks. GPRS represents the evolution from 2G to 2.5G. Unlike 2G networks,
2.5G networks are "always on." Compared to GSM's 9.6Kbps throughput, GPRS supports theoretical speeds of
up to 170Kbps. 2.5G GPRS has given way to 3G networks based on technologies such as CDMA that offer higher
speeds.

In this section, let's look at GPRS and CDMA.

GPRS

Because GPRS chips are cellular modems, they present a UART interface to the system and usually don't require
specialized Linux drivers. Here's how Linux supports common GPRS hardware:

For a system with built-in GPRS support, say, a board having a Siemens MC-45 module wired to the
microcontroller's UART channel, the conventional Linux serial driver can drive the link.

1.

For a PCMCIA/CF GPRS device such as an Options GPRS card, serial_cs, the generic serial Card Services
driver allows the rest of the operating system to see the card as a serial device. The first unused serial
device (/dev/ttySX) gets allotted to the card. Look at Figure 9.5 in Chapter 9, for an illustration.

2.

For USB GPRS modems, a USB-to-serial converter typically converts the USB port to a virtual serial port.
The usbserial driver lets the rest of the system see the USB modem as a serial device (/dev/ttyUSBX). The
section "USB-Serial" in Chapter 11 discussed USB-to-serial converters.

3.

The above driver descriptions also hold for driving Global Positioning System (GPS) receivers and networking
over GSM.

After the serial link is up, you may establish a network connection via AT commands, a standard language to

talk to modems. Cellular devices support an extended AT command set. The exact command sequence depends
on the particular cellular technology in use. Consider for example, the AT string to connect over GPRS. Before

entering data mode and connecting to an external network via a gateway GPRS support node (GGSN), a GPRS
device must define a context using an AT command. Here's an example context string:

'AT+CGDCONT=1,"IP","internet1.voicestream.com","0.0.0.0",0,0'

where 1 stands for a context number, IP is the packet type, internet1.-voicestream.com is an access point

name (APN) specific to the service provider, and 0.0.0.0 asks the service provider to choose the IP address.
The last two parameters pertain to data and header compression. A username and password are usually not
needed.

As you saw in Chapter 9, PPP is used as the vehicle to carry TCP/IP payload over GPRS. A common syntax for
invoking the PPP daemon, pppd, is this:

bash> pppd ttySX call connection-script

where ttySX is the serial port over which PPP runs, and connection-script is a file in /etc/ppp/peers/[5] that

contains the AT command sequence to establish the link. After establishing connection and completing

authentication, PPP starts a Network Control Protocol (NCP) such as Internet Protocol Control Protocol (IPCP).
When IPCP successfully negotiates IP addresses, PPP starts talking with the TCP/IP stack.

[5] The path name might vary depending on the distribution you use.

Here is an example PPP connection script (/etc/ppp/peer/gprs-seq) for connecting to a GPRS service provider at
57600 baud. For the semantics of all constituent lines in the script, refer to the man pages of pppd:

57600
connect "/usr/sbin/chat -s -v "" AT+CGDCONT=1,"IP",

"internet2.voicestream.com","0.0.0.0",0,0 OK AT+CGDATA="PPP",1"

crtscts
noipdefault

modem

usepeerdns
defaultroute

connect-delay 3000

CDMA

For performance reasons, many CDMA PC Cards have an internal USB controller through which a CDMA modem
is connected. When such cards are inserted, the system sees one or more new PCI-to-USB bridges on the PCI
bus. Let's take the example of a Huawei CDMA CardBus card. Look at the additional entries in the lspci output
after inserting this card into the CardBus slot of a laptop:

Code View:
bash> lspci -v

...
07:00:0 USB Controller: NEC Corporation USB (rev 43) (prog-if 10 [OHCI])
07:00:1 USB Controller: NEC Corporation USB (rev 43) (prog-if 10 [OHCI])

07:00:2 USB Controller: NEC Corporation USB 2.0 (rev 04) (prog-if 20 [EHCI])

These are standard OHCI and EHCI controllers, so the host controller drivers on Linux seamlessly talk to them.
If a CDMA card, however, uses a host controller unsupported by the kernel, you will have the unenviable task of
writing a new USB host controller driver. Let's take a closer look at the new USB buses in the above lspci output
and see whether we can find any devices connected to them:

Code View:
bash> cat /proc/bus/usb/devices

T: Bus=07 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=480 MxCh= 2

B: Alloc= 0/800 us (0%), #Int= 0, #Iso= 0
D: Ver= 2.00 Cls=09(hub) Sub=00 Prot=01 MxPS=64 #Cfgs= 1

...

T: Bus=06 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 1

B: Alloc= 0/900 us (0%), #Int= 0, #Iso= 0

D: Ver= 1.10 Cls=09(hub) Sub=00 Prot=00 MxPS=64 #Cfgs= 1
...

T: Bus=05 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 1

B: Alloc= 0/900 us (0%), #Int= 1, #Iso= 0

D: Ver= 1.10 Cls=09(hub) Sub=00 Prot=00 MxPS=64 #Cfgs= 1

...

T: Bus=05 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 3 Spd=12 MxCh= 0

D: Ver= 1.01 Cls=00(>ifc) Sub=00 Prot=00 MxPS=16 #Cfgs= 1
P: Vendor=12d1 ProdID=1001 Rev= 0.00

S: Manufacturer=Huawei Technologies
S: Product=Huawei Mobile

C:* #Ifs= 2 Cfg#= 1 Atr=e0 MxPwr=100mA

I: If#= 0 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=ff Prot=ff Driver=pl2303

E: Ad=81(I) Atr=03(Int.) MxPS= 16 Ivl=128ms

E: Ad=8a(I) Atr=02(Bulk) MxPS= 64 Ivl=0ms
E: Ad=0b(O) Atr=02(Bulk) MxPS= 64 Ivl=0ms

I: If#= 1 Alt= 0 #EPs= 2 Cls=ff(vend.) Sub=ff Prot=ff Driver=pl2303

E: Ad=83(I) Atr=02(Bulk) MxPS= 64 Ivl=0ms

E: Ad=06(O) Atr=02(Bulk) MxPS= 64 Ivl=0ms

...

The top three entries (bus7, bus6, and bus5) correspond to the three host controllers present in the CDMA card.
The last entry shows that a full-speed (12Mbps) USB device is connected to bus 5. This device has a vendorID

of 0x12d1 and a productID of 0x1001. As is evident from the preceding output, the USB core has bound this
device to the pl2303 driver. If you look at the source file of the PL2303 Prolific USB-to-serial adapter driver
(drivers/usb/serial/pl2303.c), you will find the following member in the usb_device_id table:

static struct usb_device_id id_table [] = {
 /* ... */

 {USB_DEVICE(HUAWEI_VENDOR_ID, HUAWEI_PRODUCT_ID)},
 /* ... */
};

A quick peek at pl2303.h living in the same directory confirms that HUAWEI_VENDOR_ID and HUAWEI_PRODUCT_ID
match the values that you just gleaned from /proc/bus/usb/devices. The pl2303 driver presents a serial
interface, /dev/ttyUSB0, over the detected USB-to-serial converter. You can send AT commands to the CDMA
modem over this interface. Attach pppd over this device and connect to the net. You are now a 3G surfer!

Current Trends

At one end of today's on-the-move connectivity spectrum, there are standards that allow coupling between
cellular networks and WiFi to provide cheaper networking solutions. At the other end, technologies such as
Bluetooth and Infrared are being integrated into GPRS cell phones to bridge consumer electronics devices with
the Internet. Figure 16.7 shows a sample scenario.

Figure 16.7. Coupling between wireless technologies.

[View full size image]

In tandem with the coupling of existing standards and technologies, there is a steady stream of new
communication standards arriving in the wireless space.

Zigbee (www.zigbee.org) adopts the new 802.15.4 standard for wireless networking in the embedded space
that is characterized by low range, speed, energy consumption, and code footprint. It primarily targets home
and industrial automation. Of the wireless protocols discussed in this chapter, Zigbee is closest to Bluetooth but
is considered complementary rather than competitive with it.

WiMax (Worldwide interoperability for Microwave access), based on the IEEE 802.16 standard, is a
metropolitan-area network (MAN) flavor of WiFi that has a range of several kilometers. It supports fixed
connectivity for homes and offices, and a mobile version for networking on the go. WiMax is a cost-effective way
to solve the last-mile connectivity problem (which is analogous to the task of reaching your home from the
nearest metro rail station) and create broadband clouds that span large areas. The WiMax forum is hosted at
www.wimaxforum.org.

MIMO (Multiple In Multiple Out) is a new multiple-antenna technology utilized by WiFi and WiMax products to
enhance their speed, range, and connectivity.

Working groups are developing new standards that fall under the ambit of fourth-generation or 4G networking.
4G will signal the convergence of several communication technologies.

Some of the new communication technologies are transparent to the operating system and work unchanged
with existing drivers and protocol stacks. Others such as Zigbee need new drivers and protocol stacks but do
not have accepted open source implementations yet. Linux mirrors the state of the art, so look out for support
for these new standards in future kernel releases.

Chapter 17. Memory Technology Devices

In This Chapter

What's Flash Memory?

504

Linux-MTD Subsystem

505

Map Drivers

506

NOR Chip Drivers
511

NAND Chip Drivers

513

User Modules
516

MTD-Utils

518

Configuring MTD
519

eXecute In Place
520

The Firmware Hub

520

Debugging

524

Looking at the Sources
524

When you push the power switch on your handheld, it's more than likely that it boots from flash
memory. When you click some buttons to save data on your cell phone, in all probability, your
data starts life in flash memory. Today, Linux has penetrated the embedded space and is no
longer confined to desktops and servers. Linux avatars manifest in PDAs, music players, set-top
boxes, and even medical-grade devices. The Memory Technology Devices (MTD) subsystem of the
kernel is responsible for interfacing your system with various flavors of flash memory found in
these devices. In this chapter, let's use the example of a Linux handheld to learn about MTD.

What's Flash Memory?

Flash memory is rewritable storage that does not need power supply to hold information. Flash memory banks
are usually organized into sectors. Unlike conventional storage, writes to flash addresses have to be preceded
by an erase of the corresponding locations. Moreover, erases of portions of flash can be performed only at the
granularity of individual sectors. Because of these constraints, flash memory is best used with device drivers
and filesystems that are tailored to suit them. On Linux, such specially designed drivers and filesystems are
provided by the MTD subsystem.

Flash memory chips generally come in two flavors: NOR and NAND. NOR is the variety used to store firmware
images on embedded devices, whereas NAND is used for large, dense, cheap, but imperfect[1] storage as
required by solid-state mass storage media such as USB pen drives and Disk-On-Modules (DOMs). NOR flash
chips are connected to the processor via address and data lines like normal RAM, but NAND flash chips are
interfaced using I/O and control lines. So, code resident on NOR flash can be executed in place, but that stored
on NAND flash has to be copied to RAM before execution.

[1] It's normal to have bad blocks scattered across NAND flash regions as you will learn in the section, "NAND Chip Drivers."

Chapter 17. Memory Technology Devices

In This Chapter

What's Flash Memory?

504

Linux-MTD Subsystem

505

Map Drivers

506

NOR Chip Drivers
511

NAND Chip Drivers

513

User Modules
516

MTD-Utils

518

Configuring MTD
519

eXecute In Place
520

The Firmware Hub

520

Debugging

524

Looking at the Sources
524

When you push the power switch on your handheld, it's more than likely that it boots from flash
memory. When you click some buttons to save data on your cell phone, in all probability, your
data starts life in flash memory. Today, Linux has penetrated the embedded space and is no
longer confined to desktops and servers. Linux avatars manifest in PDAs, music players, set-top
boxes, and even medical-grade devices. The Memory Technology Devices (MTD) subsystem of the
kernel is responsible for interfacing your system with various flavors of flash memory found in
these devices. In this chapter, let's use the example of a Linux handheld to learn about MTD.

What's Flash Memory?

Flash memory is rewritable storage that does not need power supply to hold information. Flash memory banks
are usually organized into sectors. Unlike conventional storage, writes to flash addresses have to be preceded
by an erase of the corresponding locations. Moreover, erases of portions of flash can be performed only at the
granularity of individual sectors. Because of these constraints, flash memory is best used with device drivers
and filesystems that are tailored to suit them. On Linux, such specially designed drivers and filesystems are
provided by the MTD subsystem.

Flash memory chips generally come in two flavors: NOR and NAND. NOR is the variety used to store firmware
images on embedded devices, whereas NAND is used for large, dense, cheap, but imperfect[1] storage as
required by solid-state mass storage media such as USB pen drives and Disk-On-Modules (DOMs). NOR flash
chips are connected to the processor via address and data lines like normal RAM, but NAND flash chips are
interfaced using I/O and control lines. So, code resident on NOR flash can be executed in place, but that stored
on NAND flash has to be copied to RAM before execution.

[1] It's normal to have bad blocks scattered across NAND flash regions as you will learn in the section, "NAND Chip Drivers."

Linux-MTD Subsystem

The kernel's MTD subsystem shown in Figure 17.1 provides support for flash and similar nonvolatile solid-state
storage. It consists of the following:

The MTD core, which is an infrastructure consisting of library routines and data structures used by the rest
of the MTD subsystem

Map drivers that decide what the processor ought to do when it receives requests for accessing the flash

NOR Chip drivers that know about commands required to talk to NOR flash chips

NAND Chip drivers that implement low-level support for NAND flash controllers

User Modules, the layer that interacts with user-space programs

Individual device drivers for some special flash chips

Figure 17.1. The Linux-MTD subsystem.

[View full size image]

Map Drivers

To MTD-enable your device, your first task is to tell MTD how to access the flash device. For this, you have to
map your flash memory range for CPU access and provide methods to operate on the flash. The next task is to
inform MTD about the different storage partitions residing on your flash. Unlike hard disks on PC-compatible
systems, flash-based storage does not contain a standard partition table on the media. Because of this, disk-
partitioning tools such as fdisk and cfdisk[2] cannot be used to partition flash devices. Instead, partitioning
information has to be implemented as part of kernel code.[3] These tasks are accomplished with the help of an
MTD map driver.

[2] Fdisk and cfdisk are used to manipulate the partition table residing in the first hard disk sector on PC systems.

[3] You may also pass partitioning information to MTD via the kernel command line argument mtdpart=, if you enable

CONFIG_MTD_CMDLINE_PARTS during kernel configuration. Look at drivers/mtd/cmdlinepart.c for the usage syntax.

To better understand the function of map drivers, let's look at an example.

Device Example: Handheld

Consider the Linux handheld shown in Figure 17.2. The flash has a size of 32MB and is mapped to 0xC0000000

in the processor's address space. It contains three partitions, one each for the bootloader, the kernel, and the
root filesystem. The bootloader partition starts from the top of the flash, the kernel partition begins at offset
MY_KERNEL_START, and the root filesystem starts at offset MY_FS_START.[4] The bootloader and the kernel reside
on read-only partitions to avoid unexpected damage, while the filesystem partition is flagged read-write.

[4] Some devices have additional partitions for bootloader parameters, extra filesystems, and recovery kernels.

Figure 17.2. Flash Memory on a sample Linux handheld.

[View full size image]

Let's first create the flash map and then proceed with the driver initialization. The map driver has to translate

the flash layout shown in the figure to an mtd_partition structure. Listing 17.1 contains the mtd_partition

definition corresponding to Figure 17.2. Note that the mask_flags field holds the permissions to be masked, so

MTD_WRITEABLE implies a read-only partition.

Listing 17.1. Creating an MTD Partition Map

Code View:
#define FLASH_START 0x00000000

#define MY_KERNEL_START 0x00080000 /* 512K for bootloader */

#define MY_FS_START 0x00280000 /* 2MB for kernel */

#define FLASH_END 0x02000000 /* 32MB */

static struct mtd_partition pda_partitions[] = {

 {

 .name = "pda_btldr", /* This string is used by

 /proc/mtd to identify

 the bootloader partition */

 .size: = (MY_KERNEL_START-FLASH_START),

 .offset = FLASH_START, /* Start from top of flash */

 .mask_flags = MTD_WRITEABLE /* Read-only partition */

 },

 {

 .name = "pda_krnl", /* Kernel partition */

 .size: = (MY_FS_START-MY_KERNEL_START),

 .offset = MTDPART_OFS_APPEND, /* Start immediately after

 the bootloader partition */

 .mask_flags = MTD_WRITEABLE /* Read-only partition */

 },

 {

 .name: = "pda_fs", /* Filesystem partition */

 .size: = MTDPART_SIZ_FULL, /* Use up the rest of the

 flash */

 .offset = MTDPART_OFS_NEXTBLK,/* Align this partition with

 the erase size */

 }

};

Listing 17.1 uses MTDPART_OFS_APPEND to start a partition adjacent to the previous one. The start addresses of
writeable partitions, however, need to be aligned with the erase/sector size of the flash chip. To achieve this,
the filesystem partition uses MTD_OFS_NEXTBLK rather than MTD_OFS_APPEND.

Now that you have populated the mtd_partition structure, let's proceed and complete a basic map driver for
the example handheld. Listing 17.2 registers the map driver with the MTD core. It's implemented as a platform
driver, assuming that your architecture-specific code registers an associated platform device having the same
name. Rewind to the section "Device Example: Cell Phone" in Chapter 6, "Serial Drivers," for a discussion on
platform devices and platform drivers. The platform_device is defined by the associated architecture-specific

code as follows:

struct resource pda_flash_resource = { /* Used by Listing 17.3 */

 .start = 0xC0000000, /* Physical start of the
 flash in Figure 17.2 */

 .end = 0xC0000000+0x02000000-1, /* Physical end of flash */

 .flags = IORESOURCE_MEM, /* Memory resource */

};
struct platform_device pda_platform_device = {

 .name = "pda", /* Platform device name */

 .id = 0, /* Instance number */

 /* ... */
 .resource = &pda_flash_resource, /* See above */

};

platform_device_register(&pda_platform_device);

Listing 17.2. Registering the Map Driver

static struct platform_driver pda_map_driver = {

 .driver = {

 .name = "pda", /* ID */

 },

 .probe = pda_mtd_probe, /* Probe */

 .remove = NULL, /* Release */

 .suspend = NULL, /* Power management */

 .resume = NULL, /* Power management */

};

/* Driver/module Initialization */

static int __init pda_mtd_init(void)

{

 return platform_driver_register(&pda_map_driver);

}

/* Module Exit */

static int __init pda_mtd_exit(void)

{

 return platform_driver_uregister(&pda_map_driver);

}

Because the kernel finds that the name of the platform driver registered in Listing 17.2 matches with that of an
already-registered platform device, it invokes the probe method, pda_mtd_probe(), shown in Listing 17.3. This

routine

Reserves the flash memory address range using request_mem_region(), and obtains CPU access to that

memory using ioremap_nocache(). You learned how to do this in Chapter 10, "Peripheral Component
Interconnect."

Populates a map_info structure (discussed next) with information such as the start address and size of
flash memory. The information in this structure is used while performing the probing in the next step.

Probes the flash via a suitable MTD chip driver (discussed in the next section). Only the chip driver knows
how to query the chip and elicit the command-set required to access it. The chip layer tries different
permutations of bus widths and interleaves while querying. In Figure 17.2, two 16-bit flash banks are
connected in parallel to fill the 32-bit processor bus width, so you have a two-way interleave.

Registers the mtd_partition structure that you populated earlier, with the MTD core.

Before looking at Listing 17.3, let's meet the map_info structure. It contains the address, size, and width of the

flash memory and routines to access it:

struct map_info {
 char * name; /* Name */

 unsigned long size; /* Flash size */

 int bankwidth; /* In bytes */
 /* ... */

 /* You need to implement custom routines for the following methods

 only if you have special needs. Else populate them with built-
 in methods using simple_map_init() as done in Listing 17.3 */

 map_word (*read)(struct map_info *, unsigned long);

 void (*write)(struct map_info *, const map_word,

 unsigned long);

 /* ... */
};

While we are in the topic of accessing flash chips, let's briefly revisit memory barriers that we discussed in
Chapter 4, "Laying the Groundwork." An instruction reordering that appears semantically unchanged to the
compiler (or the processor) may not be so in reality, so the ordering of data operations on flash memory is best
left alone. You don't want to, for example, end up erasing a flash sector after writing to it, instead of doing the
reverse. Also, the same flash chips, and hence their device drivers, are used on diverse embedded processors
having different instruction reordering algorithms. For these reasons, MTD drivers are notable users of hardware
memory barriers. simple_map_write(), a generic routine available to map drivers for use as the write()

method in the map_info structure previously listed, inserts a call to mb() before returning. This ensures that the
processor does not reorder flash reads or writes across the barrier.

Listing 17.3. Map Driver Probe Method

Code View:
#include <linux/mtd/mtd.h>

#include <linux/mtd/map.h>

#include <linux/ioport.h>

static int

pda_mtd_probe(struct platform_device *pdev)

{

 struct map_info *pda_map;

 struct mtd_info *pda_mtd;

 struct resource *res = pdev->resource;

 /* Populate pda_map with information obtained

 from the associated platform device */

 pda_map->virt = ioremap_nocache(res->start,

 (res->end – res->start + 1));

 pda_map->name = pdev->dev.bus_id;

 pda_map->phys = res->start;

 pda_map->size = res->end – res->start + 1;

 pda_map->bankwidth = 2; /* Two 16-bit banks sitting

 on a 32-bit bus */

 simple_map_init(&pda_map); /* Fill in default access methods */

 /* Probe via the CFI chip driver */

 pda_mtd = do_map_probe("cfi_probe", &pda_map);

 /* Register the mtd_partition structure */

 add_mtd_partitions(pda_mtd, pda_partitions, 3); /* Three Partitions */

 /* ... */

}

Don't worry if the CFI probing done in Listing 17.3 seems esoteric. It's discussed in the next section when we
look at NOR chip drivers.

MTD now knows how your flash device is organized and how to access it. When you boot the kernel with your
map driver compiled in, user-space applications can respectively see your bootloader, kernel, and filesystem
partitions as /dev/mtd/0, /dev/mtd/1, and /dev/mtd/2. So, to test drive a new kernel image on the handheld,
you can do this:

bash> dd if=zImage.new of=/dev/mtd/1

Flash Partitioning from Bootloaders

The Redboot bootloader maintains a partition table that holds flash layout, so if you are using
Redboot on your embedded device, you can configure your flash partitions in the bootloader
instead of writing an MTD map driver. To ask MTD to parse flash mapping information from
Redboot's partition table, turn on CONFIG_MTD_REDBOOT_PARTS during kernel configuration.

NOR Chip Drivers

As you might have noticed, the NOR flash chip used by the handheld in Figure 17.2 is labeled CFI-compliant. CFI
stands for Common Flash Interface, a specification designed to do away with the need for developing separate
drivers to support chips from different vendors. Software can query CFI-compliant flash chips and automatically
detect block sizes, timing parameters, and the command-set to be used for communication. Drivers that
implement specifications such as CFI and JEDEC are called chip drivers.

According to the CFI specification, software must write 0x98 to location 0x55 within flash memory to initiate a
query. Look at Listing 17.4 to see how MTD implements CFI query.

Listing 17.4. Querying CFI-compliant Flash

/* Snippet from cfi_probe_chip() (2.6.23.1 kernel) defined in

 drivers/mtd/chips/cfi_probe.c, with comments added */

/* cfi is a pointer to struct cfi_private defined in

 include/linux/mtd/cfi.h */

/* ... */

/* Ask the device to enter query mode by sending

 0x98 to offset 0x55 */

cfi_send_gen_cmd(0x98, 0x55, base, map, cfi,

 cfi->device_type, NULL);

/* If the device did not return the ASCII characters

 'Q', 'R' and 'Y', the chip is not CFI-compliant */

if (!qry_present(map, base, cfi)) {

 xip_enable(base, map, cfi);

 return 0;

}

/* Elicit chip parameters and the command-set, and populate

 the cfi structure */

if (!cfi->numchips) {

 return cfi_chip_setup(map, cfi);

}

/* ... */

The CFI specification defines various command-sets that compliant chips can implement. Some of the common
ones are as follows:

Command-set 0001, supported by Intel and Sharp flash chips

Command-set 0002, implemented on AMD and Fujitsu flash chips

Command-set 0020, used on ST flash chips

MTD supports these command-sets as kernel modules. You can enable the one supported by your flash chip via
the kernel configuration menu.

NAND Chip Drivers

NAND technology users such as USB pen drives, DOMs, Compact Flash memory, and SD/MMC cards emulate
standard storage interfaces such as SCSI or IDE over NAND flash, so you don't need to develop NAND drivers to
communicate with them.[5] On-board NAND flash chips need special drivers, however, and are the topic of this
section.

[5] Unless you are writing drivers for the storage media itself. If you are embedding Linux on a device that will export part of its NAND partition

to the outside world as a USB mass storage device, you do have to contend with NAND drivers.

As you learned previously in this chapter, NAND flash chips, unlike their NOR counterparts, are not connected to
the CPU via data and address lines. They interface to the CPU through special electronics called a NAND flash
controller that is part of many embedded processors. To read data from NAND flash, the CPU issues an
appropriate read command to the NAND controller. The controller transfers data from the requested flash
location to an internal RAM memory, also part of the controller. The data transfer is done in units of the flash
chip's page size (for example, 2KB). In general, the denser the flash chip, the larger is its page size. Note that
the page size is different from the flash chip's block size, which is the minimum erasable flash memory unit (for
example, 16KB). After the transfer operation completes, the CPU reads the requested NAND contents from the
internal RAM. Writes to NAND flash are done similarly, except that the controller transfers data from the internal
RAM to flash. The connection diagram of NAND flash memory on an embedded device is shown in Figure 17.3.

Figure 17.3. NAND flash connection.

Because of this unconventional mode of addressing, you need special drivers to work with NAND storage. MTD
provides such drivers to manage NAND-resident data. If you are using a supported chip, you have to enable
only the appropriate low-level MTD NAND driver. If you are writing a NAND flash driver, however, you need to
explore two datasheets: the NAND flash controller and the NAND flash chip.

NAND flash chips do not support automatic configuration using protocols such as CFI. You have to manually
inform MTD about the properties of your NAND chip by adding an entry to the nand_flash_ids[] table defined

in drivers/mtd/nand/nand_ids.c. Each entry in the table consists of an identifier name, the device ID, page size,
erase block size, chip size, and options such as the bus width.

There is another characteristic that goes hand in hand with NAND memory. NAND flash chips, unlike NOR chips,
are not faultless. It's normal to have some problem bits and bad blocks scattered across NAND flash regions. To
handle this, NAND devices associate a spare area with each flash page (for example, 64 bytes of spare area for
each 2KB data page). The spare area contains out-of-band (OOB) information to help perform bad block
management and error correction. The OOB area includes error correcting codes (ECCs) to implement error
correction and detection. ECC algorithms correct single-bit errors and detect multibit errors. The
nand_ecclayout structure defined in include/mtd/mtd-abi.h specifies the layout of the OOB spare area:

struct nand_ecclayout {

 uint 32_t eccbytes;

 uint32_t eccpos[64];
 uint32_t oobavail;

 struct nand_oobfree oobfree[MTD_MAX_OOBFREE_ENTRIES];

};

In this structure, eccbytes holds the number of OOB bytes that store ECC data, and eccpos is an array of
offsets into the OOB area that contains the ECC data. oobfree records the unused bytes in the OOB area

available to flash filesystems for storing flags such as clean markers that signal successful completion of erase
operations.

Individual NAND drivers initialize their nand_ecclayout according to the chip's properties. Figure 17.4 illustrates

the layout of a NAND flash chip having a page size of 2KB. The OOB semantics used by the figure is the default
for 2KB page-sized chips as defined in the generic NAND driver, drivers/mtd/nand/nand_base.c.

Figure 17.4. Layout of a NAND flash chip.

[View full size image]

Often, the NAND controller performs error correction and detection in hardware by operating on the ECC fields
in the OOB area. If your NAND controller does not support error management, however, you will need to get
MTD to do that for you in software. The MTD nand_ecc driver (drivers/mtd/nand/nand_ecc.c) implements
software ECC.

Figure 17.4 also shows OOB memory bytes that contain bad block markers. These markers are used to flag
faulty flash blocks and are usually present in the OOB region belonging to the first page of each block. The
position of the marker inside the OOB area depends on the properties of the chip. Bad block markers are either
set at the factory during manufacture, or by software when it detects wear in a block. MTD implements bad
block management in drivers/mtd/nand/nand_bbt.c.

The mtd_partition structure used in Listing 17.1 for the NOR flash in Figure 17.2 works for NAND memory,

too. After you MTD-enable your NAND flash, you can access the constituent partitions using standard device
nodes such as /dev/mtd/X and /dev/mtdblock/X. If you have a mix of NOR and NAND memories on your
hardware, X can be either a NOR or a NAND partition. If you have a total of more than 32 flash partitions,
accordingly change the value of MAX_MTD_DEVICES in include/linux/mtd/mtd.h.

To effectively make use of NAND storage, you need to use a filesystem tuned for NAND access, such as JFFS2 or
YAFFS2, in tandem with the low-level NAND driver. We discuss these filesystems in the next section.

User Modules

After you have added a map driver and chosen the right chip driver, you're all set to let higher layers use the
flash. User-space applications that perform file I/O need to view the flash device as if it were a disk, whereas
programs that desire to accomplish raw I/O access the flash as if it were a character device. The MTD layer that
achieves these and more is called User Modules, as shown in Figure 17.1. Let's look at the components
constituting this layer.

Block Device Emulation

The MTD subsystem provides a block driver called mtdblock that emulates a hard disk over flash memory. You
can put any filesystem, say EXT2, over the emulated flash disk. Mtdblock hides complicated flash access
procedures (such as preceding a write with an erase of the corresponding sector) from the filesystem. Device
nodes created by mtdblock are named /dev/mtdblock/X, where X is the partition number. To create an EXT2
filesystem on the pda_fs partition of the handheld, as shown in Figure 17.2, do the following:

bash> mkfs.ext2 /dev/mtdblock/2 Create an EXT2 filesystem

 on the second partition

bash> mount /dev/mtdblock/2 /mnt Mount the partition

As you will soon see, it's a much better idea to use JFFS2 rather than EXT2 to hold files on flash filesystem
partitions.

The File Translation Layer (FTL) and the NAND File Translation Layer (NFTL) perform a transformation called
wear leveling. Flash memory sectors can withstand only a finite number of erase operations (in the order of
100,000). Wear leveling prolongs flash life by distributing memory usage across the chip. Both FTL and NFTL
provide device interfaces similar to mtdblock over which you can put normal filesystems. The corresponding
device nodes are named /dev/nftl/X, where X is the partition number. Certain algorithms used in these modules
are patented, so there could be restrictions on usage.

Char Device Emulation

The mtdchar driver presents a linear view of the underlying flash device, rather than the block-oriented view
required by filesystems. Device nodes created by mtdchar are named /dev/mtd/X, where X is the partition
number. You may update the bootloader partition of the handheld as shown in Figure 17.2, by using dd over the
corresponding mtdchar interface:

bash> dd if=bootloader.bin of=/dev/mtd/0

An example use of a raw mtdchar partition is to hold POST error logs generated by the bootloader on an
embedded device. Another use of a char flash partition on an embedded system is to store information similar
to that present in the CMOS or the EEPROM on PC-compatible systems. This includes the boot order, power-on
password, and Vital Product Data (VPD) such as the device serial number and model number.

JFFS2

Journaling Flash File System (JFFS) is considered the best-suited filesystem for flash memory. Currently, version
2 (JFFS2) is in use, and JFFS3 is under development. JFFS was originally written for NOR flash chips, but
support for NAND devices is merged with the 2.6 kernel.

Normal Linux filesystems are designed for desktop computers that are shut down gracefully. JFFS2 is designed

for embedded systems where power failure can occur abruptly, and where the storage device can tolerate only a
finite number of erases. During flash erase operations, current sector contents are saved in RAM. If there is a
power loss during the slow erase process, entire contents of that sector can get lost. JFFS2 circumvents this
problem using a log-structured design. New data is appended to a log that lives in an erased region. Each JFFS2
node contains metadata to track disjoint file locations. Memory is periodically reclaimed using garbage
collection. Because of this design, flash writes do not have to go through a save-erase-write cycle, and this
improves power-down reliability. The log-structure also increases flash life span by spreading out writes.

To create a JFFS2 image of a tree living under /path/to/filesystem/ on a flash chip having an erase size of
256KB, use mkfs.jffs2 as follows:

bash> mkfs.jffs2 -e 256KiB –r /path/to/filesystem/ -o jffs2.img

JFFS2 includes a garbage collector (GC) that reclaims flash regions that are no longer in use. The garbage
collection algorithm depends on the erase size, so supplying an accurate value makes it more efficient. To
obtain the erase size of your flash partitions, you may seek the help of /proc/mtd. The output for the Linux
handheld shown in Figure 17.2 is as follows:

bash> cat /proc/mtd

dev: size erasesize name

mtd0: 00100000 00040000 "pda_btldr"
mtd1: 00200000 00040000 "pda_krnl"

mtd2: 01400000 00040000 "pda_fs"

JFFS2 supports compression. Enable appropriate options under CONFIG_JFFS2_COMPRESSION_OPTIONS to choose

available compressors, and look at fs/jffs2/compr*.c for their implementations.

Note that JFFS2 filesystem images are usually created on the host machine where you do cross-development
and then transferred to the desired flash partition on the target device via a suitable download mechanism such
as serial port, USB, or NFS. More on this in Chapter 18, "Embedding Linux."

YAFFS2

The implementation of JFFS2 in the 2.6 kernel includes features to work with the limitations of NAND flash, but
Yet Another Flash File System (YAFFS) is a filesystem that is designed to function under constraints specific to
NAND memory. YAFFS is not part of the mainline kernel, but some embedded distributions prepatch their
kernels with support for YAFFS2, the current version of YAFFS.

You can download YAFFS2 source code and documentation from www.yaffs.net.

MTD-Utils

The MTD-utils package, downloadable from ftp://ftp.infradead.org/pub/mtd-utils/, contains several useful tools
that work on top of MTD-enabled flash memory. Examples of included utilities are flash_eraseall, nanddump,
nandwrite, and sumtool.

To erase the second flash partition (on NOR or NAND devices), use flash_eraseall as follows:

bash> flash_eraseall –j /dev/mtd/2

Because NAND chips may contain bad blocks, use ECC-aware programs such as nandwrite and nanddump to
copy raw data, instead of general-purpose utilities, such as dd. To store the JFFS2 image that you created
previously, on to the second NAND partition, do this:

bash> nandwrite /dev/mtd/2 jffs2.img

You can reduce JFFS2 mount times by inserting summary information into a JFFS2 image using sumtool and
turning on CONFIG_JFFS2_SUMMARY while configuring your kernel. To write a summarized JFFS2 image to the
previous NAND flash, do this:

bash> sumtool –e 256KiB –i jffs2.img –o jffs2.summary.img

bash> nandwrite /dev/mtd/2 jffs2.summary.img

bash> mount –t jffs2 /dev/mtdblock/2 /mnt

Configuring MTD

To MTD-enable your kernel, you have to choose the appropriate configuration options. For the flash chip shown
in Figure 17.2, the required options are as follows:

CONFIG_MTD=y Enable the MTD subsystem

CONFIG_MTD_PARTITIONS=y Support for multiple partitions

CONFIG_MTD_GEN_PROBE=y Common routines for chip probing

CONFIG_MTD_CFI=y Enable CFI chip driver

CONFIG_MTD_PDA_MAP=y Option to enable the map driver

CONFIG_JFFS2_FS=y Enable JFFS2

CONFIG_MTD_PDA_MAP is assumed to be a new option added to enable the map driver we previously wrote. Each

of these features can also be built as a kernel module unless you have an MTD-resident root filesystem. To
mount the filesystem partition in Figure 17.2 as the root device during boot, ask your bootloader to append
root=/dev/mtdblock/2 to the command-line string that it passes to the kernel.

You may reduce kernel footprint by eliminating redundant probing. Because our example handheld has two
parallel 16-bit banks sitting on a 32-bit physical bus (thus resulting in a two-way interleave and a 2-byte bank
width), you can optimize using these additional options:

CONFIG_MTD_CFI_ADV_OPTIONS=y

CONFIG_MTD_CFI_GEOMETRY=y
CONFIG_MTD_MAP_BANK_WIDTH_2=y
CONFIG_MTD_CFI_I2=y

CONFIG_MTD_MAP_BANK_WIDTH_2 enables a CFI bus width of 2, and CONFIG_MTD_CFI_I2 sets an interleave of 2.

eXecute In Place

With eXecute In Place (XIP), you can run the kernel directly from flash. Because you do away with the extra
step of copying the kernel to RAM, your kernel boots faster. The downside is that your flash memory
requirement increases because the kernel has to be stored uncompressed. Before deciding to go the XIP route,
also be aware that the slower instruction fetch times from flash can impact runtime performance.

The Firmware Hub

PC-compatible systems use a NOR flash chip called the Firmware Hub (FWH) to hold the BIOS. The FWH is not
directly connected to the processor's address and data bus. Instead, it's interfaced via the Low Pin Count (LPC)
bus, which is part of South Bridge chipsets. The connection diagram is shown in Figure 17.5.

Figure 17.5. The Firmware Hub on a PC-compatible system.

The MTD subsystem includes drivers to interface the processor with the FWH. FWHs are usually not compliant
with the CFI specification. Instead, they conform to the JEDEC (Joint Electron Device Engineering Council)
standard. To inform MTD about a yet unsupported JEDEC chip, add an entry to the jedec_table array in

drivers/mtd/chips/jedec_probe.c with information such as the chip manufacturer ID and the command-set ID.
Here is an example:

static const struct amd_flash_info jedec_table[] = {

 /* ... */
 {

 .mfr_id = MANUFACTURER_ID, /* E.g.: MANUFACTURER_ST */
 .dev_id = DEVICE_ID, /* E.g.: M50FW080 */

 .name = "MYNAME", /* E.g.: "M50FW080" */
 .uaddr = {

 [0] = MTD_UADDR_UNNECESSARY,

 },

 .DevSize = SIZE_1MiB, /* E.g.: 1MB */
 .CmdSet = CMDSET, /* Command-set to communicate with the

 flash chip e.g., P_ID_INTEL_EXT */

 .NumEraseRegions = 1, /* One region */

 .regions = {
 ERASEINFO (0x10000, 16),/* Sixteen 64K sectors */

 }

 },
 /* ... */

};

When you have your chip details imprinted in the jedec_table as shown here, MTD should recognize your flash,
provided you have enabled the right kernel configuration options. The following configuration makes the kernel
aware of an FWH that interfaces to the processor via an Intel ICH2 or ICH4 South Bridge chipset:

CONFIG_MTD=y Enable the MTD subsystem

CONFIG_MTD_GEN_PROBE=y Common routines for chip probing

CONFIG_MTD_JEDECPROBE=y JEDEC chip driver

CONFIG_MTD_CFI_INTELEXT=y The command-set for communicating

 with the chip

CONFIG_MTD_ICHXROM=y The map driver

CONFIG_MTD_JEDECPROBE enables the JEDEC MTD chip driver, and CONFIG_MTD_ICH2ROM adds the MTD map
driver that maps the FWH to the processor's address space. In addition, you need to include the appropriate
command-set implementation (for example, CONFIG_MTD_CFI_INTELEXT for Intel Extension commands).

After these modules have been loaded, you can talk to the FWH from user-space applications via device nodes
exported by MTD. You can, for example, reprogram the BIOS from user space using a simple application, as
shown in Listing 17.5. Be warned that incorrectly operating this program can corrupt the BIOS and render your
system unbootable!

Listing 17.5 operates on the MTD char device associated with the FWH, which it assumes to be /dev/mtd/0. The
program issues three MTD-specific ioctl commands:

MEMUNLOCK to unlock the flash sectors prior to programming

MEMERASE to erase flash sectors prior to rewriting

MEMLOCK to relock the sectors after programming

Listing 17.5. Updating the BIOS

Code View:
#include <linux/mtd/mtd.h>

#include <stdio.h>

#include <fcntl.h>

#include <asm/ioctl.h>

#include <signal.h>

#include <sys/stat.h>

#define BLOCK_SIZE 4096

#define NUM_SECTORS 16

#define SECTOR_SIZE 64*1024

int

main(int argc, char *argv[])

{

 int fwh_fd, image_fd;

 int usect=0, lsect=0, ret;

 struct erase_info_user fwh_erase_info;

 char buffer[BLOCK_SIZE];

 struct stat statb;

 /* Ignore SIGINTR(^C) and SIGSTOP (^Z), lest

 you end up with a corrupted flash and an

 unbootable system */

 sigignore(SIGINT);

 sigignore(SIGTSTP);

 /* Open MTD char device */

 fwh_fd = open("/dev/mtd/0", O_RDWR);

 if (fwh_fd < 0) exit(1);

 /* Open BIOS image */

 image_fd = open("bios.img", O_RDONLY);

 if (image_fd < 0) exit(2);

 /* Sanity check */

 fstat(image_fd, &statb);

 if (statb.st_size != SECTOR_SIZE*NUM_SECTORS) {

 printf("BIOS image looks bad, exiting.\n");

 exit(3);

 }

 /* Unlock and erase all sectors */

 while (usect < NUM_SECTORS) {

 printf("Unlocking & Erasing Sector[%d]\r", usect+1);

 fwh_erase_info.start = usect*SECTOR_SIZE;

 fwh_erase_info.length = SECTOR_SIZE;

 ret = ioctl(fwh_fd, MEMUNLOCK, &fwh_erase_info);

 if (ret != 0) goto bios_done;

 ret = ioctl(fwh_fd, MEMERASE, &fwh_erase_info);

 if (ret != 0) goto bios_done;

 usect++;

 }

 /* Read blocks from the BIOS image and dump it to the

 Firmware Hub */

 while ((ret = read(image_fd, buffer, BLOCK_SIZE)) != 0) {

 if (ret < 0) goto bios_done;

 ret = write(fwh_fd, buffer, ret);

 if (ret <= 0) goto bios_done;

 }

 /* Verify by reading blocks from the BIOS flash and comparing

 with the image file */

 /* ... */

 bios_done:

 /* Lock back the unlocked sectors */

 while (lsect < usect) {

 printf("Relocking Sector[%d]\r", lsect+1);

 fwh_erase_info.start = lsect*SECTOR_SIZE;

 fwh_erase_info.length = SECTOR_SIZE;

 ret = ioctl(fwh_fd, MEMLOCK, &fwh_erase_info);

 if (ret != 0) printf("Relock failed on sector %d!\n", lsect);

 lsect++;

 }

 close(image_fd);

 close(fwh_fd);

}

Debugging

To debug flash-related problems, enable CONFIG_MTD_DEBUG (Device Drivers Memory Technology Devices

 Debugging) during kernel configuration. You can further tune the debug verbosity level to between 0 and 3.

The Linux-MTD project page www.linux-mtd.infradead.org has FAQs, various pieces of documentation, and a
Linux-MTD JFFS HOWTO that provides insights into JFFS2 design. The linux-mtd mailing list is the place to
discuss questions related to MTD device drivers. Look at http://lists.infradead.org/pipermail/linux-mtd/ for the
mailing list archives.

http://lists.infradead.org/pipermail/linux-mtd/

Looking at the Sources

In the kernel tree, the drivers/mtd/ directory contains the sources for the MTD layer. Map, chip, and NAND
drivers live in the drivers/mtd/maps/, drivers/mtd/chips/, and drivers/mtd/nand/ subdirectories, respectively.
Most MTD data structures are defined in header files present in include/linux/mtd/.

To access an unsupported BIOS firmware hub from Linux, implement a driver using drivers/mtd/maps/ichxrom.c
as your starting point.

For examples of operating on NAND OOB data from user space, look at nanddump.c and nandwrite.c in the
MTD-utils package.

Table 17.1 contains the main data structures used in this chapter and their location in the source tree. Table
17.2 lists the main kernel programming interfaces that you used in this chapter along with the location of their
definitions.

Table 17.1. Summary of Data Structures

Data Structure Location Description

mtd_partition include/linux/mtd/partitions.h Representation of a flash chip's partition
layout.

map_info include/linux/mtd/map.h Low-level access routines implemented
by the map driver are passed to the chip
driver using this structure.

mtd_info include/linux/mtd/mtd.h General device-specific information.

erase_info,

erase_info_user

include/linux/mtd/mtd.h,
include/mtd/mtd-abi.h

Structures used for flash erase
management.

cfi_private include/linux/mtd/cfi.h Device-specific information maintained
by NOR chip drivers.

amd_flash_info drivers/mtd/chips/jedec_probe.c Device-specific information supplied to
the JEDEC chip driver.

nand_ecclayout include/mtd/mtd-abi.h Layout of the OOB spare area of a NAND
chip.

Table 17.2. Summary of Kernel Programming Interfaces

Kernel Interface Location Description

simple_map_init() drivers/mtd/maps/map_funcs.c Initializes a map_info structure

with generic flash access methods

do_map_probe() drivers/mtd/chips/chipreg.c Probes the NOR flash via a chip
driver

add_mtd_partitions() drivers/mtd/mtdpart.c Registers an mtd_partition
structure with the MTD core

Chapter 18. Embedding Linux

In This Chapter

Challenges

528

Component Selection

530

Tool Chains

531

Embedded Bootloaders
531

Memory Layout

535

Kernel Porting
537

Embedded Drivers

538

The Root Filesystem
544

Test Infrastructure
548

Debugging

548

Linux is making inroads into industry domains such as consumer electronics, telecom, networking,
defense, and health care. With its popularity surging in the embedded space, it's more likely that
you will use your Linux device driver skills to enable embedded devices rather than legacy
systems. In this chapter, let's enter the world of embedded Linux wearing the lens of a device
driver developer. Let's look at the software components of a typical embedded Linux solution and
see how the device classes that you saw in the previous chapters tie in with common embedded
hardware.

Challenges

Embedded systems present several significant software challenges:

Embedded software has to be cross-compiled and then downloaded to the target device to be tested and
verified.

Embedded systems, unlike PC-compatible computers, do not have fast processors, fat caches, and
wholesome storage.

It's often difficult to get mature development and debug tools for embedded hardware for free.

The Linux community has a lot more experience on the x86 platform, so you are less likely to get instant
online help from experts if you working on embedded computers.

The hardware evolves in stages. You may have to start software development on a proof-of-concept
prototype or a reference board, and progressively move on to engineering-level debug hardware and a
few passes of production-level units.

All these result in a longer development cycle.

From a device-driver perspective, embedded software developers often face interfaces not commonly found on
conventional computers. Figure 18.1 (which is an expanded version of Figure 4.2 in Chapter 4, "Laying the
Groundwork") shows a hypothetical embedded device that could be a handheld, smart phone, point-of-sale
(POS) terminal, kiosk, navigation system, gaming device, telemetry gadget on an automobile dashboard, IP
phone, music player, digital set-top box, or even a pacemaker programmer. The device is built around an SoC
and has some combination of flash memory, SDRAM, LCD, touch screen, USB OTG, serial ports, audio codec,
connectivity, SD/MMC controller, Compact Flash, I2C devices, SPI devices, JTAG, biometrics, smart card
interfaces, keypad, LEDs, switches, and electronics specific to the industry domain. Modifying and debugging
drivers for some of these devices can be tougher than usual: NAND flash drivers have to handle problems such
as bad blocks and failed bits, unlike standard IDE storage drivers. Flash-based filesystems such as JFFS2, are
more complex to debug than EXT2 or EXT3 filesystems. A USB OTG driver is more involved than a USB OHCI
driver. The SPI subsystem on the kernel is not as mature as, say, the serial layer. Moreover, the industry
domain using the embedded device might impose specific requirements such as quick response times or fast
boot.

Figure 18.1. Block diagram of a hypothetical embedded device.

[View full size image]

Chapter 18. Embedding Linux

In This Chapter

Challenges

528

Component Selection

530

Tool Chains

531

Embedded Bootloaders
531

Memory Layout

535

Kernel Porting
537

Embedded Drivers

538

The Root Filesystem
544

Test Infrastructure
548

Debugging

548

Linux is making inroads into industry domains such as consumer electronics, telecom, networking,
defense, and health care. With its popularity surging in the embedded space, it's more likely that
you will use your Linux device driver skills to enable embedded devices rather than legacy
systems. In this chapter, let's enter the world of embedded Linux wearing the lens of a device
driver developer. Let's look at the software components of a typical embedded Linux solution and
see how the device classes that you saw in the previous chapters tie in with common embedded
hardware.

Challenges

Embedded systems present several significant software challenges:

Embedded software has to be cross-compiled and then downloaded to the target device to be tested and
verified.

Embedded systems, unlike PC-compatible computers, do not have fast processors, fat caches, and
wholesome storage.

It's often difficult to get mature development and debug tools for embedded hardware for free.

The Linux community has a lot more experience on the x86 platform, so you are less likely to get instant
online help from experts if you working on embedded computers.

The hardware evolves in stages. You may have to start software development on a proof-of-concept
prototype or a reference board, and progressively move on to engineering-level debug hardware and a
few passes of production-level units.

All these result in a longer development cycle.

From a device-driver perspective, embedded software developers often face interfaces not commonly found on
conventional computers. Figure 18.1 (which is an expanded version of Figure 4.2 in Chapter 4, "Laying the
Groundwork") shows a hypothetical embedded device that could be a handheld, smart phone, point-of-sale
(POS) terminal, kiosk, navigation system, gaming device, telemetry gadget on an automobile dashboard, IP
phone, music player, digital set-top box, or even a pacemaker programmer. The device is built around an SoC
and has some combination of flash memory, SDRAM, LCD, touch screen, USB OTG, serial ports, audio codec,
connectivity, SD/MMC controller, Compact Flash, I2C devices, SPI devices, JTAG, biometrics, smart card
interfaces, keypad, LEDs, switches, and electronics specific to the industry domain. Modifying and debugging
drivers for some of these devices can be tougher than usual: NAND flash drivers have to handle problems such
as bad blocks and failed bits, unlike standard IDE storage drivers. Flash-based filesystems such as JFFS2, are
more complex to debug than EXT2 or EXT3 filesystems. A USB OTG driver is more involved than a USB OHCI
driver. The SPI subsystem on the kernel is not as mature as, say, the serial layer. Moreover, the industry
domain using the embedded device might impose specific requirements such as quick response times or fast
boot.

Figure 18.1. Block diagram of a hypothetical embedded device.

[View full size image]

Component Selection

Evaluating and selecting components is one of the important tasks undertaken during the concept phase of a
project. Look at the sidebar "Choosing a Processor and Peripherals" for some important factors that hardware
designers and product managers consider while choosing components for building an embedded device. In
today's world, where time to market is often the critical factor driving device design, the software engineer also
has a considerable say in shaping component selection. Availability of a Linux distribution can influence
processor choice, while existence of device drivers or close starting points can affect the choice of peripheral
chipsets.

Although the kernel engineer needs to do due diligence and evaluate several Linux distributions (or even
operating systems), he may nix a technologically superior distribution in favor of a familiar one if he believes
that'll mitigate project risks. Or a preferred distribution might be the one that offers indemnification from
lawsuits arising out of kernel bugs, if that is a crucial consideration in the relevant industry domain. The
electrical engineer can limit evaluation to processors supported by the chosen distribution and prefer peripheral
chipsets enabled by the distribution in question.

Choosing a Processor and Peripherals

Let's look at some common questions that electrical engineers and product managers ask when
selecting components for an embedded device. Assume that a hypothetical processor P is on the
shortlist because it satisfies basic product requirements such as power consumption and
packaging. P and accompanying peripheral chipsets are under evaluation:

Performance: Is the processor frequency sufficient to drive target applications? If the embedded
device intends to implement CPU-intensive tasks, does the MIPS budgeting for all software
subsystems balance with the processor's MIPS rating? If the target device requires high-resolution
imaging, for example, will the MHz impact of graphics manipulation drag down the performance of
other subsystems, such as networking?

Cost: Will I save a buck on the component but end up spending two more on the surrounding
electronics? For example, will P need an extra regulator? Will I need to throw in an additional
accessory, for example, an RTC chip, because P does not have one built-in? Does P have more pins
than other processors under evaluation leading to a denser board having a larger number of layers
and vias that increase the raw board cost? Does P consume more power and generate more heat
necessitating a bigger power supply and additional passive components? Is there errata in the
data sheet that has the possibility of increasing software development costs?

Functionality: What's the maximum size of DRAM, SRAM, NOR, and NAND memory that P can
address?

Business Planning: Does P's vendor offer an upgrade path to a higher horsepower processor that
is a drop-in (pin-compatible) replacement? Is the vendor company stable?

Supplier: Is this a single-source component? If so, is the supplier volatile? What are the lead
times to procure the parts?

End-of-Life: Is P likely to go end-of-life before the expected lifespan of the embedded device?

Credibility: Is P an accepted component? Do peripheral chipsets under evaluation have an
industry segment behind them? Perhaps a landscape LCD under consideration is being used on
automobile dashboards?

Ruggedness: Need the components be MIL (military) or industrial grade?

One has to evaluate different candidates and figure out the sweet spot in terms of all these.

Tool Chains

Because the target device is unlikely to be binary-compatible with your host development platform, you have to
cross-compile embedded software using tool chains. Setting up a full-fledged tool chain entails building the
following:

The GNU C (cross-)Compiler. GCC supports all platforms that Linux runs on, but you have to configure and
build it to generate code for your target architecture. Essentially, you have to compile the compiler and
generate the appropriate cross-compiler.

1.

Glibc, the set of C libraries that you will need when you build applications for the target device.2.

Binutils, which includes the cross-assembler, and tools such as objdump.3.

Getting a development tool chain in place used to be a daunting task several years ago but is usually
straightforward today because Linux distributions offer precompiled binaries and easy-installation tools for a
variety of architectures.

Embedded Bootloaders

Bootloader development is usually the starting point of any embedded software effort. You have to decide
whether to write a bootloader from scratch or tailor an existing open source bootloader to suit your needs. Each
candidate bootloader might be built based on a different philosophy: small footprint, easy portability, fast boot,
or the capability to support certain specific features. After you home-in on a starting point, you can design and
implement device-specific modifications.

In this section, let's use the term bootloader to mean the boot suite. This includes the following:

The BIOS, if present

Any bootstrap code needed to put the bootloader onto the boot device

One or more stages[1] of the actual bootloader

[1] In embedded bootloader parlance, the first stage of a two-stage bootloader is sometimes called the Initial Program Loader (IPL),

and the second stage is called the Secondary Program Loader (SPL).

Any program executing on an external host machine that talks with the bootloader for the purpose of
downloading firmware onto the target device

At the minimum, a bootloader is responsible for processor- and board-specific initializations, loading a kernel
and an optional initial ramdisk into memory and passing control to the kernel. In addition, a bootloader might
be in charge of providing BIOS services, performing POST, supporting firmware downloads to the target, and
passing memory layout and configuration information to the kernel. On embedded devices that use encrypted
firmware images for security reasons, bootloaders may have the task of decrypting firmware. Some bootloaders
support a debug monitor to load and debug stand-alone code on to the target device. You may also decide to
build a failure-recovery mechanism into your bootloader to recoup from kernel corruption on the field.

In general, bootloader architecture depends on the processor family, the chipsets present on the hardware
platform, the boot device, and the operating system running on the device. To illustrate the effects of the
processor family on the boot suite, consider the following:

A bootloader for a device designed around the StrongARM processor has to know whether it's booting the
system or waking it up from sleep, because the processor starts execution from the top of its address
space (the bootloader) in both cases. The bootloader has to pass control to the kernel code that restores
the system state if it's waking up from sleep or load the kernel from the boot device if the system is
starting from reset.

An x86 bootloader might need to switch to protected mode to load a kernel bigger than the 1MB real-
mode limit.

Embedded systems not based on x86 platforms cannot avail the services of a legacy BIOS. So, if you want
your embedded device to boot, for example, from an external USB device, you have to build USB

capabilities into your bootloader.

Even when two platforms are based on similar processor cores, the bootloader architecture may differ
based on the SoC. For example, consider two ARM-based devices, the Compaq iPAQ H3900 PDA and the
Darwin Jukebox. The former is built around the Intel PXA250 controller chip, which has an XScale CPU
based on an ARMv5 core, and the latter is designed using the Cirrus Logic EP7312 controller that uses an
ARMv3 core. Whereas XScale supports JTAG (named after the Joint Test Action Group, which developed
this hardware-assisted debugging standard) to load a bootloader onto flash, the EP7312 has a bootstrap
mode to accomplish the same task.

The boot suite needs a mechanism to transfer a bootloader image from the host development system to the
target's boot device. This is called bootstrapping. Bootstrapping is straightforward on PC-compatible systems
where the BIOS flash is programmed using an external burner if it's corrupted or updated after booting into an
operating system if it's healthy. Embedded devices, however, do not have a generic method for bootstrapping.

To illustrate bootstrapping on an embedded system, take the example of the Cirrus Logic EP7211 controller
(which is the predecessor of the EP7312 discussed in the previous section). The EP7211 executes code from a
small internal 128-byte memory when it's powered on in a bootstrap mode. This 128-byte code downloads a
bootstrap image from a host via the serial port to an on-board 2KB SRAM and transfers control to it. The boot
suite has to be thus architected into three stages, each loaded at a different address:

The first stage (the 128-byte image) is part of processor firmware.

The second stage lives in the on-chip SRAM, so it can be up to 2KB. This is the bootstrapper.

The bootstrapper downloads the actual bootloader image from an external host to the top of flash
memory. The bootloader gets control when the processor powers on in normal operation mode.

Note that the processor-resident microcode (the first stage) itself cannot function as the bootstrapper because a
bootstrapper needs to have the capability to program flash memory. Because many types of flash chips can be
used with a processor, the bootstrapper code needs to be board-specific.

Many controller chips do not support a bootstrap mode. Instead, the bootloader is written to flash via a JTAG
interface. You can use your JTAG debugger's command interface to access the processor's debug logic and burn
the bootloader to the target device's flash memory. We will have a more detailed discussion on JTAG debugging
in the section "JTAG Debuggers" in Chapter 21, "Debugging Device Drivers."

There are controllers that support both bootstrap execution mode and JTAG. The Freescale i.MX21 (and its
upgraded version i.MX27) based on an ARM9 core is one such controller.

After a bootloader is resident on flash, it can update itself as well as other firmware components such as the
kernel and the root filesystem. The bootloader can directly talk to a host machine and download firmware
components via interfaces such as UART, USB, or Ethernet.

Table 18.1 looks at a few example Linux bootloaders for ARM, PowerPC, and x86.

Table 18.1. Linux Bootloaders

Processor
Platform

Linux Bootloaders

ARM RedBoot (www.cygwin.com/redboot) is a bootloader popular on ARM-
based hardware. Redboot is based on a hardware abstraction offered by
the eCos operating system (http://ecos.sourceware.org/). The BootLoader
Object or BLOB (http://sourceforge.net/projects/blob/), a bootloader
originally developed for StrongARM-based boards, is commonly custom
ported to other ARM-based platforms, too. BLOB is built as two images,
one that performs minimal initializations, and the second that forms the
bulk of the bootloader. The first image relocates the second to RAM, so
the bootloader can easily upgrade itself.

PowerPC PowerPC chips used on embedded devices include SoCs such as IBM's
405LP and the 440GP, and Motorola's MPC7xx and MPC8xx. Bootloaders
such as U-Boot (http://sourceforge.net/projects/u-boot/), SLOF, and PIBS
boot Linux on PowerPC-based hardware.

x86 Most x86-based systems boot from disk drives. Embedded x86 boards
may boot from solid-state disks rather than mechanical drives. The first
stage of a disk-resident bootloader consists of a sector-sized chunk that is
loaded by the BIOS. This is called the Master Boot Record (MBR) and
contains up to 446 bytes of code, four partition table entries consuming 16
bytes each, and a 2-byte signature (thus making up a 512-byte sector).
The MBR is responsible for loading the second stage of the bootloader.
Each intervening stage has its own tasks, but the final stage lets you
choose the kernel image and command-line arguments, loads the kernel
and any initial ramdisk to memory, and transfers control to the kernel. As
an illustration, let's look at three bootloaders popularly used to boot Linux
on x86-based hardware:

The Linux Loader or LILO (http://freshmeat.net/projects/lilo/) is
packaged along with some Linux distributions. When the first stage
of the bootloader is written to the boot sector, LILO precalculates
the disk locations of the second stage and the kernel. If you build a
new kernel image, you have to rewrite the boot sector. The second
stage allows the user to interactively select the kernel image and
configure command-line arguments. It then loads the kernel to
memory.

GRUB (www.gnu.org/software/grub) is different from LILO in that
the kernel image can live in any supported filesystem, and the boot
sector need not be rewritten if the kernel image changes. GRUB has
an extra stage 1.5 that understands the filesystem holding the boot
images. Currently supported filesystems are EXT2, DOS FAT, BSD
FFS, IBM JFS, SGI XFS, Minix, and Reiserfs. GRUB complies with the
Multiboot specification, which allows any complying operating
system to boot via any complying bootloader. You looked at a
sample GRUB configuration file in Chapter 2, "A Peek Inside the
Kernel."

SYSLINUX (http://syslinux.zytor.com/) is a no-frills Linux
bootloader. It understands the FAT filesystem, so you can store the
kernel image and the second stage bootloader on a FAT partition.

http://ecos.sourceware.org/
http://sourceforge.net/projects/blob/
http://sourceforge.net/projects/u-boot/
http://freshmeat.net/projects/lilo/
http://syslinux.zytor.com/

Giving due thought to the design and architecture of the bootloader suite lays a solid foundation for embedded
software development. The key is to choose the right bootloader as your starting point. The benefits range from
a shorter software development cycle to a feature-rich and robust device.

Memory Layout

Figure 18.2 shows an example memory layout on an embedded device. The bootloader sits on top of the NOR
flash. Following the bootloader lies the param block, a statically compiled binary image of kernel command-line
arguments. The compressed kernel image comes next. The filesystem occupies the rest of the available flash
memory. In the initial phase, when you start development with a first-shot kernel, the filesystem is usually a
compressed ramdisk (initrd or initramfs), because having a flash-based filesystem entails getting the kernel
MTD subsystem configured and running.

Figure 18.2. Example memory layout on an embedded device.

During power-on, the bootloader in Figure 18.2 uncompresses the kernel and loads it to DRAM at 0xc0200000.

It then loads the ramdisk at 0xc0280000 (unless you build an initramfs into the base kernel as you learned in
Chapter 2). Finally, it obtains command-line arguments from the param block and transfers control to the
kernel.

Because you may have to work with unconventional consoles and memory partitions on embedded devices, you
have to pass the right command-line arguments to the kernel. For the device in Figure 18.2, this is a possible
command line:

console=/dev/ttyS0,115200n8 root=/dev/ram initrd=0xC0280000

When you have the kernel MTD drivers recognizing your flash partitions, the area of flash that holds the ramdisk
can instead contain a JFFS2-based filesystem. With this, you don't have to load the initrd to DRAM. Assuming
that you have mapped the bootloader, param block, kernel, and filesystem to separate MTD partitions, the
command line now looks like this:

console=/dev/ttyS0,115200n8 root=/dev/mtdblock3

See the sidebar "ATAGs" for another method of passing parameters from the bootloader to the kernel.

ATAGs

On ARM kernels, command-line arguments are deprecated in favor of a tagged list of parameters.
This mechanism, called ATAG, is described in Documentation/arm/Booting. To pass a parameter to
the kernel, create the corresponding tag in system memory from the bootloader, supply a kernel
function to parse it, and add the latter to the list of tag parsing functions using the __tagtable()

macro. The tag structure and its relatives are defined in include/asm-arm/setup.h, whereas
arch/arm/kernel/setup.c contains functions that parse several predefined ATAGs.

Kernel Porting

Like setting up tool chains, porting the kernel to your target device was a serious affair a few years ago. One
had to evaluate the stability of the current kernel tree for the architecture of interest, apply available patches
that were not yet part of the mainline, make modifications, and hope for good luck. But today, you are likely to
find a close starting point, not just for your SoC, but for a hardware board that is similar to yours. For example,
if you are designing an embedded device around the Freescale i.MX21 processor, you have the option of starting
off with the kernel port (arch/arm/-mach-imx/) for the i.MX21-based reference board built by the processor
vendor. If you thus start development from a suitable distribution-supplied or standard kernel available for a
board that resembles yours, chances are, you won't have to grapple with complex kernel bring-up issues.

But even with a close match, you are likely to face issues caused by modified memory maps, changed chip
selects, board-specific GPIO assignments, dissimilar clock sources, disparate flash banks, timing requirements of
a new LCD panel, or a different debug UART port. A change in clocking for example, can ripple through dozens
of registers and impact the operation of several I/O peripherals. You might need an in-depth reading of the CPU
reference manual to resolve it. To figure out a modified interrupt pin routing caused by a different GPIO
assignment, you might have to pore over your board schematics. To program an LCD controller with HSYNC and
VSYNC durations appropriate to your LCD panel, you may need to connect an oscilloscope to your board and

digest the information that it gathers.

Depending on the demands on your device, you may also need to make kernel changes unrelated to bring up. It
could be as simple as exporting some information via procfs or as complex as modifying the kernel for fast boot.

After you have the base kernel running, you can turn your attention to enabling device drivers for the different
I/O interfaces on your hardware.

uClinux

uClinux is a branch of the Linux kernel intended for lower-end microprocessors that have no
Memory Management Units (MMUs). uClinux ports are available for processors such as H8,
Blackfin, and Dragonball. Most portions of uClinux are merged with the mainline 2.6 kernel.

The uClinux project is hosted at www.uclinux.org. The website contains patches, documentation,
the code repository, list of supported architectures, and information for subscribing to the uclinux-
dev mailing list.

Embedded Drivers

One of the reasons Linux is so popular in the embedded space is that its formidable application suite works
regardless of the hardware platform, thanks to kernel abstraction layers that lie beneath them. So, as shown in
Figure 18.3, all you need to do to get a feature-rich embedded system is to implement the low-level device
drivers ensconced between the abstraction layers and the hardware. You need to do one of the following for
each peripheral interface on your device:

Qualify an existing driver. Test and verify that it works as it's supposed to.

Find a driver that is a close match and modify it for your hardware.

Write a driver from scratch.

Figure 18.3. Hardware-independent applications and hardware-dependent drivers.

[View full size image]

Assuming a kernel engineer participates in component selection, you're likely to have existing drivers or close
enough matches for most peripheral devices. To take advantage of existing drivers, go through the block
diagram and schematics of your hardware, identify the different chipsets, and cobble together a working kernel
configuration file that enables the right drivers. Based on your footprint or boot time requirements, modularize
possible device drivers or build them into the base kernel.

To learn about device drivers for I/O interfaces commonly found on embedded hardware, let's take a clockwise
tour around the embedded controller shown in Figure 18.1, starting with the NOR flash.

Flash Memory

Embedded devices such as the one in Figure 18.2, boot from flash memory and have filesystem data resident on
flash-based storage. Many devices use a small NOR flash component for the former and a NAND flash part for
the latter.[2] NOR memory, thus, holds the bootloader and the base kernel, whereas NAND storage contains
filesystem partitions and device driver modules.

[2] In today's embedded market where the Bill Of Material (BOM) cost is often all-important, it's not uncommon for devices to contain only

NAND storage. Such devices boot from NAND flash and have their filesystems also reside in NAND memory. NAND boot needs support from

both the processor and the bootloader.

Flash drivers are supported by the kernel's MTD subsystem discussed in Chapter 17, "Memory Technology
Devices." If you're using an MTD-supported chip, you need to write only an MTD map driver to suitably partition
the flash to hold the bootloader, kernel, and filesystem. Listings 17.1, 17.2, and 17.3 in Chapter 17 implement a
map driver for the Linux handheld, as shown in Figure 17.2 of the same chapter.

UART

The UART is responsible for serial communication and is an interface you are likely to find on all
microcontrollers. UARTs are considered basic hardware, so the kernel contains UART drivers for all
microcontrollers on which it runs. On embedded devices, UARTs are used to interface the processor with debug
serial ports, modems, touch controllers, GPRS chipsets, Bluetooth chipsets, GPS devices, telemetry electronics,
and so on.

Look at Chapter 6, "Serial Drivers," for a detailed discussion on the Linux serial subsystem.

Buttons and Wheels

Your device may have several miscellaneous peripherals such as keypads (micro keyboards organized in the
common QWERTY layout, data-entry devices having overloaded keys as found in cell phones, keypads having
ABC-type layout, and so on), LEDs, roller wheels, and buttons. These I/O devices interface with the CPU via
GPIO lines or a CPLD (see the following "CPLD/FPGA" section). Drivers for such peripherals are usually
straightforward char or misc drivers. Some of the drivers export device-access via procfs or sysfs rather than
through /dev nodes.

PCMCIA/CF

A PCMCIA or CF slot is a common add-on to embedded devices. The advantage of, say, WiFi enabling an
embedded device using a CF card is that you won't have to respin the board if the WiFi controller goes end of
life. Also, because diverse technologies are available in the PCMCIA/CF form factor, you have the freedom to
change the connectivity mode from WiFi to another technology such as Bluetooth later. The disadvantage of
such a scheme is that even with mechanical retaining, sockets are inherently unreliable. There is the possibility
of the card coming loose due to shock and vibe, and resulting intermittent connections.

PCMCIA and CF device drivers are discussed in Chapter 9, "PCMCIA and Compact Flash."

SD/MMC

Many embedded processors include controllers that communicate with SD/MMC media. SD/MMC storage is built
using NAND flash memory. Like CF cards, SD/MMC cards add several gigabytes of memory to your device. They

also offer an easy memory upgrade path, because the available density of SD/MMC cards is constantly
increasing.

Chapter 14, "Block Drivers," points you to the SD/MMC subsystem in the kernel.

USB

Legacy computers support the USB host mode, by which you can communicate with most classes of USB
devices. Embedded systems frequently also require support for the USB device mode, wherein the system itself
functions as a USB device and plugs into other host computers.

As you saw in Chapter 11, "Universal Serial Bus," many embedded controllers support USB OTG that lets your
device work either as a USB host or as a USB device. It allows you, for example, to connect a USB pen drive to
your embedded device. It also allows your embedded device to function as a USB pen drive by exporting part of
its local storage for external access. The Linux USB subsystem offers drivers for USB OTG. For hardware that is
not compatible with OTG, the USB Gadget project, now part of the mainline kernel, brings USB device
capability.

RTC

Many embedded SoCs include RTC support to keep track of wall time, but some rely on an external RTC chip.
Unlike x86-based computers where the RTC is part of the South Bridge chipset, embedded controllers commonly
interface with external RTCs via slow serial buses such as I2C or SPI. You can drive such RTCs by writing client
drivers that use the services of the I2C or SPI core as discussed in Chapter 8, "The Inter-Integrated Circuit
Protocol." Chapter 2 and Chapter 5, "Character Drivers," discussed RTC support on x86-based systems.

Audio

As you saw in Chapter 13, "Audio Drivers," an audio codec converts digital audio data to analog sound signals
for playback via speakers and performs the reverse operation for recording through a microphone. The codec's
connection with the CPU depends on the digital audio interface supported by the embedded controller. The usual
way to communicate with a codec is via buses, such as AC'97 or I2S.

Touch Screen

Touch is the primary input mechanism on several embedded devices. Many PDAs offer soft keyboards for data
entry. In Chapter 6, we developed a driver for a serial touch controller, and in Chapter 7, "Input Drivers," we
looked at a touch controller that interfaced with the CPU via the SPI bus.

If your driver conforms to the input API, it should be straightforward to tie it with a graphical user interface. You
might, however, need to add custom support to calibrate and linearize the touch panel.

Video

Some embedded systems are headless, but many have associated displays. A suitably oriented (landscape or
portrait) LCD panel is connected to the video controller that is part of the embedded SoC. Many LCD panels
come with integrated touch screens.

As you learned in Chapter 12, "Video Drivers," frame buffers insulate applications from display hardware, so
porting a compliant GUI to your device is easy, as long as your display driver conforms to the frame buffer
interface.

CPLD/FPGA

Complex Programmable Logic Devices (CPLDs) or their heavy-duty counterparts, Field Programmable Gate
Arrays (FPGAs), can add a thick layer of fast OS-independent logic. You can program CPLDs (and FPGAs) in a
language such as Very high speed integrated circuit Hardware Description Language (VHDL). Electrical signals
between the processor and peripherals propagate through the CPLD, so by appropriately programming the
CPLD, the OS obtains elegant register interfaces for performing complex I/O. The VHDL code in the CPLD
internally latches these register contents onto the data bus after performing necessary control logic.

Consider, for example, an external serial LCD controller that has to be driven by shifting in each pixel bit. The
Linux driver for this device will have a tough time toggling the clock and wiggling I/O pins several times for
sending each pixel or command byte to the serial LCD controller. If this LCD controller is routed to the processor
via a CPLD, however, the VHDL code can perform the necessary serial shifting by clocking each bit in and
present a parallel register interface to the OS for command and data. With these virtual LCD command and data
registers, the LCD driver implementation is rendered simple. Essentially, the CPLD converts the cumbersome
serial LCD controller to a convenient, parallel one.

If the CPLD engineer and the Linux driver developer collaborate, they can arrive at an optimum partitioning
between the VHDL code and the Linux driver that'll save time and cost.

Connectivity

Connectivity injects intelligence, so there are few embedded devices that have no communication capability.
Popular networking technologies found on embedded devices include WiFi, Bluetooth, cellular modems,
Ethernet, and radio communication.

Chapter 15, "Network Interface Cards," explored device drivers for wired networking, and Chapter 16, "Linux
Without Wires," looked at drivers for wireless communication technologies.

Domain-Specific Electronics

Your device is likely to contain electronics specific to the usage industry domain. It could be a telemetry
interface for a hospital-grade device, a sensor for automotive hardware, biometrics for a security gadget, GPRS
for a cellular phone, or GPS for a navigation system. These peripherals usually communicate with the embedded
controller over standard I/O interfaces such as UART, USB, I2C, SPI, or controller area network (CAN). For
devices interfacing via a UART, you often have little work to do at the device driver level because the UART
driver takes care of the communication. For devices such as a fingerprint sensor that interface via USB, you may
have to write a USB client driver. You might also face proprietary interfaces, such as a switching fabric for a
network processor, in which case, you may need to write a full-fledged device driver.

Consider the digital media space. Cable or Direct-to-home (DTH) interface systems are usually built around set-
top box (STB) chipsets. These chips have capabilities such as personal video recording (recording multiple
channels to a hard disk, recording a channel while viewing another and so forth) and conditional access
(allowing the service provider to control what the end user sees depending on subscription). To achieve this,
STB chips have a processor core coupled with a powerful graphics engine. The latter implements MPEG codecs in
hardware. Such audio-video codecs can decode compressed digital media standards such as MPEG2 and MPEG4.
(MPEG is an acronym for Moving Picture Experts Group, the body responsible for developing motion picture
standards.) If you are embedding Linux onto an STB, you will need to drive such audio-video codecs.

More Drivers

If your device serves a life-critical industry domain such as health care, the system memory might have ECC
capabilities. Chapter 20, "More Devices and Drivers," discusses ECC reporting.

If your embedded device is battery powered, you may want to use a suitable CPU frequencygovernor to
dynamically scale processor frequency and save power. Chap-ter 20 also discusses CPU frequency drivers and
power management.

Most embedded processors have a built-in hardware watchdog that recovers the system from freezes. You

looked at watchdog drivers in Chapter 5. Use a suitable driver from drivers/char/watchdog/ as the starting point
to implement a driver for your system's watchdog.

If your embedded device contains circuitry to detect brownout,[3] you might need to add capability to the kernel
to sense that condition and take appropriate action.

[3] Brownout is the scenario when input voltage drops below tolerable levels. (Blackout, on the other hand, refers to total loss of power.)

Brownout detection is especially relevant if your device is powered by a technology such as Power over Ethernet (PoE) rather than a

conventional wall socket.

Several embedded SoCs contain built-in pulse-width modulator (PWM) units. PWMs let you digitally control
analog devices such as buzzers. The voltage level supplied to the target device is varied by programming the
PWM's duty cycle (the On time of the PWM's output waveform relative to its period). LCD brightness is another
example of a feature controllable using PWMs. Depending on the target device and the usage scenario, you can
implement char or misc driver interfaces to PWMs.

The Root Filesystem

Before the advent of Linux distributions, it used to be a project by itself to put together a compact application-
set tailored to suit the size limitations of available storage. One had to cobble together the sources of a minimal
set of utilities, libraries, tools, and daemons; ensure that their versions liked each other; and cross-compile
them. Today's distributions supply a ready-made application-set built for supported processors and offer tools
that let you pick and choose components at the granularity of packages. Of course, you may still want to
implement custom utilities and tools to supplement the distribution-supplied applications.

On embedded devices, flash memory (discussed in Chapter 17) is the commonly used vehicle to hold the
application-set and is mounted as the root device at the end of the boot process. Hard disks are uncommon
because they are power-intensive, bulky, and have moving parts that are not tolerant to shock and vibe.
Common places that hold the root filesystem on embedded devices include the following:

An initial ramdisk (initramfs or initrd) is usually the starting point before you get drivers for other potential
root devices working and is used for development purposes.

NFS-mounting the root filesystem is a development strategy much more powerful than using a ramdisk.
We discuss this in detail in the next section.

Storage media such as flash chips, SD/MMC cards, CF cards, DOCs, and DOMs.

Note that it may not be a good idea to let all the data stay in the root partition. It's common to spread files
across different storage partitions and tag desired read-write or read-only protection flags, especially if there is
the possibility that the device will be shut down abruptly.

NFS-Mounted Root

NFS-mounting the root filesystem can serve as a catalyst to hasten the embedded development cycle. In this
case, the root filesystem physically resides on your development host and not on the target, so its size is
virtually unlimited and not restricted by the amount of storage locally available on the target. Downloading
device driver modules or applications to the target, as well as uploading logs, is as simple (and fast) as copying
them to /path/to/target/rootfilesystem/ on your development host. Such ease of testing and debugging is a
good reason why you should insist on having Ethernet on engineering-level hardware, even if production units
won't have Ethernet support. Having Ethernet on your board also lets your bootloader use the Trivial File
Transfer Protocol (TFTP) to download the kernel image to the target over a network.

Table 18.2[4] shows the typical steps needed to get TFTP and NFS working with your embedded device. It
assumes that your development host also doubles up as TFTP, NFS, and DHCP servers, and that the bootloader
(BLOB in this example) supports the Ethernet chipset used on the embedded device.

[4] The filenames and directory path names used in Table 18.2 are distribution-dependent.

Table 18.2. Saving Development Time with TFTP and NFS

 Target Embedded Device Host Development Platform

Kernel Boot
over TFTP

Configure the IP address of the target and the
server (host) from the bootloader prompt:
/* Target IP */

blob> ip 4.1.1.2

/* Host IP */

blob> server 4.1.1.1

/* Kernel image */
blob> TftpFile /tftpdir/zImage

/* Pull the Kernel over the
net */

blob> tftp

TFTPing /tftpboot/zImage............Ok

blob>

Configure the host IP address:
bash> ifconfig eth0 4.1.1.1

Install and configure the TFTP server (the
exact steps depend on your distribution):

bash> cat /etc/xinetd.conf/tftp

service tftp

{

 socket_type = dgram
 protocol = udp

 wait = yes

 user = root

 server = /usr/sbin/in.tftpd

 server_args = /tftpdir
 disable = no

 per_source = 11
 cps = 100 2

 flags = IPv4
}

Make sure that the TFTP server is present
in /usr/sbin/in.tftpd and that xinetd is
alive.

Compile the target kernel with NFS
enabled and copy it to /tftpdir/zImage.

Root filesystem
over NFS

blob> boot console=/dev/

ttyS0,115200n8 root=/dev/nfs

ip=dhcp

/*Kernel boot messages*/
/* ... */

VFS: Mounted root (nfs
filesystem)

/* ... */

login:

Export /path/to/target/root/ for NFS
access:
bash> cat /etc/exports

/path/to/target/root/ *(rw,sync,no_

root_squash,no_all_squash)

Start NFS:

bash> service nfs start

Configure the DHCP server. The kernel on
the embedded device relies on this server
to assign it the 4.1.1.2 IP address during
boot and to supply /path/to/target/root/:
Code View:
bash> cat /etc/dhcpd.conf

...
subnet 4.1.1.0 netmask

255.255.255.0 {

range 4.1.1.2 4.1.1.10
max-lease-time 43200

option routers 4.1.1.1

option ip-forwarding off

 Target Embedded Device Host Development Platform option ip-forwarding off

option broadcast-address 4.1.1.255

option subnet-mask 255.255.255.0

group {

 next-server 4.1.1.1
 host target-device {

 /* MAC of the embedded device */

 hardware Ethernet AA:BB:CC:DD:
 EE:FF;

 fixed-address 4.1.1.2;

 option root-path
 "/path/to/target/root/";

 }

}

...

bash> service dhcpd start

bash>

Compact Middleware

Embedded devices that are tight on memory prefer middleware implementations that have small footprint and
low runtime memory requirements. The trade-offs usually lie in features, standards compatibility, and speed.
Let's take a look at some popular compact middleware solutions that may be potential candidates for populating
your root filesystem.

BusyBox is a tool commonly used to provide a multi-utility environment on embedded systems having limited
memory. It scratches out some features but provides an optimized replacement for several shell utilities.

uClibc is a compact version of the GNU C library that was originally developed to work with uClinux. uClibc
works on normal Linux systems, too, and is licensed under LGPL. If your embedded device is short on space, try
uClibc rather than glibc.

Embedded systems that need to run an X Windows server commonly rely on TinyX, a low-footprint X server
shipped along with the XFree86 4.0 code. TinyX runs over frame buffer drivers and can be used on devices, such
as the one showed in Figure 12.6 of Chapter 12.

Thttpd is a lightweight HTTP server that makes low demands on CPU and memory resources.

Even if you are creating a non-Linux solution using a tiny 8-bit MMU-less microcontroller, you will likely want it
to interoperate with Linux. Assume, for example, that you are writing deeply embedded firmware for an Infrared
storage keychain. The keychain can hold a gigabyte of personal data that can be accessed via a web browser
from your Linux laptop over Infrared. If you are running a compact TCP/IP stack, such as uIP over a minimal
IrDA stack such as Pico-IrDA on the Infrared keychain, you have the task of ensuring their interoperability with
the corresponding Linux protocol stacks.

Table 18.3 lists the home pages of the compact middleware projects referred to in this section.

Table 18.3. Examples of Compact Middleware

Name Description Download Location

BusyBox Small footprint shell environment www.busybox.net

option ip-forwarding off

option broadcast-address 4.1.1.255

option subnet-mask 255.255.255.0

group {

 next-server 4.1.1.1
 host target-device {

 /* MAC of the embedded device */

 hardware Ethernet AA:BB:CC:DD:
 EE:FF;

 fixed-address 4.1.1.2;

 option root-path
 "/path/to/target/root/";

 }

}

...

bash> service dhcpd start

bash>

Compact Middleware

Embedded devices that are tight on memory prefer middleware implementations that have small footprint and
low runtime memory requirements. The trade-offs usually lie in features, standards compatibility, and speed.
Let's take a look at some popular compact middleware solutions that may be potential candidates for populating
your root filesystem.

BusyBox is a tool commonly used to provide a multi-utility environment on embedded systems having limited
memory. It scratches out some features but provides an optimized replacement for several shell utilities.

uClibc is a compact version of the GNU C library that was originally developed to work with uClinux. uClibc
works on normal Linux systems, too, and is licensed under LGPL. If your embedded device is short on space, try
uClibc rather than glibc.

Embedded systems that need to run an X Windows server commonly rely on TinyX, a low-footprint X server
shipped along with the XFree86 4.0 code. TinyX runs over frame buffer drivers and can be used on devices, such
as the one showed in Figure 12.6 of Chapter 12.

Thttpd is a lightweight HTTP server that makes low demands on CPU and memory resources.

Even if you are creating a non-Linux solution using a tiny 8-bit MMU-less microcontroller, you will likely want it
to interoperate with Linux. Assume, for example, that you are writing deeply embedded firmware for an Infrared
storage keychain. The keychain can hold a gigabyte of personal data that can be accessed via a web browser
from your Linux laptop over Infrared. If you are running a compact TCP/IP stack, such as uIP over a minimal
IrDA stack such as Pico-IrDA on the Infrared keychain, you have the task of ensuring their interoperability with
the corresponding Linux protocol stacks.

Table 18.3 lists the home pages of the compact middleware projects referred to in this section.

Table 18.3. Examples of Compact Middleware

Name Description Download Location

Name Description Download Location

BusyBox Small footprint shell environment www.busybox.net

uClibc Small-sized version of glibc www.uclibc.org

TinyX X server for devices that are tight on
memory

Part of the X Windows source tree
downloadable from
ftp://ftp.xfree86.org/pub/XFree86/4.0/

Thttpd Tiny HTTP server www.acme.com/software/thttpd

uIP Compact TCP/IP stack for
microcontrollers

www.sics.se/~adam/uip

Pico-IrDA Minimal IrDA stack for
microcontrollers

http://blaulogic.com/pico_irda.shtml

BusyBox Small footprint shell environment www.busybox.net

uClibc Small-sized version of glibc www.uclibc.org

TinyX X server for devices that are tight on
memory

Part of the X Windows source tree
downloadable from
ftp://ftp.xfree86.org/pub/XFree86/4.0/

Thttpd Tiny HTTP server www.acme.com/software/thttpd

uIP Compact TCP/IP stack for
microcontrollers

www.sics.se/~adam/uip

Pico-IrDA Minimal IrDA stack for
microcontrollers

http://blaulogic.com/pico_irda.shtml

http://blaulogic.com/pico_irda.shtml
http://blaulogic.com/pico_irda.shtml

Test Infrastructure

Most industry domains that use embedded devices are governed by regulatory bodies. Having an extensible and
robust test infrastructure is likely to be as important as implementing modifications to the kernel and device
drivers. Broadly, the test framework is responsible for the following:

Demonstrating compliance to obtain regulatory approvals. If your system is a medical-grade device for the
U.S. market, for example, you should orient your test suite for getting approvals from the Food and Drug
Administration (FDA).

1.

Most electronic devices intended for the U.S. market have to comply with emission standards such as
electromagnetic interference (EMI) and electromagnetic compatibility (EMC) as laid down by the Federal
Communications Commission (FCC). To demonstrate compliance, you may need to run a battery of tests
inside a chamber that models different operating environments. You might also have to verify that the
system runs normally when an electrostatic gun is pointed at different parts of the board.

2.

Build verification tests. Whenever you build a software deliverable, subject it to quality assurance (QA)
using these tests.

3.

Manufacturing tests. Each time a device is assembled, you have to verify its functionality using a set of
tests. These tests assume significance when manufacturing moves into volume production.

4.

To have a common test base for all these, it's a good idea to implement your test harness over Linux, rather
than develop it as a stand-alone suite. Stand-alone code is not easily scalable or extendable. Adding a simple
test to ping the next-hop router is a five-line script on a Linux-based test system but can entail writing a
network driver and a protocol stack if you are using a stand-alone test monitor.

A test engineer need not be a kernel guru but will need to imbibe implementation information from the
development team and think critically.

Debugging

Before closing this chapter, let's visit a few topics related to debugging embedded software.

Board Rework

Navigating board schematics and datasheets is an important debugging skill you need while bringing up the
bootloader or kernel on embedded hardware. Understanding your board's placement plot, which is a file that
shows the position of chips on your board, is a big help when you are debugging a potential hardware problem
using an oscilloscope, or when you need to perform minor board rework. Reference designators (such as U10
and U11 in Figure 18.4) associate each chip in the schematic with the placement plot. Printed circuit boards
(PCBs) are usually clothed with silk screens that print the reference designator near each chip.

Figure 18.4. Debugging an I2C RTC on an embedded system.

Consider this fictitious scenario where USB enumeration doesn't occur on your board under test. The USB hub
driver detects device insertions but is not able to assign endpoint addresses. A close look at the schematics
reveals that the connections originating from the SPEED and MODE pins of the USB transceiver have been

interchanged by mistake. An examination of the placement plot identifies the location of the transceiver on the
PCB. Matching the transceiver's reference designator on the placement plot with the silk screen on the PCB
pinpoints the places where you have to solder "yellow wires" to repair the faulty connections.

A multimeter and an oscilloscope are worthy additions to your embedded debugging toolkit. As an illustration,
let's consider an example situation involving the I2C RTC, as shown in Figure 8.3 of Chapter 8. That figure is
reproduced there with a multimeter/scope attached to probe points of interest. Consider this scenario: You have
written an I2C client driver for this RTC chip as described in the section "Device Example: Real Time Clock" in
Chapter 8. However, when you run your driver on the board, it renders the system unbootable. Neither does the
bootloader come up when you reset the board, nor does your JTAG debugger connect to the target. To

understand possible causes of this seemingly fatal error, let's take a closer look at the connection diagram.
Because both the RTC and the CPU need an external clock, the board supplies it using a single 32KHz crystal.
This 32KHz clock needs to be buffered, however. The RTC buffers the clock for its use and makes it available on
an output pin for free. This pin, CLK_OUT, feeds the clock to the processor. Connect an oscilloscope (or a

multimeter that can measure frequency) between CLK_OUT and ground to verify the processor clock frequency.
As you can see in Figure 18.4, the scope reads 1KHz rather than the expected 32KHz! What could be wrong
here?

The RTC control register contains bits that choose the frequency of CLK_OUT. While probing the chip (on the lines
of myrtc_attach() in Chapter 8), the driver has erroneously initialized these bits to generate 1KHz on CLK_OUT.

RTC registers are nonvolatile because of the battery backup, so the control register holds this bad value across
reboots. The resulting skewed clock is sufficient to render the system unbootable. Disconnect the RTC's backup
battery, drain the registers, reconnect the battery, verify using the scope that the 32KHz clock is restored on
CLK_OUT, fix your driver code, and start afresh!

Debuggers

You can use most of the debugging techniques that you will learn in Chapter 21 while embedding Linux. Kernel
debuggers are available for several processor platforms. JTAG debuggers, also explored in Chapter 21, are more
powerful than kernel debuggers and are popularly used in the embedded space to debug the bootloader, base
kernel, and device-driver modules.

Chapter 19. Drivers in User Space

In This Chapter

Process Scheduling and Response
Times

553

Accessing I/O Regions

558

Accessing Memory Regions

562

User Mode SCSI
565

User Mode USB
567

User Mode I2C

571

UIO
573

Looking at the Sources

574

Most device drivers prefer to lead a privileged life inside the kernel, but some are at home in the
indeterministic world outside. Several kernel subsystems, such as SCSI, USB, and I2C, offer some
level of support for user mode drivers, so you might be able to control those devices without
writing a single line of kernel code.

In spite of the inclement weather in user land, user mode drivers enjoy certain advantages. They
are easy to develop and debug. You won't have to reboot the system every time you dereference a
dangling pointer. Some user mode drivers will even work across operating systems if the device
subsystem enjoys the services of a standard user-space programming library. Here are some rules
of thumb to help decide whether your driver should reside in user space:

Apply the possibility test. What can be done in user space should probably stay in user
space.

If you have to talk to a large number of slow devices and if performance requirements are
modest, explore the possibility of implementing the drivers in user space. If you have time-
critical performance requirements, stay inside the kernel.

If your code needs the services of kernel APIs, access to kernel variables, or is intertwined
with interrupt handling, it has a strong case for being in kernel space.

If much of what your code does can be construed as policy, user land might be its logical
residence.

If the rest of the kernel needs to invoke your code's services, it's a candidate for staying
inside the kernel.

You can't easily do floating-point arithmetic inside the kernel. Floating-point unit (FPU)
instructions can, however, be used from user space.

That said, you can't accomplish too much from user space. Many important device classes, such as
storage media and network adapters, cannot be driven from user land. But even when a kernel
driver is the appropriate solution, it's a good idea to model and test as much code as you can in
user space before moving it to kernel space. The testing cycle is faster, and it's easier to traverse
all possible code paths and ensure that they are clean.

In this chapter, the term user space driver (or user mode driver) is used in a generic sense that
does not strictly conform to the semantics of a driver implied thus far in the book. An application is
considered to be a user mode driver if it's a candidate for being implemented inside the kernel,
too.

The 2.6 kernel overhauled a subsystem that is of special interest to user space drivers. The new
process scheduler offers huge response-time benefits to user mode code, so let's start with that.

Process Scheduling and Response Times

Many user mode drivers need to perform some work in a time-bound manner. In user space, indeterminism due

to scheduling and paging often come in the way of fast response times, however. To see how you can minimize
the impact of the former hurdle, let's dip into recent Linux schedulers and understand their underlying
philosophy.

The Original Scheduler

In the 2.4 and earlier days, the scheduler used to recalculate scheduling parameters of each task before taking
its pick. The time consumed by the algorithm thus increased linearly with the number of contending tasks in the
system. In other words, it used O(n) time, where n is the number of active tasks. On a system running at high

loads, this translated to significant overhead. The 2.4 algorithm also didn't work very well on SMP systems.

The O(1) Scheduler

Time consumed by an O(n) algorithm depends linearly on the size of its input, and an O(n2) solution depends

quadratically on the length of its input, but an O(1) technique is independent of the input and thus scales well.

The 2.6 scheduler replaced the O(n) algorithm with an O(1) method. In addition to being super-scalable, the
scheduler has built-in heuristics to improve user responsiveness by providing preferential treatment to tasks
involved in I/O activity. Processes are of two kinds: I/O bound and CPU bound. I/O-bound tasks are often sleep-
waiting for device I/O, while CPU-bound ones are workaholics addicted to the processor. Paradoxically, to
achieve fast response times, lazy tasks get incentives from the O(1) scheduler, while studious ones draw flak.
Look at the sidebar "Highlights of the O(1) Scheduler" to find out some of its important features.

Highlights of the O(1) Scheduler

The following are some of the important features of the O(1) scheduler:

The algorithm uses two run queues made up of 140 priority lists: an active queue that holds
tasks that have time slices left and an expired queue that contains processes whose time
slices have expired. When a task finishes its time slice, it's inserted into the expired queue in
sorted order of priority. The active and expired queues are swapped when the former
becomes empty. To decide which process to run next, the scheduler does not navigate
through the entire queue. Instead, it picks that task from the active queue having the
highest priority. The overhead of picking the task thus depends not on the number of active
tasks, but on the number of priorities. This makes it a constant-time or an O(1) algorithm.

The scheduler supports two priority ranges: standard nicevalues supported on UNIX systems
and internal priorities. The former range from –20 to +19, while the latter extend from 0 to
139. In both cases, lower values correspond to higher priorities. The top 100 (0 to 99)
internal priorities are reserved for real time (RT) tasks, and the bottom 40 (100 to 139) are
assigned to normal tasks. The 40 nice values map to the bottom 40 internal priorities.
Internal priorities of normal tasks can be dynamically varied by the scheduler, whereas nice
values are statistically set by the user. Each internal priority gets an associated run list.

The scheduler uses a heuristic to figure out whether the nature of a process is I/O-intensive
or CPU-intensive. In simple terms, if a task sleeps often, it's likely to be I/O-intensive, but if
it uses its time slice fast, it's CPU-intensive. Whenever the scheduler finds that a task has
demonstrated I/O-bound characteristics, it rewards it by dynamically increasing its internal
priority. CPU-bound characteristics, on the other hand, are punished with negative marks.

The allotted time slice is directly proportional to the priority. A higher priority task gets a
bigger time slice.

A task will not be preempted by the scheduler as long as it has time slice credit. If it yields
the processor before using up its time slice quota, it can roll over the reminder of its slice
when it's run next. Because I/O-bound processes are the ones that often yield the CPU, this
improves interactive performance.

The scheduler supports RT scheduling policies. RT tasks preempt normal (SCHED_OTHER)

tasks. Users of RT policies can override the scheduler's dynamic priority assignments. Unlike
SCHED_OTHER tasks, their priorities are not recalculated by the kernel on-the-fly. RT
scheduling comes in two flavors: SCHED_FIFO and SCHED_RR. They are used for producing

"soft" real-time behavior, rather than stringent "hard" RT guarantees. SCHED_FIFO has no

concept of time slices; SCHED_FIFO tasks run until they sleep-wait for I/O or yield the
processor. SCHED_RR is a round-robin variant of SCHED_FIFO that also assigns time slices to

RT tasks. SCHED_RR tasks with expired slices are appended to the end of the corresponding

priority list.

The scheduler improves SMP performance by using per-CPU run queues and per-CPU
synchronization.

The CFS Scheduler

The Linux scheduler has undergone another rewrite with the 2.6.23 kernel. The Completely Fair Scheduler (CFS)
for the SCHED_OTHER class removes much of the complexities associated with the O(1) scheduler by abandoning
priority arrays, time slices, interactivity heuristics, and the dependency on HZ. CFS's goal is to implement

fairness for all scheduling entities by providing each task the total CPU power divided by the number of running
tasks. Dissecting CFS is beyond the scope of this chapter. Have a look at Documentation/sched-design-CFS.txt
for a brief tutorial.

Response Times

As a user mode driver developer, you have several options to improve your application's response time:

Use RT scheduling policies that give you a finer grain of control than usual. Look at the man pages of
sched_setscheduler() and its relatives for insights into achieving soft RT response times.

If you are using non-RT scheduling, tune the nice values of different processes to achieve the required
performance balance.

If you are using a 2.6.23 or later kernel enabled with the CFS scheduler, you may fine-tune
/proc/sys/kernel/sched_granularity_ns. If you are using a pre-2.6.23 kernel, modify #defines in

kernel/sched.c and include/linux/sched.h to suit your application. Change these values cautiously to
satisfy the needs of your application suite. Usage scenarios of the scheduler are complex. Settings that
delight certain load conditions can depress others, so you may have to experiment by trial and error.

Response times are not solely the domain of the scheduler; they also depend on the solution architecture.
For example, if you mark a busy interrupt handler as fast, it disables other local interrupts frequently and
that can potentially slow down data acquisition and transmission on other IRQs.

Let's implement an example and see how a user mode driver can achieve fast response times by guarding
against indeterminism introduced by scheduling and paging. As you learned in Chapter 2, "A Peek Inside the
Kernel," the RTC is a timer source that can generate periodic interrupts with high precision. Listing 19.1
implements an example that uses interrupt reports from /dev/rtc to perform periodic work with microsecond
precision. The Pentium Time Stamp Counter (TSC) is used to measure response times.

The program in Listing 19.1 first changes its scheduling policy to SCHED_FIFO using sched_setscheduler().

Next, it invokes mlockall() to lock all mapped pages in memory to ensure that swapping won't come in the

way of deterministic timing. Only the super-user is allowed to call sched_setscheduler()and mlockall() and
request RTC interrupts at frequencies greater than 64Hz.

Listing 19.1. Periodic Work with Microsecond Precision

Code View:
#include <linux/rtc.h>

#include <sys/ioctl.h>

#include <sys/time.h>

#include <fcntl.h>

#include <pthread.h>

#include <linux/mman.h>

/* Read the lower half of the Pentium Time Stamp Counter

 using the rdtsc instruction */

#define rdtscl(val) __asm__ __volatile__ ("rdtsc" : "=A" (val))

main()

{

 unsigned long ts0, ts1, now, worst; /* Store TSC ticks */

 struct sched_param sched_p; /* Information related to

 scheduling priority */

 int fd, i=0;

 unsigned long data;

 /* Change the scheduling policy to SCHED_FIFO */

 sched_getparam(getpid(), &sched_p);

 sched_p.sched_priority = 50; /* RT Priority */

 sched_setscheduler(getpid(), SCHED_FIFO, &sched_p);

 /* Avoid paging and related indeterminism */

 mlockall(MCL_CURRENT);

 /* Open the RTC */

 fd = open("/dev/rtc", O_RDONLY);

 /* Set the periodic interrupt frequency to 8192Hz

 This should give an interrupt rate of 122uS */

 ioctl(fd, RTC_IRQP_SET, 8192);

 /* Enable periodic interrupts */

 ioctl(fd, RTC_PIE_ON, 0);

 rdtscl(ts0);

 worst = 0;

 while (i++ < 10000) {

 /* Block until the next periodic interrupt */

 read(fd, &data, sizeof(unsigned long));

 /* Use the TSC to precisely measure the time consumed.

 Reading the lower half of the TSC is sufficient */

 rdtscl(ts1);

 now = (ts1-ts0);

 /* Update the worst case latency */

 if (now > worst) worst = now;

 ts0 = ts1;

 /* Do work that is to be done periodically */

 do_work(); /* NOP for the purpose of this measurement */

 }

 printf("Worst latency was %8ld\n", worst);

 /* Disable periodic interrupts */

 ioctl(fd, RTC_PIE_OFF, 0);

}

The code in Listing 19.1 loops for 10,000 iterations and prints out the worst-case latency that occurred during
execution. The output was 240899 on a Pentium 1.8GHz box, which roughly corresponds to 133 microseconds.
According to the data sheet of the RTC chipset, a timer frequency of 8192Hz should result in a periodic interrupt
rate of 122 microseconds. That's close. Rerun the code under varying loads using SCHED_OTHER instead of

SCHED_FIFO and observe the resultant drift.

You may also run kernel threads in the RT mode. For that, do the following when you start the thread:

static int
my_kernel_thread(void *i)
{

 daemonize();
 current->policy = SCHED_FIFO;

 current->rt_priority = 1;
 /* ... */

}

Chapter 19. Drivers in User Space

In This Chapter

Process Scheduling and Response
Times

553

Accessing I/O Regions

558

Accessing Memory Regions

562

User Mode SCSI
565

User Mode USB
567

User Mode I2C

571

UIO
573

Looking at the Sources

574

Most device drivers prefer to lead a privileged life inside the kernel, but some are at home in the
indeterministic world outside. Several kernel subsystems, such as SCSI, USB, and I2C, offer some
level of support for user mode drivers, so you might be able to control those devices without
writing a single line of kernel code.

In spite of the inclement weather in user land, user mode drivers enjoy certain advantages. They
are easy to develop and debug. You won't have to reboot the system every time you dereference a
dangling pointer. Some user mode drivers will even work across operating systems if the device
subsystem enjoys the services of a standard user-space programming library. Here are some rules
of thumb to help decide whether your driver should reside in user space:

Apply the possibility test. What can be done in user space should probably stay in user
space.

If you have to talk to a large number of slow devices and if performance requirements are
modest, explore the possibility of implementing the drivers in user space. If you have time-
critical performance requirements, stay inside the kernel.

If your code needs the services of kernel APIs, access to kernel variables, or is intertwined
with interrupt handling, it has a strong case for being in kernel space.

If much of what your code does can be construed as policy, user land might be its logical
residence.

If the rest of the kernel needs to invoke your code's services, it's a candidate for staying
inside the kernel.

You can't easily do floating-point arithmetic inside the kernel. Floating-point unit (FPU)
instructions can, however, be used from user space.

That said, you can't accomplish too much from user space. Many important device classes, such as
storage media and network adapters, cannot be driven from user land. But even when a kernel
driver is the appropriate solution, it's a good idea to model and test as much code as you can in
user space before moving it to kernel space. The testing cycle is faster, and it's easier to traverse
all possible code paths and ensure that they are clean.

In this chapter, the term user space driver (or user mode driver) is used in a generic sense that
does not strictly conform to the semantics of a driver implied thus far in the book. An application is
considered to be a user mode driver if it's a candidate for being implemented inside the kernel,
too.

The 2.6 kernel overhauled a subsystem that is of special interest to user space drivers. The new
process scheduler offers huge response-time benefits to user mode code, so let's start with that.

Process Scheduling and Response Times

Many user mode drivers need to perform some work in a time-bound manner. In user space, indeterminism due

to scheduling and paging often come in the way of fast response times, however. To see how you can minimize
the impact of the former hurdle, let's dip into recent Linux schedulers and understand their underlying
philosophy.

The Original Scheduler

In the 2.4 and earlier days, the scheduler used to recalculate scheduling parameters of each task before taking
its pick. The time consumed by the algorithm thus increased linearly with the number of contending tasks in the
system. In other words, it used O(n) time, where n is the number of active tasks. On a system running at high

loads, this translated to significant overhead. The 2.4 algorithm also didn't work very well on SMP systems.

The O(1) Scheduler

Time consumed by an O(n) algorithm depends linearly on the size of its input, and an O(n2) solution depends

quadratically on the length of its input, but an O(1) technique is independent of the input and thus scales well.

The 2.6 scheduler replaced the O(n) algorithm with an O(1) method. In addition to being super-scalable, the
scheduler has built-in heuristics to improve user responsiveness by providing preferential treatment to tasks
involved in I/O activity. Processes are of two kinds: I/O bound and CPU bound. I/O-bound tasks are often sleep-
waiting for device I/O, while CPU-bound ones are workaholics addicted to the processor. Paradoxically, to
achieve fast response times, lazy tasks get incentives from the O(1) scheduler, while studious ones draw flak.
Look at the sidebar "Highlights of the O(1) Scheduler" to find out some of its important features.

Highlights of the O(1) Scheduler

The following are some of the important features of the O(1) scheduler:

The algorithm uses two run queues made up of 140 priority lists: an active queue that holds
tasks that have time slices left and an expired queue that contains processes whose time
slices have expired. When a task finishes its time slice, it's inserted into the expired queue in
sorted order of priority. The active and expired queues are swapped when the former
becomes empty. To decide which process to run next, the scheduler does not navigate
through the entire queue. Instead, it picks that task from the active queue having the
highest priority. The overhead of picking the task thus depends not on the number of active
tasks, but on the number of priorities. This makes it a constant-time or an O(1) algorithm.

The scheduler supports two priority ranges: standard nicevalues supported on UNIX systems
and internal priorities. The former range from –20 to +19, while the latter extend from 0 to
139. In both cases, lower values correspond to higher priorities. The top 100 (0 to 99)
internal priorities are reserved for real time (RT) tasks, and the bottom 40 (100 to 139) are
assigned to normal tasks. The 40 nice values map to the bottom 40 internal priorities.
Internal priorities of normal tasks can be dynamically varied by the scheduler, whereas nice
values are statistically set by the user. Each internal priority gets an associated run list.

The scheduler uses a heuristic to figure out whether the nature of a process is I/O-intensive
or CPU-intensive. In simple terms, if a task sleeps often, it's likely to be I/O-intensive, but if
it uses its time slice fast, it's CPU-intensive. Whenever the scheduler finds that a task has
demonstrated I/O-bound characteristics, it rewards it by dynamically increasing its internal
priority. CPU-bound characteristics, on the other hand, are punished with negative marks.

The allotted time slice is directly proportional to the priority. A higher priority task gets a
bigger time slice.

A task will not be preempted by the scheduler as long as it has time slice credit. If it yields
the processor before using up its time slice quota, it can roll over the reminder of its slice
when it's run next. Because I/O-bound processes are the ones that often yield the CPU, this
improves interactive performance.

The scheduler supports RT scheduling policies. RT tasks preempt normal (SCHED_OTHER)

tasks. Users of RT policies can override the scheduler's dynamic priority assignments. Unlike
SCHED_OTHER tasks, their priorities are not recalculated by the kernel on-the-fly. RT
scheduling comes in two flavors: SCHED_FIFO and SCHED_RR. They are used for producing

"soft" real-time behavior, rather than stringent "hard" RT guarantees. SCHED_FIFO has no

concept of time slices; SCHED_FIFO tasks run until they sleep-wait for I/O or yield the
processor. SCHED_RR is a round-robin variant of SCHED_FIFO that also assigns time slices to

RT tasks. SCHED_RR tasks with expired slices are appended to the end of the corresponding

priority list.

The scheduler improves SMP performance by using per-CPU run queues and per-CPU
synchronization.

The CFS Scheduler

The Linux scheduler has undergone another rewrite with the 2.6.23 kernel. The Completely Fair Scheduler (CFS)
for the SCHED_OTHER class removes much of the complexities associated with the O(1) scheduler by abandoning
priority arrays, time slices, interactivity heuristics, and the dependency on HZ. CFS's goal is to implement

fairness for all scheduling entities by providing each task the total CPU power divided by the number of running
tasks. Dissecting CFS is beyond the scope of this chapter. Have a look at Documentation/sched-design-CFS.txt
for a brief tutorial.

Response Times

As a user mode driver developer, you have several options to improve your application's response time:

Use RT scheduling policies that give you a finer grain of control than usual. Look at the man pages of
sched_setscheduler() and its relatives for insights into achieving soft RT response times.

If you are using non-RT scheduling, tune the nice values of different processes to achieve the required
performance balance.

If you are using a 2.6.23 or later kernel enabled with the CFS scheduler, you may fine-tune
/proc/sys/kernel/sched_granularity_ns. If you are using a pre-2.6.23 kernel, modify #defines in

kernel/sched.c and include/linux/sched.h to suit your application. Change these values cautiously to
satisfy the needs of your application suite. Usage scenarios of the scheduler are complex. Settings that
delight certain load conditions can depress others, so you may have to experiment by trial and error.

Response times are not solely the domain of the scheduler; they also depend on the solution architecture.
For example, if you mark a busy interrupt handler as fast, it disables other local interrupts frequently and
that can potentially slow down data acquisition and transmission on other IRQs.

Let's implement an example and see how a user mode driver can achieve fast response times by guarding
against indeterminism introduced by scheduling and paging. As you learned in Chapter 2, "A Peek Inside the
Kernel," the RTC is a timer source that can generate periodic interrupts with high precision. Listing 19.1
implements an example that uses interrupt reports from /dev/rtc to perform periodic work with microsecond
precision. The Pentium Time Stamp Counter (TSC) is used to measure response times.

The program in Listing 19.1 first changes its scheduling policy to SCHED_FIFO using sched_setscheduler().

Next, it invokes mlockall() to lock all mapped pages in memory to ensure that swapping won't come in the

way of deterministic timing. Only the super-user is allowed to call sched_setscheduler()and mlockall() and
request RTC interrupts at frequencies greater than 64Hz.

Listing 19.1. Periodic Work with Microsecond Precision

Code View:
#include <linux/rtc.h>

#include <sys/ioctl.h>

#include <sys/time.h>

#include <fcntl.h>

#include <pthread.h>

#include <linux/mman.h>

/* Read the lower half of the Pentium Time Stamp Counter

 using the rdtsc instruction */

#define rdtscl(val) __asm__ __volatile__ ("rdtsc" : "=A" (val))

main()

{

 unsigned long ts0, ts1, now, worst; /* Store TSC ticks */

 struct sched_param sched_p; /* Information related to

 scheduling priority */

 int fd, i=0;

 unsigned long data;

 /* Change the scheduling policy to SCHED_FIFO */

 sched_getparam(getpid(), &sched_p);

 sched_p.sched_priority = 50; /* RT Priority */

 sched_setscheduler(getpid(), SCHED_FIFO, &sched_p);

 /* Avoid paging and related indeterminism */

 mlockall(MCL_CURRENT);

 /* Open the RTC */

 fd = open("/dev/rtc", O_RDONLY);

 /* Set the periodic interrupt frequency to 8192Hz

 This should give an interrupt rate of 122uS */

 ioctl(fd, RTC_IRQP_SET, 8192);

 /* Enable periodic interrupts */

 ioctl(fd, RTC_PIE_ON, 0);

 rdtscl(ts0);

 worst = 0;

 while (i++ < 10000) {

 /* Block until the next periodic interrupt */

 read(fd, &data, sizeof(unsigned long));

 /* Use the TSC to precisely measure the time consumed.

 Reading the lower half of the TSC is sufficient */

 rdtscl(ts1);

 now = (ts1-ts0);

 /* Update the worst case latency */

 if (now > worst) worst = now;

 ts0 = ts1;

 /* Do work that is to be done periodically */

 do_work(); /* NOP for the purpose of this measurement */

 }

 printf("Worst latency was %8ld\n", worst);

 /* Disable periodic interrupts */

 ioctl(fd, RTC_PIE_OFF, 0);

}

The code in Listing 19.1 loops for 10,000 iterations and prints out the worst-case latency that occurred during
execution. The output was 240899 on a Pentium 1.8GHz box, which roughly corresponds to 133 microseconds.
According to the data sheet of the RTC chipset, a timer frequency of 8192Hz should result in a periodic interrupt
rate of 122 microseconds. That's close. Rerun the code under varying loads using SCHED_OTHER instead of

SCHED_FIFO and observe the resultant drift.

You may also run kernel threads in the RT mode. For that, do the following when you start the thread:

static int
my_kernel_thread(void *i)
{

 daemonize();
 current->policy = SCHED_FIFO;

 current->rt_priority = 1;
 /* ... */

}

Accessing I/O Regions

PC-compatible systems have 64K I/O ports, all of which may be driven from user space. User access to I/O
ports on Linux is controlled by two functions: ioperm() and iopl(). ioperm() controls access permissions to
the first 0x3ff ports. iopl() changes the I/O privilege level of the calling process, thus allowing among other

things, unrestricted access to all ports. Only the super-user can invoke both these functions.

To write data to an I/O port, use outb(), outw(), outl(), or their cousins. To read data from a port, use inb(),

inw(), inl(), or their relatives. Let's implement a simple program that reads the seconds ticking inside the RTC

chip. I/O regions in the PC CMOS, of which the RTC is a part, are accessed via an index port (0x70) and a data
port (0x71), as shown in Table 5.1 of Chapter 5, "Character Drivers." To read a byte of data from offset off

within an I/O address range, write off to the index port and read the associated data from the data port.

Listing 19.2 reads the seconds field of the RTC; but to use it to obtain data from other I/O regions, change the
arguments passed to dump_port() suitably.

Listing 19.2. Utility to Dump Bytes from an I/O Region

Code View:
#include <linux/ioport.h>

void

dump_port(unsigned char addr_port, unsigned char data_port,

 unsigned short offset, unsigned short length)

{

 unsigned char i, *data;

 if (!(data = (unsigned char *)malloc(length))) {

 perror("Bad Malloc\n");

 exit(1);

 }

 /* Write the offset to the index port

 and read data from the data port */

 for(i=offset; i<offset+length; i++) {

 outb(i, addr_port);

 data[i-offset] = inb(data_port);

 }

 /* Dump */

 for(i=0; i<length; i++)

 printf("%02X ", data[i]);

 free(data);

}

int

main(int argc, char *argv[])

{

 /* Get access permissions */

 if(iopl(3) < 0) {

 perror("iopl access error\n");

 exit(1);

 }

 dump_port(0x70, 0x71, 0x0, 1);

}

You may also accomplish the same task by operating on /dev/port. This will incur a performance penalty
because code flow has to pass through a kernel driver, but you have the flexibility to control access permissions
on the device node without using iopl() or ioperm(). Here's the /dev/port equivalent of Listing 19.2:

#include <unistd.h>

#include <fcntl.h>

int

main(int argc, char *argv[])
{

 char seconds=0;

 char data = 0;
 int fd = open("/dev/port", O_RDWR);

 lseek(fd, 0x70, SEEK_SET);

 write(fd, &data, 1);

 lseek(fd, 0x71, SEEK_SET);
 read(fd, &seconds, 1);
 printf("%02X ", seconds);

}

In Chapter 5, you learned to talk to your computer's parallel port via a kernel driver. Let's now implement a
sample program that interacts with a parallel port device from user space. The kernel's parallel port subsystem
provides a character driver called ppdev that exports parallel port access to user land. Ppdev creates device
nodes, /dev/parportX, where X is the parallel port number. Applications can open /dev/parportX, exchange data
via read()/write() system calls, and issue a variety of ioctl() commands. Using kernel interfaces, such as
ppdev, is preferable to directly operating over I/O ports using ioperm(), iopl(), or /dev/port. The former

technique is safer, works across architectures, and functions over different device form factors such as USB-to-
parallel converters.

Consider the simple LED board that you used in Chapter 5. It had 8 LEDs interfaced to pins 2 to 9 on a standard
25-pin parallel connector. Listing 19.3 implements a simple user application that glows alternate diodes on this
parallel port LED board using the ppdev interface. It's the user-space equivalent of the kernel driver developed
in Listing 5.6 of Chapter 5.

Listing 19.3. Controlling a Parallel Port LED Board from User Space

Code View:
#include <stdio.h>

#include <linux/ioctl.h>

#include <linux/parport.h>

#include <linux/ppdev.h>

#include <fcntl.h>

int main(int argc, char *argv[])

{

 int led_fd;

 char data = 0xAA; /* Bit pattern to glow alternate LEDs */

 /* Open /dev/parport0. This assumes that the LED connector board

 is connected to the first parallel port on your computer */

 if ((led_fd = open("/dev/parport0", O_RDWR)) < 0) {

 perror("Bad Open\n");

 exit(1);

 }

 /* Claim the port */

 if (ioctl(led_fd, PPCLAIM)) {

 perror("Bad Claim\n");

 exit(2);

 }

 /* Set pins to forward direction and write a

 byte to glow alternate LEDs */

 if (ioctl(led_fd, PPWDATA, &data)) {

 perror("Bad Write\n");

 exit(3);

 }

 /* Release the port */

 if (ioctl(led_fd, PPRELEASE)) {

 perror("Bad Release\n");

 exit(4);

 }

 /* Close /dev/parport0 */

 close(led_fd);

}

Accessing Memory Regions

Memory mapping (or mmaping) a file associates it with an area of user virtual memory. Because Linux treats
devices as files, you can also map device memory to RAM and directly operate on it from user space. Here are
some mmap() users on Linux:

Graphical user interfaces, such as X Windows (www.xfree86.org) and SVGAlib (www.svgalib.org), mmap
video memory and directly access graphics hardware.

1.

Madplay is an integer-only MP3 player that runs on several architectures. Memory mapping improves
throughput, so madplay mmaps MP3 files for faster access. This helps maintain the correct bit rates
necessary for high-quality music playback.

2.

MPEG (Moving Picture Experts Group) decoders play movies by directly operating on mmapped frame
buffer memory.

3.

The prototype of the mmap() system call looks like this:

void *mmap(void *start, size_t length, int prot, int flag,

 int fd, off_t offset);

This requests the kernel to associate the device file specified by the file descriptor fd to a chunk of user memory

beginning at start. (start is only a preference and is usually set to 0; the actual associated memory is
returned by mmap().) The kernel maps length bytes of memory starting from offset in the specified file. prot

specifies the desired access protection, and flag describes the type of the mapping. The MAP_SHARED flag
mirrors your modifications to other users of the same memory region, whereas MAP_PRIVATE keeps your

changes to yourself.

All mmapped pages need not be present in physical memory. Areas not being accessed can be in swap space
from where they are paged in on demand. Underlying device drivers may control the semantics of the mmap()

system call by implementing an mmap() method.

Listing 19.4 is an image display program that illustrates usage of mmap() as follows:

Mmaps a frame buffer. (We discussed frame buffer drivers in Chapter 12, "Video Drivers.")

Mmaps an image file.

Transfers the latter to the former after performing necessary transformations depending on the properties
of the image file (not shown in the listing).

Listing 19.4. Displaying an Image Using Mmap

Code View:

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/mman.h> /* For definition of mmap() */

#include <linux/fb.h> /* For frame buffer structures and ioctls */

int

main(int argc, char *argv[])

{

 int imagefd, fbfd; /* File descriptors */

 char *imagebuf, *fbbuf; /* mmap buffers */

 struct fb_var_screeninfo vinfo; /* Variable Screen info */

 struct stat statbuf; /* Image info */

 int fbsize; /* Frame buffer size */

 /* Open image file */

 if ((imagefd = open(argv[1], O_RDONLY)) < 0) {

 perror("Bad image open\n");

 exit(1);

 }

 /* Get the size of the image file */

 if (fstat(imagefd, &statbuf) < 0) {

 perror("Bad fstat\n");

 exit(1);

 }

 /* mmap the image file */

 if ((imagebuf = mmap(0, statbuf.st_size, PROT_READ, MAP_SHARED,

 imagefd, 0)) == (char *) -1){

 perror("Bad image mmap\n");

 exit(1);

 }

 /* Open video memory */

 if ((fbfd = open("/dev/fb0", O_RDWR)) < 0) {

 perror("Bad frame buffer open\n");

 exit(1);

 }

 /* Get screen attributes such as resolution and depth */

 if (ioctl(fbfd, FBIOGET_VSCREENINFO, &vinfo)) {

 perror("Bad vscreeninfo ioctl\n");

 exit(1);

 }

 /* Size of video memory =

 (X-resolution * Y-resolution * Bytes per pixel) */

 fbsize = (vinfo.xres * vinfo.yres * vinfo.bits_per_pixel)/8;

 /* mmap the video memory */

 if ((fbbuf = mmap(0, fbsize, PROT_WRITE, MAP_SHARED, fbfd, 0))

 == (char *) -1){

 perror("Bad frame buffer mmap\n");

 exit(1);

 }

 /* Transfer imagebuf to fbbuf after applying transformations

 dependent on the format, resolution, depth, data offset,

 and other properties of the image file. Not implemented in

 this listing */

 copy_image_to_fb();

 msync(fbbuf, fbsize, MS_SYNC); /* Flush changes to device */

 /* ... */

 /* Unmap frame buffer memory */

 munmap(fbbuf, fbsize);

 close(fbfd);

 /* Unmap image file */

 munmap(imagebuf, statbuf.st_size);

 close(imagefd);

}

User Mode SCSI

The SCSI Generic (sg) interface lets you directly dispatch SCSI commands from user space. The sg driver
essentially exports a char interface, so applications can use the open(), close(), read(), write(), ioctl(),
poll(), fcntl(), and mmap() system calls to talk to the underlying device. Drivers for SCSI devices such as CD

burners and scanners are implemented in user space over sg. Look at the sources of cdrtools (previously called
cdrecord) available from http://freshmeat.net/projects/cdrecord/ for a real-life sg user.

Let's learn how to use the sg interface with the help of an example. Listing 19.5 implements a user program
that sends a READ_CAPACITY SCSI command to a storage device, such as a SCSI hard disk or a USB mass

storage drive to glean its data capacity. The READ_CAPACITY command consists of 10 bytes, starting with the
command code 0x25. For the purpose of this example, let's set the rest of the bytes to zero. When a SCSI

device receives a READ_CAPACITY command, it responds with an 8-byte reply; the top 4 bytes contain the

address of the last logical block, and the bottom 4 bytes contain the block length.

sg device nodes are named /dev/sgX, where X is the device number, so Listing 19.5 opens /dev/sg0, which is
assumed to be the sg char node corresponding to your SCSI storage device. It then sets about populating the
sg_io_hdr_t structure, which is the main data structure that sg users have to manage. The read(), write(),

and ioctl()calls expect a pointer to this structure (defined in /usr/include/scsi/sg.h) as an argument. The cmdp
field of sg_io_hdr_t is set to the address of the command block that holds the 10-byte READ_CAPACITY

command. The dxferp field supplies the address of a buffer that will carry the response data arriving from the
device. The sbp field contains the address of a sense buffer that will return the status of the requested

operation. The interface_id has to be set to S, and timeout holds the wait time in milliseconds before sg gives
up on the command.

SG_IO is an oft-used ioctl command supported by sg. Internally, it writes a command to the device, waits for a
response, and reads the received reply into a user-supplied buffer. In Listing 19.5, SG_IO issues a

READ_CAPACITY command and reads the 8-byte response into rcap_buff[]. The program calculates and prints
the disk capacity by interpreting the data in rcap_buff[].

Listing 19.5. Obtaining Disk Capacity via SCSI Generic

Code View:
#include <stdio.h>

#include <fcntl.h>

#include <sys/ioctl.h>

#include <scsi/sg.h>

#define RCAP_COMMAND 0x25

#define RCAP_COMMAND_LEN 10

#define RCAP_REPLY_LEN 8

int

main(int argc, char *argv[])

{

 int fd, i;

 /* READ_CAPACITY command block */

 unsigned char RCAP_CmdBlk[RCAP_COMMAND_LEN]=

 {RCAP_COMMAND, 0,0,0,0,0,0,0,0,0};

 sg_io_hdr_t sg_io;

 unsigned char rcap_buff[RCAP_REPLY_LEN];

 unsigned int lastblock, blocksize;

 unsigned long long disk_cap;

http://freshmeat.net/projects/cdrecord/

 unsigned char sense_buf[32];

 /* Open the sg device */

 if ((fd = open("/dev/sg0", O_RDONLY)) < 0) {

 printf("Bad Open\n");

 exit(1);

 }

 /* Initialize */

 memset(&sg_io, 0, sizeof(sg_io_hdr_t));

 /* Command block address and length */

 sg_io.cmdp = RCAP_CmdBlk;

 sg_io.cmd_len = RCAP_COMMAND_LEN;

 /* Response buffer address and length */

 sg_io.dxferp = rcap_buff;

 sg_io.dxfer_len = RCAP_REPLY_LEN;

 /* Sense buffer address and length */

 sg_io.sbp = sense_buf;

 sg_io.mx_sb_len = sizeof(sense_buf);

 /* Control information */

 sg_io.interface_id = 'S';

 sg_io.dxfer_direction = SG_DXFER_FROM_DEV;

 sg_io.timeout = 10000; /* 10 seconds */

 /* Issue the SG_IO ioctl */

 if (ioctl(fd, SG_IO, &sg_io) < 0) {

 printf("Bad SG_IO\n");

 exit(1);

 }

 /* Obtain results */

 if ((sg_io.info & SG_INFO_OK_MASK) == SG_INFO_OK) {

 /* Address of last disk block */

 lastblock = ((rcap_buff[0]<<24)|(rcap_buff[1]<<16)|

 (rcap_buff[2]<<8)|(rcap_buff[3]));

 /* Block size */

 blocksize = ((rcap_buff[4]<<24)|(rcap_buff[5]<<16)|

 (rcap_buff[6]<<8)|(rcap_buff[7]));

 /* Calculate disk capacity */

 disk_cap = (lastblock+1);

 disk_cap *= blocksize;

 printf("Disk Capacity = %llu Bytes\n", disk_cap);

 }

 close(fd);

}

For the full list of SG_IO commands, take a look at include/scsi/scsi.h and drivers/scsi/sg.c. Read the Linux SCSI

Generic HOWTO for an in-depth explanation of the sg interface. Download the sg3_utils package from
http://sg.torque.net/sg/sg3_utils.html and browse the sources to find several useful programs that operate over
sg.

http://sg.torque.net/sg/sg3_utils.html

User Mode USB

The usbfs virtual filesystem allows raw access to USB devices from user space. Usbfs is usually mounted over
/proc/bus/usb/. The usbfs tree contains directories corresponding to each USB controller (or bus) on your
system. Each of these directories, in turn, contains nodes corresponding to USB devices present on that bus.

To better understand usbfs, let's look at a system with an Intel ICH4 South Bridge chipset. As you learned in
Chapter 11, "Universal Serial Bus," USB controllers are part of the South Bridge chipset on PC systems. The
ICH4 supports one USB EHCI (high-speed USB 2.0) controller and three USB UHCI controllers and can connect
to six physical USB ports. The EHCI controller can converse with all six ports, and the three UHCI controllers can
talk to two ports each. Let's call the EHCI controller bus1 and the three UHCI controllers bus2, bus3, and bus4,
respectively. Now assume that the system has only two physical USB ports and that they are connected to the

UHCI controller corresponding to bus3. (The symbol attaches comments to command output.)

Code View:
bash> ls –lR /proc/bus/usb

/proc/bus/usb:
total 0

dr-xr-xr-x 2 root root 0 Dec 2 12:44 001 EHCI. Can talk to
 any physical port

dr-xr-xr-x 2 root root 0 Dec 2 12:44 002 No corresponding
 physical ports

dr-xr-xr-x 2 root root 0 Dec 2 12:44 003 UHCI bus for the 2

 physical USB ports
 on this system

dr-xr-xr-x 2 root root 0 Dec 2 12:44 004 No corresponding
 physical ports

-r--r--r-- 1 root root 0 Dec 2 20:02 devices

/proc/bus/usb/001:

total 0

-rw-r--r-- 1 root root 43 Dec 2 12:44 001 Root Hub (bus1)

/proc/bus/usb/002:

total 0

-rw-r--r-- 1 root root 43 Dec 2 12:44 001 Root Hub (bus2)

/proc/bus/usb/003:

total 0

-rw-r--r-- 1 root root 43 Dec 2 12:44 001 Root Hub (bus3)

/proc/bus/usb/004:
total 0

-rw-r--r-- 1 root root 43 Dec 2 12:44 001 Root Hub (bus4)

Let's connect a full-speed Nikon digital camera and a high-speed Seagate USB 2.0 hard disk to the two USB
ports on the system. First, take a peek at /proc/bus/usb/devices and find the relevant entries:

Code View:
bash> ls –lR /proc/bus/usb/devices

...

T: Bus=03 Lev=01 Prnt=01 Port=01 Cnt=01 Dev#= 5 Spd=12 MxCh= 0

D: Ver= 1.10 Cls=00(>ifc) Sub=00 Prot=00 MxPS=64 #Cfgs= 1
P: Vendor=04b0 ProdID=0205 Rev= 1.00

S: Manufacturer=NIKON

S: Product=NIKON DSC E5200
S: SerialNumber=2507597

C:* #Ifs= 1 Cfg#= 1 Atr=c0 MxPwr= 2mA

I: If#= 0 Alt= 0 #EPs= 2 Cls=08(stor.) Sub=06 Prot=50
 Driver=usb-storage

E: Ad=01(O) Atr=02(Bulk) MxPS= 64 Ivl=0ms

E: Ad=82(I) Atr=02(Bulk) MxPS= 64 Ivl=0ms

...

T: Bus=01 Lev=01 Prnt=01 Port=02 Cnt=01 Dev#= 12 Spd=480 MxCh= 0
D: Ver= 2.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS=64 #Cfgs= 1

P: Vendor=0bc2 ProdID=0501 Rev= 0.01

S: Manufacturer=Seagate
S: Product=USB Mass Storage

S: SerialNumber=000000062459

C:* #Ifs= 1 Cfg#= 1 Atr=c0 MxPwr= 0mA
I: If#= 0 Alt= 0 #EPs= 2 Cls=08(stor.) Sub=06 Prot=50

 Driver=usb-storage
E: Ad=02(O) Atr=02(Bulk) MxPS= 512 Ivl=0ms
E: Ad=88(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms

Look at the T: lines in the preceding output, which display the topology. As expected, the hard disk has arrived
on the EHCI bus, bus1, and the camera has appeared on the UHCI bus, bus3. This is how the usbfs tree looks
now:

Code View:
bash> ls –lR /proc/bus/usb

/proc/bus/usb:
total 0

dr-xr-xr-x 2 root root 0 Dec 2 12:44 001
dr-xr-xr-x 2 root root 0 Dec 2 12:44 002

dr-xr-xr-x 2 root root 0 Dec 2 12:44 003
dr-xr-xr-x 2 root root 0 Dec 2 12:44 004
-r--r--r-- 1 root root 0 Dec 2 19:51 devices

/proc/bus/usb/001: EHCI: bus1

total 0

-rw-r--r-- 1 root root 43 Dec 2 12:44 001

-rw-r--r-- 1 root root 50 Dec 2 19:51 007 High-speed disk

/proc/bus/usb/002: UHCI: bus2

total 0
-rw-r--r-- 1 root root 43 Dec 2 12:44 001

/proc/bus/usb/003: UHCI: bus3

total 0

-rw-r--r-- 1 root root 43 Dec 2 12:44 001

-rw-r--r-- 1 root root 50 Dec 2 19:16 003 Full-speed camera

/proc/bus/usb/004: UHCI: bus4

total 0

-rw-r--r-- 1 root root 43 Dec 2 12:44 001

The usbfs files corresponding to plugged-in devices contain the associated USB device and configuration
descriptors. In the preceding example, read /proc/bus/usb/003/003 to get descriptor information for the
camera and /proc/bus/usb/001/007 for the descriptor associated with the hard disk. Managing usbfs files is not
straightforward however, because the device filenames get reused after a device is plugged out. The solution is
to use the libusb library, which uses usbfs under the hood. Using libusb instead of directly operating on usbfs
has another benefit: Your driver is likely to work unchanged on other operating systems that support this
library. If you don't find libusb bundled along with your distribution, download its sources from
http://libusb.sourceforge.net/. The full list of USB access functions offered by this library is available under the
doc/ directory of the libusb sources.

Listing 19.6 implements a skeletal user space driver for the digital camera using an oft-used libusb
programming template. The camera's vendor ID (0x04b0) and device ID (0x0205) are obtained from the

/proc/bus/usb/devices output shown previously.

Listing 19.6. A Skeletal User Space USB Driver Using libusb

Code View:
#include <usb.h> /* From the libusb package */

#define DIGICAM_VENDOR_ID 0x04b0 /* From /proc/bus/usb/devices */

#define DIGICAM_PRODUCT_ID 0x0205 /* From /proc/bus/usb/devices */

int

main(int argc, char *argv[])

{

 struct usb_dev_handle *mydevice_handle;

 struct usb_bus *usb_bus;

 struct usb_device *mydevice;

 /* Initialize libusb */

 usb_init();

 usb_find_buses();

 usb_find_devices();

 /* Walk the bus */

 for (usb_bus = usb_buses; usb_bus; usb_bus = usb_bus->next) {

 for (mydevice = usb_bus->devices; mydevice;

 mydevice = mydevice->next) {

 if ((mydevice->descriptor.idVendor == DIGICAM_VENDOR_ID) &&

 (mydevice->descriptor.idProduct == DIGICAM_PRODUCT_ID)) {

 /* Open the device */

 mydevice_handle = usb_open(mydevice);

 /* Send commands to the camera. This is the heart of the

 driver. Getting information about the USB control

 messages to which your device responds is often a

 challenge since many vendors do not readily divulge

 hardware details */

 usb_control_msg(mydevice_handle, ...);

 /* ... */

http://libusb.sourceforge.net/

 /* Close the device */

 usb_close(mydevice_handle);

 }

 }

 }

}

User Mode I2C

In Chapter 8, "The Inter-Integrated Circuit Protocol," you learned to develop kernel mode drivers for I2C
devices; but sometimes, when you need to enable support for a large number of slow I2C devices, it makes
sense to drive them from user space. The i2c-dev module enables the development of user mode I2C/SMBus
device drivers. User-space code can access I2C host adapters via device nodes. To operate on the nth adapter,
open /dev/i2c-n. After you have a file descriptor tied to a host adapter device node, you can command it
through ioctls to connect to specific slave devices attached to it. You can then use the services of a family of
data access routines to exchange data with the slaves.

Listing 19.7 is a simple user mode driver that performs common operations on an I2C EEPROM from user space.
The EEPROM is the same as the one discussed in Chapter 8 and has two memory banks and a slave address
corresponding to each bank. The listing uses inline functions from i2c-dev.h to operate on device nodes
associated with the banks. Get this header file from the lm-sensors package (also discussed in Chapter 8)
downloadable from www.lm-sensors.org. This file contains user space equivalents for all kernel space I2C access
functions listed in Table 8.1 of Chapter 8.

Listing 19.7. A User Space I2C/SMBus Driver

Code View:
#include <linux/i2c.h>

#include <linux/i2c-dev.h>

/* Bus addresses of the memory banks */

#define SLAVE_ADDR1 0x60

#define SLAVE_ADDR2 0x61

int main(int argc, char *argv[])

{

 /* Open the host adapter */

 if ((smbus_fp = open("/dev/i2c-0", O_RDWR)) < 0) {

 exit(1);

 }

 /* Connect to the first bank */

 if (ioctl(smbus_fp, I2C_SLAVE, EEPROM_SLAVE_ADDR1) < 0) {

 exit(1);

 }

 /* ... */

 /* Dump data from the device */

 for (reg=0; reg < length; reg++) {

 /* See i2c-dev.h from the lm-sensors package for the

 implementation of the following inline function */

 res = i2c_smbus_read_byte_data(smbus_fp, (unsigned char) reg);

 if (res < 0) {

 exit(1);

 }

 /* Dump data */

 /* ... */

 }

 /* ... */

 /* Switch to bank 2 */

 if (ioctl(smbus_fp, I2C_SLAVE, SLAVE_ADDR2) < 0) {

 exit(1);

 }

 /* Clear bank 2 */

 for (reg=0; reg < length; reg+=2){

 i2c_smbus_write_word_data(smbus_fp, (unsigned char) reg, 0x0);

 }

 /* ... */

 close(smbus_fp);

}

UIO

Starting with the 2.6.23 release, the kernel includes a subsystem called UIO (Userspace IO) that eases the
implementation of some user-space drivers. UIO's intent is to allow the development of a bare-bones kernel
driver for tasks such as interrupt handling, and push most of the device I/O logic to user space. UIO is especially
relevant for some classes of industrial I/O cards.

Look inside drivers/uio/ for the UIO sources. A user guide is available under Documentation/DocBook/uio-
howto.tmpl. Exploring UIO is beyond the scope of this chapter.

Looking at the Sources

The Linux scheduler lives in kernel/sched.c. The SCSI generic implementation is in drivers/scsi/sg.c, and
drivers/usb/core/devio.c is responsible for supporting user space USB drivers. The i2c-dev driver that enables
support for user mode I2C programming resides in drivers/i2c/i2c-dev.c.

Table 19.1 contains the main data structures used in this chapter, and Table 19.2 lists the functions that we
used to aid user mode driver development.

Table 19.1. Summary of Data Structures

Data Structure Location (User Space) Description

sched_param /usr/include/bits/sched.h Information related to scheduling priorities.

fb_var_screeninfo /usr/include/linux/fb.h Used to operate on frame buffers. Contains
variable screen information such as resolution
and pixclock. See Chapter 11 for more details.

sg_io_hdr_t /usr/include/scsi/sg.h Information to manage SCSI generic devices.

usb_dev_handle
usb_bus

usb_device

Header files in the libusb
package.

Structures to operate on USB devices from user
space.

Table 19.2. Summary of User-Space Functions

User-Space Function Description

sched_getparam() Obtains scheduling parameters associated with a
given process

sched_setscheduler() Sets scheduling parameters associated with a
given process

mlockall() Locks pages of the calling process in memory and
thus avoids page faults

ioperm() Controls access permissions to the first 0x3FF
I/O ports

iopl() Controls access privileges to all I/O ports

outb()/outw()/outl() Outputs a byte/word/long to a specified port

inb()/inw()/inl() Inputs a byte/word/long from a specified port

mmap() Associates a file or a device address region with
a chunk of user virtual memory

msync() Flushes changes made to an mmap-ed memory
area

munmap() Reverse of mmap()

usb_init()

usb_find_buses()

Functions provided by the libusb library to help
you operate over usbfs

User-Space Function Description usb_find_buses()

usb_find_devices()

usb_open()

usb_control_msg()

usb_close()

i2c_smbus_read_byte_data()

i2c_smbus_write_word_data()

User-space I2C/SMBus data access routines
available as part of the lm-sensors package

usb_find_buses()

usb_find_devices()

usb_open()

usb_control_msg()

usb_close()

i2c_smbus_read_byte_data()

i2c_smbus_write_word_data()

User-space I2C/SMBus data access routines
available as part of the lm-sensors package

Chapter 20. More Devices and Drivers

In This Chapter

ECC Reporting

578

Frequency Scaling

583

Embedded Controllers

584

ACPI
585

ISA and MCA

587

FireWire
588

Intelligent Input/Output

589

Amateur Radio
590

Voice over IP
590

High-Speed Interconnects

591

So far, we have devoted a full chapter to each major device driver class, but there are several
subdirectories under drivers/ that we haven't yet descended into. In this chapter let's venture
inside some of them at a brisk pace.

ECC Reporting

Several memory controllers contain special silicon to measure the fidelity of stored data using error correcting
codes (ECCs). The Error Detection And Correction (EDAC) driver subsystem announces occurrences of memory
error events generated by ECC-aware memory controllers. Typical ECC DRAM chips have the capability to
correct single-bit errors (SBEs) and detect multibit errors (MBEs). In EDAC parlance, the former errors are
correctable errors (CEs), whereas the latter are uncorrectable errors (UEs).

ECC operations are transparent to the operating system. This means that if your DRAM controller supports ECC,
error correction and detection occurs silently without operating system participation. EDAC's task is to report
such events and allow users to fashion error handling policies (such as replace a suspect DRAM chip).

The EDAC driver subsystem consists of the following:

A core module called edac_mc that provides a set of library routines.

Separate drivers for interacting with supported memory controllers. For example, the driver module that
works with the memory controller that is part of the Intel 82860 North Bridge is called i82860_edac.

EDAC reports errors via files in the sysfs directory, /sys/devices/system/edac/. It also generates messages that
can be gleaned from the kernel error log.

The layout of DRAM chips is specified in terms of the number of chip-selects emanating from the memory
controller and the data-transfer width (channels) between the memory controller and the CPU. The number of
rows in the DRAM chip array depends on the former, whereas the number of columns hinge on the latter. One of
the main aims of EDAC is to point the needle of suspicion at problem DRAM chips, so the EDAC sysfs node
structure is designed according to the physical chip layout: /sys/devices/system/edac/mc/mcX/csrowY/
corresponds to chip-select row Y in memory controller X. Each such directory contains details such as the
number of detected CEs (ce_count), UEs (ue_count), channel location, and other attributes.

Device Example: ECC-Aware Memory Controller

Let's add EDAC support for a yet-unsupported memory controller. Assume that you're putting Linux onto a
medical grade device that is an embedded x86 derivative. The North Bridge chipset (which includes the memory
controller as discussed in the sidebar "The North Bridge" in Chapter 12, "Video Drivers") on your board is the
Intel 855GME that is capable of ECC reporting. All DRAM banks connected to the 855GME on this system are
ECC-enabled chips because this is a life-critical device. EDAC does not yet support the 855GME, so let's take a
stab at implementing it.

ECC DRAM controllers have two major ECC-related registers: an error status register and an error address
pointer register, as shown in Table 20.1. When an ECC error occurs, the former contains the status (whether the
error is an SBE or an MBE), whereas the latter contains the physical address where the error occurred. The
EDAC core periodically checks these registers and reports results to user space via sysfs. From a configuration
standpoint, all devices inside the 855GME appear to be on PCIbus 0. The DRAM controller resides on device 0 of
this bus. DRAM interface control registers (including the ECC-specific registers) map into the corresponding PCI
configuration space. To add EDAC support for the 855GME, add hooks to read these registers, as shown in
Listing 20.1. Refer back to Chapter 10, "Peripheral Component Interconnect," for explanations on PCI device
driver methods and data structures.

Table 20.1. ECC-Related Registers on the DRAM Controller

ECC-Specific Registers Residing in the
DRAM Controller's PCI Configuration
Space

Description

I855_ERRSTS_REGISTER The error status register, which signals
occurrence of an ECC error. Shows
whether the error is an SBE or an MBE.

I855_EAP_REGISTER The error address pointer register, which
contains the physical address where the
most recent ECC error occurred.

Listing 20.1. An EDAC Driver for the 855GME

Code View:
/* Based on drivers/edac/i82860_edac.c */

#define I855_PCI_DEVICE_ID 0x3584 /* PCI Device ID of the memory

 controller in the 855 GME */

#define I855_ERRSTS_REGISTER 0x62 /* Error Status Register's offset

 in the PCI configuration space */

#define I855_EAP_REGISTER 0x98 /* Error Address Pointer Register's

 offset in the PCI configuration space */

struct i855_error_info {

 u16 errsts; /* Error Type */

 u32 eap; /* Error Location */

};

/* Get error information */

static void

i855_get_error_info(struct mem_ctl_info *mci,

 struct i855_error_info *info)

{

 struct pci_dev *pdev;

 pdev = to_pci_dev(mci->dev);

 /* Read error type */

 pci_read_config_word(pdev, I855_ERRSTS_REGISTER, &info->errsts);

 /* Read error location */

 pci_read_config_dword(pdev, I855_EAP_REGISTER, &info->eap);

}

/* Process errors */

static int

i855_process_error_info(struct mem_ctl_info *mci,

 struct i855_error_info *info,

 int handle_errors)

{

 int row;

 info->eap >>= PAGE_SHIFT;

 row = edac_mc_find_csrow_by_page(mci, info->eap); /* Find culprit row */

 /* Handle using services provided by the EDAC core.

 Populate sysfs, generate error messages, and so on */

 if (is_MBE()) { /* is_MBE() looks at I855_ERRSTS_REGISTER and checks

 for an MBE. Implementation not shown */

 edac_mc_handle_ue(mci, info->eap, 0, row, "i855 UE");

 } else if (is_SBE()) { /* is_SBE() looks at I855_ERRSTS_REGISTER and checks

 for an SBE. Implementation not shown */

 edac_mc_handle_ce(mci, info->eap, 0, info->derrsyn, row, 0,

 "i855 CE");

 }

 return 1;

}

/* This method is registered with the EDAC core from i855_probe() */

static void

i855_check(struct mem_ctl_info *mci)

{

 struct i855_error_info info;

 i855_get_error_info(mci, &info);

 i855_process_error_info(mci, &info, 1);

}

/* The PCI driver probe method, part of the pci_driver structure */

static int

i855_probe(struct pci_dev *pdev, int dev_idx)

{

 struct mem_ctl_info *mci;

 /* ... */

 pci_enable_device(pdev);

 /* Allocate control memory for this memory controller.

 The 3 arguments to edac_mc_alloc() correspond to the

 amount of requested private storage, number of chip-select

 rows, and number of channels in your memory layout */

 mci = edac_mc_alloc(0, CSROWS, CHANNELS);

 /* ... */

 mci->edac_check = i855_check; /* Supply the check method to the

 EDAC core */

 /* Do other memory controller initializations */

 /* ... */

 /* Register this memory controller with the EDAC core */

 edac_mc_add_mc(mci, 0);

 /* ... */

}

/* Remove method */

static void __devexit

i855_remove(struct pci_dev *pdev)

{

 struct mem_ctl_info *mci = edac_mc_find_mci_by_pdev(pdev);

 if (mci && !edac_mc_del_mc(mci)) {

 edac_mc_free(mci); /* Free memory for this controller. Reverse

 of edac_mc_alloc() */

 }

}

/* PCI Device ID Table */

static const struct pci_device_id i855_pci_tbl[] __devinitdata = {

 {PCI_VEND_DEV(INTEL, I855_PCI_DEVICE_ID),

 PCI_ANY_ID, PCI_ANY_ID, 0, 0,},

 {0,},

};

MODULE_DEVICE_TABLE(pci, i855_pci_tbl);

/* pci_driver structure for this device.

 Re-visit Chapter 10 for a detailed explanation */

static struct pci_driver i855_driver = {

 .name = "855",

 .probe = i855_probe,

 .remove = __devexit_p(i855_remove),

 .id_table = i855_pci_tbl,

};

/* Driver Initialization */

static int __init

i855_init(void)

{

 /* ... */

 pci_rc = pci_register_driver(&i855_driver);

 /* ... */

}

Look at drivers/edac/* for EDAC source files and at Documentation/drivers/edac/edac.txt for detailed semantics
of EDAC sysfs nodes.

Chapter 20. More Devices and Drivers

In This Chapter

ECC Reporting

578

Frequency Scaling

583

Embedded Controllers

584

ACPI
585

ISA and MCA

587

FireWire
588

Intelligent Input/Output

589

Amateur Radio
590

Voice over IP
590

High-Speed Interconnects

591

So far, we have devoted a full chapter to each major device driver class, but there are several
subdirectories under drivers/ that we haven't yet descended into. In this chapter let's venture
inside some of them at a brisk pace.

ECC Reporting

Several memory controllers contain special silicon to measure the fidelity of stored data using error correcting
codes (ECCs). The Error Detection And Correction (EDAC) driver subsystem announces occurrences of memory
error events generated by ECC-aware memory controllers. Typical ECC DRAM chips have the capability to
correct single-bit errors (SBEs) and detect multibit errors (MBEs). In EDAC parlance, the former errors are
correctable errors (CEs), whereas the latter are uncorrectable errors (UEs).

ECC operations are transparent to the operating system. This means that if your DRAM controller supports ECC,
error correction and detection occurs silently without operating system participation. EDAC's task is to report
such events and allow users to fashion error handling policies (such as replace a suspect DRAM chip).

The EDAC driver subsystem consists of the following:

A core module called edac_mc that provides a set of library routines.

Separate drivers for interacting with supported memory controllers. For example, the driver module that
works with the memory controller that is part of the Intel 82860 North Bridge is called i82860_edac.

EDAC reports errors via files in the sysfs directory, /sys/devices/system/edac/. It also generates messages that
can be gleaned from the kernel error log.

The layout of DRAM chips is specified in terms of the number of chip-selects emanating from the memory
controller and the data-transfer width (channels) between the memory controller and the CPU. The number of
rows in the DRAM chip array depends on the former, whereas the number of columns hinge on the latter. One of
the main aims of EDAC is to point the needle of suspicion at problem DRAM chips, so the EDAC sysfs node
structure is designed according to the physical chip layout: /sys/devices/system/edac/mc/mcX/csrowY/
corresponds to chip-select row Y in memory controller X. Each such directory contains details such as the
number of detected CEs (ce_count), UEs (ue_count), channel location, and other attributes.

Device Example: ECC-Aware Memory Controller

Let's add EDAC support for a yet-unsupported memory controller. Assume that you're putting Linux onto a
medical grade device that is an embedded x86 derivative. The North Bridge chipset (which includes the memory
controller as discussed in the sidebar "The North Bridge" in Chapter 12, "Video Drivers") on your board is the
Intel 855GME that is capable of ECC reporting. All DRAM banks connected to the 855GME on this system are
ECC-enabled chips because this is a life-critical device. EDAC does not yet support the 855GME, so let's take a
stab at implementing it.

ECC DRAM controllers have two major ECC-related registers: an error status register and an error address
pointer register, as shown in Table 20.1. When an ECC error occurs, the former contains the status (whether the
error is an SBE or an MBE), whereas the latter contains the physical address where the error occurred. The
EDAC core periodically checks these registers and reports results to user space via sysfs. From a configuration
standpoint, all devices inside the 855GME appear to be on PCIbus 0. The DRAM controller resides on device 0 of
this bus. DRAM interface control registers (including the ECC-specific registers) map into the corresponding PCI
configuration space. To add EDAC support for the 855GME, add hooks to read these registers, as shown in
Listing 20.1. Refer back to Chapter 10, "Peripheral Component Interconnect," for explanations on PCI device
driver methods and data structures.

Table 20.1. ECC-Related Registers on the DRAM Controller

ECC-Specific Registers Residing in the
DRAM Controller's PCI Configuration
Space

Description

I855_ERRSTS_REGISTER The error status register, which signals
occurrence of an ECC error. Shows
whether the error is an SBE or an MBE.

I855_EAP_REGISTER The error address pointer register, which
contains the physical address where the
most recent ECC error occurred.

Listing 20.1. An EDAC Driver for the 855GME

Code View:
/* Based on drivers/edac/i82860_edac.c */

#define I855_PCI_DEVICE_ID 0x3584 /* PCI Device ID of the memory

 controller in the 855 GME */

#define I855_ERRSTS_REGISTER 0x62 /* Error Status Register's offset

 in the PCI configuration space */

#define I855_EAP_REGISTER 0x98 /* Error Address Pointer Register's

 offset in the PCI configuration space */

struct i855_error_info {

 u16 errsts; /* Error Type */

 u32 eap; /* Error Location */

};

/* Get error information */

static void

i855_get_error_info(struct mem_ctl_info *mci,

 struct i855_error_info *info)

{

 struct pci_dev *pdev;

 pdev = to_pci_dev(mci->dev);

 /* Read error type */

 pci_read_config_word(pdev, I855_ERRSTS_REGISTER, &info->errsts);

 /* Read error location */

 pci_read_config_dword(pdev, I855_EAP_REGISTER, &info->eap);

}

/* Process errors */

static int

i855_process_error_info(struct mem_ctl_info *mci,

 struct i855_error_info *info,

 int handle_errors)

{

 int row;

 info->eap >>= PAGE_SHIFT;

 row = edac_mc_find_csrow_by_page(mci, info->eap); /* Find culprit row */

 /* Handle using services provided by the EDAC core.

 Populate sysfs, generate error messages, and so on */

 if (is_MBE()) { /* is_MBE() looks at I855_ERRSTS_REGISTER and checks

 for an MBE. Implementation not shown */

 edac_mc_handle_ue(mci, info->eap, 0, row, "i855 UE");

 } else if (is_SBE()) { /* is_SBE() looks at I855_ERRSTS_REGISTER and checks

 for an SBE. Implementation not shown */

 edac_mc_handle_ce(mci, info->eap, 0, info->derrsyn, row, 0,

 "i855 CE");

 }

 return 1;

}

/* This method is registered with the EDAC core from i855_probe() */

static void

i855_check(struct mem_ctl_info *mci)

{

 struct i855_error_info info;

 i855_get_error_info(mci, &info);

 i855_process_error_info(mci, &info, 1);

}

/* The PCI driver probe method, part of the pci_driver structure */

static int

i855_probe(struct pci_dev *pdev, int dev_idx)

{

 struct mem_ctl_info *mci;

 /* ... */

 pci_enable_device(pdev);

 /* Allocate control memory for this memory controller.

 The 3 arguments to edac_mc_alloc() correspond to the

 amount of requested private storage, number of chip-select

 rows, and number of channels in your memory layout */

 mci = edac_mc_alloc(0, CSROWS, CHANNELS);

 /* ... */

 mci->edac_check = i855_check; /* Supply the check method to the

 EDAC core */

 /* Do other memory controller initializations */

 /* ... */

 /* Register this memory controller with the EDAC core */

 edac_mc_add_mc(mci, 0);

 /* ... */

}

/* Remove method */

static void __devexit

i855_remove(struct pci_dev *pdev)

{

 struct mem_ctl_info *mci = edac_mc_find_mci_by_pdev(pdev);

 if (mci && !edac_mc_del_mc(mci)) {

 edac_mc_free(mci); /* Free memory for this controller. Reverse

 of edac_mc_alloc() */

 }

}

/* PCI Device ID Table */

static const struct pci_device_id i855_pci_tbl[] __devinitdata = {

 {PCI_VEND_DEV(INTEL, I855_PCI_DEVICE_ID),

 PCI_ANY_ID, PCI_ANY_ID, 0, 0,},

 {0,},

};

MODULE_DEVICE_TABLE(pci, i855_pci_tbl);

/* pci_driver structure for this device.

 Re-visit Chapter 10 for a detailed explanation */

static struct pci_driver i855_driver = {

 .name = "855",

 .probe = i855_probe,

 .remove = __devexit_p(i855_remove),

 .id_table = i855_pci_tbl,

};

/* Driver Initialization */

static int __init

i855_init(void)

{

 /* ... */

 pci_rc = pci_register_driver(&i855_driver);

 /* ... */

}

Look at drivers/edac/* for EDAC source files and at Documentation/drivers/edac/edac.txt for detailed semantics
of EDAC sysfs nodes.

Frequency Scaling

The CPU frequency (cpufreq) driver subsystem aids power management by scaling CPU frequencies on-the-fly.
If you use a suitable scaling algorithm (called a governor), your device's battery can potentially last longer.
Cpufreq supports several architectures such as x86, ARM, and PowerPC. To obtain cpufreq capabilities, you also
need to enable a suitable processor driver (say, the Intel Enhanced SpeedStep driver if you are using a
SpeedStep-enabled CPU such as Pentium M).

You can control cpufreq's behavior via files in the /sys/devices/system/cpu/cpuX/cpufreq/ directory, where X is
the CPU number. To set maximum and minimum frequency scaling limits, write desired values to
scaling_max_freq and scaling_min_freq, respectively. To see a list of supported cpufreq governors, look at

the contents of scaling_available_governors. The kernel supports several governors:

The performance governor statically sets the CPU frequency to scaling_max_freq.

Powersave sets the CPU frequency to scaling_min_freq.

Ondemand adjusts the frequency depending on CPU load.

Conservative is a variant of ondemand where the speed change occurs smoothly in gradual steps.

Userspace lets applications dictate the scaling technique. Some distributions set the governor to userspace
and implement the scaling algorithm via a daemon called cpuspeed, which is spawned during boot.

You may also implement your own kernel governor using the cpufreq_register_governor() interface.

Each supported governor is implemented as a kernel module. To see cpufreq in action, assign a governor and
vary the system load:

bash> cd /sys/devices/system/cpu/cpu0/cpufreq

bash>cat scaling_max_freq Maximum frequency

1700000

bash> cat scaling_min_freq Minimum frequency

600000

bash> cat cpuinfo_cur_freq Current frequency

600000

bash> cat scaling_governor Scaling algorithm in use

powersave

bash> cat scaling_available_frequencies

1700000 1400000 1200000 1000000 800000 600000

bash> cat scaling_available_governors

conservative ondemand powersave userspace performance

bash> echo conservative > scaling_governor

 Assign 'conservative' governor

bash> ls -lR / Switch to another terminal and

 load your system by recursively

 traversing all directories.

If you now monitor the running frequency by looking at
/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_cur_freq, you will see it dancing to the tune of the CPU load.

The CPU scaling code lives in the drivers/cpufreq/ directory. Look at Documentation/cpu-freq/* for the detailed
semantics of cpufreq sysfs nodes.

Embedded Controllers

Notebook computers and their derivatives usually contain a built-in embedded controller (EC) to take care of
various side responsibilities, including the following:

Interfacing with the keyboard controller

Managing thermal events

Handling special buttons and LEDs

Controlling system and CPU fan speeds

Monitoring battery voltage

Most of these functions are specific to the OEM's hardware implementation. Different OEMs use different ECs;
IBM/Lenovo laptops, for example, embed a Renesas H8 microcontroller to assist the main processor. The
interface to access the EC, however, is standard irrespective of the make of the controller. The BIOS and the
operating system operate on I/O port 0x80 to read information from the EC and I/O port 0x81 to write data to
the EC. On desktops, these ports provide access to the keyboard controller rather than to a general-purpose EC.

The next section refers to an example driver that detects telemetry strength by accessing EC memory space.

ACPI

Advanced Configuration and Power Interface (ACPI) is a power-management specification that replaces earlier
standards such as Advanced Power Management (APM). ACPI is responsible for transitioning the system
between power states. It also has the task of interfacing with devices and sensors connected to the EC. Such
devices are called ACPI devices, and memory devoted to handle them is called ACPI space.

As you saw elsewhere in this book, low-level code is not the place to implement policy. This was the main
problem with APM, where most of the power-management policies were part of BIOS firmware. ACPI shifts
policy one level up, to the operating system. Using a daemon called acpid, ACPI even allows policy to be pushed
one more level up, to user-space configuration files. By adding rules to an acpid configuration file, you can
decide what to do when a hotkey is pressed or when a thermal trip occurs.

Even with ACPI, low-level BIOS firmware retains the responsibility of interfacing with hardware and detecting
ACPI events such as a power button press or a thermal sensor report. To perform this, the BIOS utilizes a
special x86 execution mode triggered via system management interrupts (SMIs). The SMI execution mode is
transparent to the operating system. To notify the operating system about ACPI events detected in SMI mode,
the BIOS asserts a system control interrupt (SCI). Look at drivers/acpi/osl.c for the Linux ACPI code that
requests the SCI IRQ.

Linux ACPI components include the following:

A core layer that provides ACPI essentials such as the ACPI Machine Language (AML) interpreter. ACPI-
specific BIOS code is written in AML, a language that runs on a virtual machine implemented by the
operating system's AML interpreter.

1.

ACPI drivers for interfacing with standard components such as the EC (drivers/acpi/ec.c), buttons
(drivers/acpi/button.c), and fan (drivers/acpi/fan.c). OEM-specific drivers offer support for features not
supported by the standard ACPI drivers. For example, drivers/misc/thinkpad_acpi.c[1] is the OEM-specific
driver that implements extras for IBM/Lenovo Thinkpads. On an IBM/Lenovo Thinkpad, the files under
/proc/acpi/ are generated by the standard ACPI drivers, whereas those in /proc/acpi/ibm/ are produced by
the OEM-specific driver. So, to get the current temperature, do this:

[1] Prior to 2.6.22, this driver used to be drivers/acpi/ibm_acpi.c.

bash> cat /proc/acpi/thermal_zone/THM0/temperature

temperature: 39 C

But to turn on the nightlight on top of the LCD display, get help from the OEM-specific driver:

bash> echo on > /proc/acpi/ibm/light

2.

A kernel thread kacpid that ACPI uses to queue work for execution.3.

Individual device drivers that use ACPI's services to respond to transitions in the system's power state. To
achieve this, drivers register suspend() and resume() methods with the kernel's device model. We

alluded to these methods while discussing the platform_driver structure in Chapter 6, "Serial Drivers,"
the spi_driver structure in Chapter 8, "The Inter-Integrated Circuit Protocol," the pcmcia_driver

structure in Chapter 9, "PCMCIA and Compact Flash," and the pci_driver structure in Chapter 10.

4.

5.

User-space tools such as acpitool, which report the state of various ACPI devices, show thermal zone
information and suspend the system to different sleep states:

bash> acpitool

Battery #1 : charging, 69.08%, 01:14:02
AC adapter : on-line

Thermal zone 1 : ok, 38 C

5.

The acpid daemon, which is the policy enabler for ACPI events. It listens on /proc/acpi/events for power-
management events reported by the kernel. When you press the power button or when a thermal trip
occurs, the kernel ACPI driver dispatches an event to user space via /proc/acpi/events. Acpid reads this,
passes it through configuration scripts present in /etc/acpi/events/ and takes specified actions. Assume
that you want to execute a specific program (/bin/lidhandler) when your laptop's lid button is pressed. For
this, add the following to /etc/acpi/events/acpi_handler.sh:

event=button/lid.*
action=/bin/lidhandler

You may use cpufreq in tandem with ACPI. You can, for example, add this line inside /bin/lidhandler to
drop down the processor frequency when you shut your laptop's lid:

echo powersave > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

6.

You can download the ACPI specifications from www.acpi.info.

As an exercise, consider that you have a telemetry card[2] built in to an embedded laptop derivative, and that
the EC is connected to a sensor that measures telemetry strength. To access telemetry strength via /proc/acpi/
(or /sys/bus/acpi/), update the corresponding laptop model's "extras" driver present in drivers/misc/. If your
board is a derivative of an IBM/Lenovo Thinkpad, for example, modify drivers/misc/thinkpad_acpi.c accordingly.
You may use the ec_read() and ec_write() kernel functions to access the location that stores telemetry
strength in the EC's ACPI space.

[2] We developed a driver for an example telemetry card in Chapter 11, "Universal Serial Bus."

ISA and MCA

The Industries Standard Architecture (ISA) started as a bus for interfacing I/O devices with the PC but evolved
into a de facto standard. ISA drivers would have merited a separate chapter several years earlier; but today,
with the advent of the PCI bus, ISA has all but disappeared.

There are two main bus-specific factors that ISA device drivers have to contend with:

ISA does not offer standard interfaces that drivers can use to detect resource information that is
electrically wired or assigned by boot firmware. Implementing complex probing logic, often leveraging
device-specific quirks, is an important part of ISA driver initialization. This is unlike the PCI bus, where the
device driver can cleanly decipher the identity of resources such as interrupt request lines and I/O base
addresses assigned by boot firmware. You learned how to do this when we discussed the PCI configuration
space in Chapter 10. We also briefly looked at ISA probing in the section "ISA Network Drivers" in Chapter
15, "Network Interface Cards."

The ISA Plug-and-Play (PnP) specification attempts to bring a degree of autoconfigurability to ISA,
however.

The ISA bus has a width of 24 bits, so devices can access only the low 16MB of system memory. To DMA
network data from an ISA Ethernet card, for example, DMA buffers have to reside in the low 16MB range
called ZONE_DMA. The Extended Industry Standard Architecture (EISA), however, widens the ISA bus to 32
bits. You can plug ISA devices into EISA slots.

Today, the LPC bus is used rather than the ISA bus to connect legacy peripherals to the CPU on PC-compatible
systems. We discussed LPC devices such as Super I/O chipsets, firmware hubs, and thermal sensors in earlier
chapters.

The Micro-Channel Architecture (MCA) bus overcomes many of the limitations of the ISA family. MCA supports
bus mastering, autoconfiguration, and 32-bit bus widths. Though technologically superior to ISA, MCA didn't
become as popular because of its proprietary nature.

Look at drivers/net/tokenring/skisa.c for a sample ISA driver for a Token Ring card. The IBM Token Ring driver,
drivers/net/tokenring/ibmtr.c, supports ISA, PnP, and MCA form factors of IBM Token Ring hardware. The 3COM
Ethernet driver, drivers/net/3c509.c, drives MCA, PnP, and EISA form factors of a 3COM Ethernet card. The
kernel provides core routines for the use of PnP, EISA, and MCA drivers. These implementations live in
drivers/pnp/, drivers/eisa/, and drivers/mca/, respectively.

FireWire

FireWire, or IEEE 1394, is a high-speed serial bus protocol invented by Apple for connecting peripheral devices
to a system. It provides data rates of up to 800Mbps (IEEE 1394b). Figure 10.1 in Chapter 10 shows the
connection of the FireWire controller on an x86-based laptop.

FireWire is similar to USB 2.0 in that both are external I/O buses that support high speeds and device
hotplugging. FireWire, however, is a peer-to-peer protocol, unlike the master-slave USB 2.0, so two FireWire-
enabled devices can exchange information without the intervention of a PC. Because of this characteristic,
FireWire is popular on multimedia devices such as camcorders. As you learned in Chapter 11, the On-The-Go
supplement brings peer-to-peer capability to USB 2.0, too.

FireWire on Linux is architected as follows:

Device drivers such as ohci1394 that interface with FireWire controllers.

Protocol drivers for applications such as storage, video, and networking. The FireWire Serial Bus Protocol 2
(SBP2) driver is a low-level FireWire protocol driver that lets you use your FireWire storage media as you
would use a SCSI disk or a USB mass storage device. SBP2 has to be used in tandem with a high-level
SCSI driver such as sd_mod (for disks) or sr_mod (for CD-ROMs). Applications such as cdrecord work over
FireWire CD drives just as they work with USB CD drives. The dv1394 and video1394 protocol drivers
enable you to capture video via FireWire, and the eth1394 protocol driver lets you run TCP/IP over
FireWire.

A FireWire core that provides services to both previously mentioned.

User-space libraries such as libraw1394 that assist in developing FireWire-aware applications.

Look at drivers/ieee1394/* for FireWire kernel sources and go to www.linux1394.org for detailed
documentation.

Starting with the 2.6.22 release, the kernel has an alternate, slimmer FireWire stack living in the
drivers/firewire/ directory.

Intelligent Input/Output

Intelligent Input/Output (or I2O) is a standard that calls for offloading I/O activities from the main processor to
an I/O coprocessor residing on an I2O adapter. I2O is largely defunct today, and the I2O Special Interest Group
(I2O SIG) has ceased to exist. However, many operating systems, including Linux, continue support for I2O.

I2O hardware is available for technologies such as SCSI, RAID, and networking. I2O partitions the software
architecture into an OS-specific module (OSM) running on the main processor and a hardware-specific module
(HDM) executing on the I2O adapter. HDMs are OS-agnostic and can be reused across operating systems, so
the OSMs are rendered simpler.

Linux supports I2O in the form of an I2O core, drivers for I2O adapters, and various OSMs. Look at the Linux
I2O home page at http://i2o.shadowconnect.com and the sources in drivers/message/i2o/ for more details.

http://i2o.shadowconnect.com

Amateur Radio

Amateur (ham) radio is a packet radio technology used for round-the-world communication by hobbyists. It's
also often used to respond to calamities such as floods and cyclones. To use amateur radio on Linux, you need
the following:

A low-level modem driver to access your radio. Modem drivers for several amateur radio devices are
present in drivers/net/hamradio/.

One or more packet protocols such as AX.25, Rose, and Netrom. The AX.25 protocol is an adaptation of
the X.25 protocol for amateur radio. Look at the Linux Amateur Radio AX.25 HOWTO for an explanation of
the protocol, the net/ax25/ directory for the sources, and http://hams.sourceforge.net for user-space
utilities and libraries that operate over AX.25. Rose (net/rose/) and Netrom (net/netrom/) are network
protocols that use AX.25 as the data link layer. You can write Linux socket applications that run over
AX.25, Rose, and Netrom using the AF_AX25, AF_ROSE, and AF_NETROM protocol families, respectively.

http://hams.sourceforge.net

Voice over IP

Voice over Internet Protocol (VoIP) is a technology that uses the Internet to carry voice traffic. VoIP lets you
make voice-quality telephone calls at cheap rates. There are several PCI-, PC Card-, and USB-based VoIP
solutions available for the PC environment. Device drivers for several of these cards are available on Linux. Not
many are integrated into the mainline kernel, however. The drivers/telephony/ directory contains drivers for a
few VoIP devices and a registration API that future drivers can use.

With the increasing popularity of Linux in the embedded telecom space, there are several Linux IP telephones in
the market today. Figure 20.1 shows a VoIP-enabled device having a hardware voice codec that implements
standards such as G.711 and G.729 for encoding and decoding voice streams. The device draws power using a
technology called Power over Ethernet (PoE) that transmits power along with the Ethernet cable. A device driver
communicates with the VoIP hardware.

Figure 20.1. A VoIP phone.

[View full size image]

VoIP drivers work in tandem with transport protocols such as Real Time Transport Protocol (RTP) and call
control signaling stacks such as Session Initiation Protocol (SIP) and H.323. On top of these protocols sit various
IP telephony applications.

Solutions that implement VoIP codecs in software are also popular in the embedded space. They usually reside
in user space and interact with the following:

Kernel audio drivers using OSS or ALSA APIs

Kernel network drivers using the socket API

SoCs oriented toward the Video-and-Voice over IP (V2IP) market usually contain hardware support for video
codecs such as H.264. If you are putting Linux onto a V2IP phone, you need to implement drivers to interface
with such codecs, too.

High-Speed Interconnects

High-speed interconnecting technologies such as InfiniBand, RapidIO, Hyper-Transport, and 10 Gigabit Ethernet
are not common in the PC or low-end embedded environments. You are more likely to find them on clusters,
blade servers, gaming systems, switches, or high-speed routers. Networking technologies such as Fibre Channel
and Internet SCSI (iSCSI) can be found in enterprise environments served by storage-area networks (SANs).

Let's peek at the driver subsystems for some of these technologies.

InfiniBand

InfiniBand is a high-speed serial bus standard originally intended to replace PCI. PCI Express, however, has
become the accepted future of system buses. Today, InfiniBand technology is commonly used in blade server
designs to provide a high-performance storage and networking fabric. InfiniBand supports Remote DMA (RDMA),
which allows data to be DMA-ed from the memory of one computer system to another.

The Linux InfiniBand subsystem includes core support for InfiniBand, device drivers for host channel adapters,
and an implementation of IP over InfiniBand. Look inside drivers/infiniband/ for the Linux InfiniBand subsystem
and at Documentation/infiniband/* for related documentation.

RapidIO

RapidIO is another high-speed serial bus technology, which is used for connecting boards via a back plane. It
supports speeds of the order of 10Gbps. An example processor that supports RapidIO is the power-based
MPC8540 from Freescale, targeted at embedded devices such as network routers and switches.

The Linux RapidIO subsystem provides a core set of routines that can be used to drive devices on the RapidIO
bus. There are two ways to communicate over a -RapidIO interconnect:

Short, out-of-band messages using doorbells. Doorbell services provided by the RapidIO core are
rio_request_inb_dbell(), rio_release_inb_dbell(), rio_request_outb_dbell(), and
rio_release_outb_dbell().

1.

High-bandwidth data delivery using mailboxes. Mailbox services provided by the RapidIO core are
rio_request_inb_mbox(), rio_release_inb_mbox(), rio_request_outb_mbox(), and

rio_release_outb_mbox().

2.

Take a look inside drivers/rapidio/ for the sources.

Fibre Channel

Fibre Channel is a modern high-speed serial bus protocol used to talk with storage systems. Fibre Channel
interface cards have fiber-optic ports to talk to storage devices on SANs. Fibre Channel is compatible with SCSI,
so a Fibre Channel device driver is essentially a SCSI driver with extras to handle fiber channels.

Linux supports a Fibre Channel core and device drivers to handle Fibre Channel hardware. Look inside
drivers/fc4/ for the sources.

iSCSI

iSCSI is another SAN technology. It allows the transport of SCSI packets over TCP/IP networks. With iSCSI, a
remote block device appears to your system as local storage. The remote system owning the storage is called
an iSCSI target, and local systems using the storage are called iSCSI initiators.

Linux supports iSCSI via a kernel driver, drivers/scsi/iscsi_tcp.c, and a user-space daemon called iscsid. The
home page of the Linux-iSCSI project is at http://linux-iscsi.sourceforge.net.

http://linux-iscsi.sourceforge.net

Chapter 21. Debugging Device Drivers

In This Chapter

Kernel Debuggers

596

Kernel Probes

609

Kexec and Kdump

620

Profiling
629

Tracing

634

Linux Test Project
638

User Mode Linux

638

Diagnostic Tools
638

Kernel Hacking Config Options
639

Test Equipment

640

Now that we have learned how to implement diverse classes of device drivers, let's take a step
back and explore some debugging techniques. Investing time in logic design and software
engineering before code development and staring hard at the code after development can
minimize or even eliminate bugs. But because that is easier said than done, and because we are
all humans, developers need debugging tools. In this chapter, let's look at a variety of methods to
debug kernel code.

Reliability, Availability, Serviceability

Many systems, especially mission critical ones, have a need for reliability, availability, and
serviceability (RAS). The Linux RAS effort has resulted in the development of several powerful
tools. Exercisers such as the Linux Test Project (LTP) measure the reliability and robustness of
your kernel port. CPU hotplugging and the Linux High Availability (HA) project can be seen in the
context of availability. Kernel debuggers, Kprobes, Kdump, EDAC, and the Linux Trace Toolkit
(LTT) come under the ambit of serviceability. The line dividing these classifications is sometimes
thin; you can use any or a combination of these methods to suit your debugging needs. For
example, output from a kernel profiler such as OProfile can be used either to search for potential
code bottlenecks (reliability) or to debug a field problem (serviceability).

Kernel Debuggers

The Linux kernel has no built-in debugger support. Whether to include a debugger as part of the stock kernel is
an oft-debated point in kernel mailing lists. The instruction level Kernel Debugger (kdb) and the source-level
Kernel GNU Debugger (kgdb) are the two main Linux kernel debuggers. As of today, whether you use kdb or
kgdb, you need to download relevant patches and apply them to your kernel sources. Even if you want to stay
away from the hassle of patching your kernel sources with debugger support, you can glean information about
kernel panics and peek at kernel variables via the plain GNU Debugger (gdb). JTAG debuggers use hardware-
assisted debugging and are powerful, but expensive.

Kernel debuggers make kernel internals more transparent. You can single-step through instructions,
disassemble instructions, display and modify kernel variables, and look at stack traces. In this chapter, let's
learn the basics of kernel debuggers with the help of some examples.

Entering a Debugger

You can enter a kernel debugger in multiple ways. One way is to pass command-line arguments that ask the
kernel to enter the debugger during boot. Another way is via software or hardware breakpoints. A breakpoint is
an address where you want execution stopped and control transferred to the debugger. A software breakpoint
replaces the instruction at that address with something else that causes an exception. You may set software
breakpoints either using debugger commands or by inserting them into your code. For x86-based systems, you
can set a software breakpoint in your kernel source code as follows:

asm(" int $3");

Alternatively, you can invoke the BREAKPOINT macro, which translates to the appropriate architecture-dependent

instruction.

You may use hardware breakpoints in place of software breakpoints if the instruction where you need to stop is
in flash memory, where it cannot be replaced by the debugger. A hardware breakpoint needs processor support.
The corresponding address has to be added to a debug register. You can only have as many hardware

breakpoints as the number of debug registers supported by the processor.

You may also ask a debugger to set a watchpoint on a variable. The debugger stops execution whenever an
instruction modifies data at the watchpoint address.

Yet another common method to enter a debugger is by hitting an attention key, but there are instances when
this won't work. If your code is sitting in a tight loop after disabling interrupts, the kernel will not get a chance
to process the attention key and enter the debugger. For example, you can't enter the debugger via an
attention key if your code does something like this:

unsigned long flags;

local_irq_save(flags);
while (1) continue;

local_irq_restore(flags);

When control is transferred to the debugger, you can start your analysis using various debugger commands.

Kernel Debugger (kdb)

Kdb is an instruction-level debugger used for debugging kernel code and device drivers. Before you can use it,
you need to patch your kernel sources with kdb support and recompile the kernel. (Refer to the section
"Downloads" for information on downloading kdb patches.) The main advantage of kdb is that it's easy to set
up, because you don't need an additional machine to do the debugging (unlike kgdb). The main disadvantage is
that you need to correlate your sources with disassembled code (again, unlike kgdb).

Let's wet our toes in kdb with the help of an example. Here's the crime scene: You have modified a kernel serial
driver to work with your x86-based hardware. But the driver isn't working, and you would like kdb to help nab
the culprit.

Let's start our search for fingerprints by setting a breakpoint at the serial driver open() entry point. Remember,
because kdb is not a source-level debugger, you have to open your sources and try to match the instructions
with your C code. Let's list the source snippet in question:

drivers/serial/myserial.c:

static int rs_open(struct tty_struct *tty, struct file *filp)
{

 struct async_struct *info;

 /* ... */

 retval = get_async_struct(line, &info);
 if (retval) return(retval);

 tty->driver_data = info;

 /* Point A */

 /* ... */
}

Press the Pause key and enter kdb. Let's find out how the disassembled rs_open() looks. As usual, all debug

sessions shown in this chapter attach explanations using the symbol.

Entering kdb (current=0xc03f6000, pid 0) on processor 0 due to
Keyboard Entry

kdb> id rs_open Disassemble rs_open

0xc01cce00 rs_open: sub $0x1c, %esp

0xc01cce03 rs_open+0x03: mov $ffffffed, %ecx

...
0xc01cce4b rs_open+0x4b: call 0xc01ccca0, get_async_struct

...

0xc01cce56 rs_open+0x56: mov 0xc(%esp,1), %eax

0xc01cce5a rs_open+0x5a: mov %eax, 0x9a4(%ebx)

...

Point A in the source code is a good place to attach a breakpoint because you can peek at both the tty

structure and the info structure to see what's going on.

Looking side by side at the source and the disassembly, rs_open+0x5a corresponds to Point A. Note that

correlation is easier if the kernel is compiled without optimization flags.

Set a breakpoint at rs_open+0x5a (which is address 0xc01cce5a) and continue execution by exiting the

debugger:

kbd> bp rs_open+0x5a Set breakpoint

kbd> go Continue execution

Now you need to get the kernel to call rs_open() to hit the breakpoint. To trigger this, execute an appropriate

user-space program. In this case, echo some characters to the corresponding serial port (/dev/ttySX):

bash> echo "kerala monsoons" > /dev/ttySX

This results in the invocation of rs_open(). The breakpoint gets hit, and kdb assumes control:

Entering kdb on processor 0 due to Breakpoint @ 0xc01cce5a
kdb>

Let's now find out the contents of the info structure. If you look at the disassembly, one instruction before the
breakpoint (rs_open+0x56), you will see that the EAX register contains the address of the info structure. Let's

look at the register contents:

kbd> r Dump register contents

eax = 0xcf1ae680 ebx = 0xce03b000 ecx = 0x00000000

...

So, 0xcf1ae680 is the address of the info structure. Dump its contents using the md command:

kbd> md 0xcf1ae680 Memory dump

0xcf1ae680 00005301 0000ABC 00000000 10000400

...

To make sense of this dump, let's look at the corresponding structure definition. info is defined as struct

async_struct in include/linux/serialP.h as follows:

struct async_struct {

 int magic; /* Magic Number */

 unsigned long port; /* I/O Port */
 int hub6;

 /* ... */

};

If you match the dump with the definition, 0x5301 is the magic number and 0xABC is the I/O port. Well, isn't this

interesting! 0xABC doesn't look like a valid port. If you have done enough serial port debugging, you will know
that the I/O port base addresses and IRQs are configured in include/asm-x86/serial.h for x86-based hardware.
Change the port definition to the correct value, recompile the kernel, and continue your testing!

Kernel GNU Debugger (kgdb)

Kgdb is a source-level debugger. It is easier to use than kdb because you don't have to spend time correlating
assembly code with your sources. However it's more difficult to set up because an additional machine is needed
to front-end the debugging.

You have to use gdb in tandem with kgdb to step through kernel code. gdb runs on the host machine, while the
kgdb-patched kernel (refer to the "Downloads" section for information on downloading kgdb patches) runs on
the target hardware. The host and the target are connected via a serial null-modem cable, as shown in Figure
21.1.[1]

[1] You can also launch kgdb debug sessions over Ethernet.

Figure 21.1. Kgdb setup.

You have to inform the kernel about the identity and baud rate of the serial port via command-line arguments.
Depending on the bootloader used, add the following kernel arguments to either syslinux.cfg, lilo.conf, or
grub.conf:

kgdbwait kgdb8250=X,115200

kgdbwait asks the kernel to wait until a connection is established with the host-side gdb, X is the serial port

connected to the host, and 115200 is the baud rate used for communication.

Now configure the same baud rate on the host side:

bash> stty speed 115200 < /dev/ttySX

If your host computer is a laptop that does not have a serial port, you may use a USB-to-serial converter for the
debug session. In that case, instead of /dev/ttySX, use the /dev/ttyUSBX node created by the usbserial driver.
Figure 6.4 of Chapter 6, "Serial Drivers," illustrates this scenario.

Let's learn kgdb basics using the example of a buggy kernel module. Modules are easier to debug because the
entire kernel need not be recompiled after making code changes, but remember to compile your module with
the -g option to generate symbolic information. Because modules are dynamically loaded, the debugger needs

to be informed about the symbolic information that the module contains. Listing 21.1 contains a buggy
trojan_function(). Assume that it's defined in drivers/char/my_module.c.

Listing 21.1. Buggy Function

char buffer;

int

trojan_function()

{

 int *my_variable = 0xAB, i;

 /* ... */

 Point A:

 i = *my_variable; /* Kernel Panic: my_variable points

 to bad memory */

 return(i);

}

Insert my_module.ko on the target and look inside /sys/module/my_module/sections/ to decipher ELF
(Executable and Linking Format) section addresses.[2] The .text section in ELF files contains code, .data

contains initialized variables, .rodata contains initialized read-only variables such as strings, and .bss contains
variables that are not initialized during startup. The addresses of these sections are available in the form of the
files .text, .data, .rodata, and .bss in /sys/module/my_module/sections/ if you enable CONFIG_KALLSYMS during
kernel configuration. To obtain the code section address, for instance, do this:

[2] If you are still using a 2.4 kernel, get the section addresses using the –m option to insmod instead:

bash> insmod my_module.o –m

Using /lib/modules/2.x.y/kernel/drivers/char/my_module.o

Sections: Size Address Align

.this 00000060 e091a000 2**2

.text 00001ec0 e091a060 2**4

...

.rodata 0000004c e091d1fc 2**2

.data 00000048 e091d260 2**5

.bss 000000e4 e091d2c0 2**5

...

bash> cat /sys/module/my_module/sections/.text

0xe091a060

More module load information is available from /proc/modules and /proc/kallsyms.

After you have the section addresses, invoke gdb on the host-side machine:

bash> gdb vmlinux vmlinux is the uncompressed kernel

(gdb) target remote /dev/ttySX Connect to the target

Because you passed kgdbwait as a kernel command-line argument, gdb gets control when the kernel boots on

the target. Now inform gdb about the preceding section addresses using the add-symbol-file command:

(gdb) add-symbol-file drivers/char/mymodule.ko 0xe091a060

 -s .rodata 0xe091d1fc -s .data 0xe091d260 -s .bss 0xe091d2c0

add symbol table from file "drivers/char/my_module.ko" at

 .text_addr = 0xe091a060
 .rodata_addr = 0xe091d1fc

 .data_addr = 0xe091d260
 .bss_addr = 0xe091d2c0

(y or n) y
Reading symbols from drivers/char/mymodule.ko ...done.

To debug the kernel panic, let's set a breakpoint at trojan_function():

(gdb) b trojan_function Set breakpoint

(gdb) c Continue execution

When kgdb hits the breakpoint, let's look at the stack trace, single-step until Point A, and display the value of
my_variable:

(gdb) bt Back (stack) trace
#0 trojan_function () at my_module.c :124

#1 0xe091a108 in my_parent_function (my_var1=438, my_var2=0xe091d288)
..

(gdb) step

(gdb) step Continue to single-step up to
 Point A

(gdb) p my_variable

$0 = 0

There is an obvious bug here. my_variable points to NULL because trojan_function() forgot to allocate

memory for it. Let's just allocate the memory using kgdb, circumvent the kernel crash, and continue testing:

(gdb) p &buffer Print address of buffer

$1 = 0xe091a100 ""

(gdb) set my_variable=0xe091a100 my_variable = &buffer

(gdb) c Continue your testing

Kgdb ports are available for several architectures such as x86, ARM, and PowerPC. When you use kgdb
to debug a target embedded device (instead of the PC shown in Figure 21.1), the gdb front-end that you
run on your host system needs to be compiled to work with your target platform. For example, to debug
a device driver developed for an ARM-based embedded device from your x86-based host development
system, you have to use the appropriately generated gdb, often named arm-linux-gdb. The exact name
depends on the distribution you use.

GNU Debugger (gdb)

As mentioned earlier, you can use plain gdb to gather some kernel debug information. However, you can't step
through kernel code, set breakpoints, or modify kernel variables. Let's use gdb to debug the kernel panic caused
by the buggy function in Listing 21.1, but assume this time that trojan_function() is compiled as part of the
kernel and not as a module, because you can't easily peek inside modules using gdb.

This is part of the "oops" message generated when trojan_function() is executed:

Unable to handle kernel NULL pointer dereference at
virtual address 000000ab

 ...
 eax: f7571de0 ebx: ffffe000 ecx: f6c78000 edx: f98df870

 ...
 Stack: c019d731 00000000

 ...
 bffffbe8 c0108fab

Call Trace: [<c019d731>] [<c013b8ac>] [<c0108fab>]
...

Copy this cryptic "oops" message to oops.txt and use the ksymoops utility to obtain more verbose output. You
might need to hand-copy the message if the system is hung:

bash> ksymoops oops.txt

Code; c019d710 <trojan_function+0/10>
00000000 <_EIP>:

Code; c019d710 <trojan_function+0/10> <=====

 0: a1 ab 00 00 00 mov 0xab,%eax <=====

Code; c019d715 <trojan_function+5/10>
 5: c3 ret

2.6 kernels emit "oops" output that can be used as is without the need of decoding using ksymoops if you
enable CONFIG_KALLSYMS during kernel configuration.

Looking at the preceding dump, the "oops" has occurred inside trojan_function(). Let's use gdb to obtain

more information. In the following invocation, vmlinux is the uncompressed kernel image, and /proc/kcore is
the kernel address space:

bash> gdb vmlinux /proc/kcore

(gdb) p xtime Test the waters by printing a kernel variable

$0 = 1113173755

Repeated access to the same variable will not yield refreshed values due to gdb's cached access. You can force
a fresh access by rereading the core file using gdb's core-file command. Let's now look at the disassembly of

trojan_function():

(gdb) x/2i trojan_function Disassemble trojan_function

0xc019d710 <trojan_function>: mov 0xab, %eax

0xc019d715 <trojan_function+5>: ret

trojan_function() looks laconic when seen in assembly due to compiler optimizations. It's effectively copying

the contents of address 0xab to the EAX register, which holds the return value from functions on x86-based
systems. But 0xab does not look like a valid kernel address! Fix the bug by allocating valid memory space to

my_variable, recompile, and continue your testing.

JTAG Debuggers

JTAG debuggers use hardware-assist to debug code. You need specialized monitor hardware[3] and a front-end
user interface (some JTAG debuggers use gdb as the front-end) to step through code. JTAG can also be used for
purposes other than debugging, such as burning code onto on-board flash memory, as discussed in Chapter 18,
"Embedding Linux." JTAG connectors are common on development boards but are usually not part of production
units.

[3] Some JTAG debuggers work with several processor architectures if you suitably replace the probe that connects the debugger to the target

board.

JTAG debuggers usually connect to target hardware via serial port, USB, or Ethernet. With Ethernet, you can
remotely access the JTAG debugger, and hence the target board, even if the board itself does not possess a
network interface.

Figure 21.2 shows a JTAG-based remote debugging session in action. The JTAG debugger used in this scenario
supports a gdb front end. The development host and the JTAG hardware are connected to an Ethernet LAN. The
debug serial port on the target hardware is connected to the serial port on the JTAG box. Figure 21.2 achieves
remote debugging on the Linux development host using five terminal sessions. Terminal 1 runs gdb, which
connects to the JTAG box over the network using telnet:

(gdb) target remote 10.1.1.2:1001 10.1.1.2 is the IP address of

 the JTAG hardware. 1001 is the
 JTAG TCP port that listens to

 incoming gdb connections

Figure 21.2. An example JTAG-based remote debug setup.

[View full size image]

To debug boot portions of the kernel, for example, set a gdb breakpoint at start_kernel(). (You can find its

address from System.map, which is generated in the root of your source tree when you build the kernel.)

Terminal 2 attaches a serial console to the target. A telnet client running on Terminal 2 connects to a
prespecified TCP port on the JTAG box, which is configured (using Terminal 3) to tunnel data arriving via its
serial port:

bash> telnet 10.1.1.2 50 10.1.1.2 is the IP address of

 the JTAG hardware. 50 is the

 JTAG TCP port that tunnels data

 arriving via its serial port

This is equivalent to running an emulator such as minicom after directly connecting the target's debug serial
port to the host (instead of to the JTAG box, as shown in Figure 21.2), but that'll constrain the host to be
physically adjacent to the target.

Terminal 3 telnets to the JTAG box and offers debugger-specific semantics. You can use it for example, to do
the following:

Pull a JTAG definition script over TFTP from the host and execute it during JTAG boot. A JTAG definition

script usually initializes the processor, clock registers, chip select registers, and memory banks. After this
is done, the JTAG hardware is ready to download code on to the target and execute it. The JTAG
manufacturer usually provides definition files for all supported platforms, so you are likely to have a close
starting point for your board.

Download your bootloader, kernel, or stand-alone code from the host over TFTP, to flash memory or RAM
on the target. File formats such as ELF and binary are usually supported by JTAG debuggers.

Single-step code, set breakpoints, examine registers, and dump memory regions.

Reset the target.

JTAG debugging can be flaky at times, so if you are debugging remotely, it might be a good idea to power the
target via a remote power control switch, as shown in Figure 21.2. That way, you can hard-reset the target from
the host using a web browser, as shown in Terminal 4. You may also choose to power the JTAG hardware via a
remote power switch. That will let you test run a bootloader directly from flash without the intervention of JTAG
and its definition files.

If the target board possesses a network interface, it can mount its root filesystem over NFS from the
development host. (See the section "NFS-Mounted Root" in Chapter 18 for details on doing this.) Terminal 5 on
the host operates locally on the exported root filesystem.[4]

[4] You may have more such terminals depending on your debug scenario. If you are using an oscilloscope that has remote display capabilities,

for example, you may operate it via a web browser on another terminal.

If your team is scattered geographically, run Terminals 1 through 5 within an environment such as Virtual
Network Computing (VNC). If VNC is not already part of your distribution, download it from www.realvnc.com.
With such a setup, you can debug the electrons on your remote board from the comfort of your home! Some
JTAG vendors provide a sophisticated integrated development environment[5] that encompasses all the
functionalities previously detailed, so you don't need to manage VNC terminal sessions if you're using one of
those.

[5] While JTAG hardware is independent of the target operating system, the front-end interface is likely to have OS dependencies.

During hardware bring up, when you are porting your bootloader or other stand-alone code to the target, it's a
good idea to first generate an ELF image and debug it from RAM before running it from flash. Remember,
however, to eliminate bootloader initializations that duplicate the ones performed by the JTAG definition script.

A key advantage of JTAG debuggers is that you can use a single tool to debug the different pieces that
constitute your firmware solution. So, you can use the same debugger to debug the BIOS, bootloader, base
kernel, device driver modules, as well as user-space applications, at source level.

Downloads

You may download kdb patches for the x86 and IA64 architectures from http://oss.sgi.com/projects/kdb. Each
supported kernel version needs two patches: a common one and an architecture-dependent one.

The home page for the kgdb project is http://kgdb.sourceforge.net. The website also has documentation on
configuring and using kgdb.

If your Linux distribution does not already contain gdb, you can obtain it from
www.gnu.org/software/gdb/gdb.html.

http://oss.sgi.com/projects/kdb
http://kgdb.sourceforge.net

Chapter 21. Debugging Device Drivers

In This Chapter

Kernel Debuggers

596

Kernel Probes

609

Kexec and Kdump

620

Profiling
629

Tracing

634

Linux Test Project
638

User Mode Linux

638

Diagnostic Tools
638

Kernel Hacking Config Options
639

Test Equipment

640

Now that we have learned how to implement diverse classes of device drivers, let's take a step
back and explore some debugging techniques. Investing time in logic design and software
engineering before code development and staring hard at the code after development can
minimize or even eliminate bugs. But because that is easier said than done, and because we are
all humans, developers need debugging tools. In this chapter, let's look at a variety of methods to
debug kernel code.

Reliability, Availability, Serviceability

Many systems, especially mission critical ones, have a need for reliability, availability, and
serviceability (RAS). The Linux RAS effort has resulted in the development of several powerful
tools. Exercisers such as the Linux Test Project (LTP) measure the reliability and robustness of
your kernel port. CPU hotplugging and the Linux High Availability (HA) project can be seen in the
context of availability. Kernel debuggers, Kprobes, Kdump, EDAC, and the Linux Trace Toolkit
(LTT) come under the ambit of serviceability. The line dividing these classifications is sometimes
thin; you can use any or a combination of these methods to suit your debugging needs. For
example, output from a kernel profiler such as OProfile can be used either to search for potential
code bottlenecks (reliability) or to debug a field problem (serviceability).

Kernel Debuggers

The Linux kernel has no built-in debugger support. Whether to include a debugger as part of the stock kernel is
an oft-debated point in kernel mailing lists. The instruction level Kernel Debugger (kdb) and the source-level
Kernel GNU Debugger (kgdb) are the two main Linux kernel debuggers. As of today, whether you use kdb or
kgdb, you need to download relevant patches and apply them to your kernel sources. Even if you want to stay
away from the hassle of patching your kernel sources with debugger support, you can glean information about
kernel panics and peek at kernel variables via the plain GNU Debugger (gdb). JTAG debuggers use hardware-
assisted debugging and are powerful, but expensive.

Kernel debuggers make kernel internals more transparent. You can single-step through instructions,
disassemble instructions, display and modify kernel variables, and look at stack traces. In this chapter, let's
learn the basics of kernel debuggers with the help of some examples.

Entering a Debugger

You can enter a kernel debugger in multiple ways. One way is to pass command-line arguments that ask the
kernel to enter the debugger during boot. Another way is via software or hardware breakpoints. A breakpoint is
an address where you want execution stopped and control transferred to the debugger. A software breakpoint
replaces the instruction at that address with something else that causes an exception. You may set software
breakpoints either using debugger commands or by inserting them into your code. For x86-based systems, you
can set a software breakpoint in your kernel source code as follows:

asm(" int $3");

Alternatively, you can invoke the BREAKPOINT macro, which translates to the appropriate architecture-dependent

instruction.

You may use hardware breakpoints in place of software breakpoints if the instruction where you need to stop is
in flash memory, where it cannot be replaced by the debugger. A hardware breakpoint needs processor support.
The corresponding address has to be added to a debug register. You can only have as many hardware

breakpoints as the number of debug registers supported by the processor.

You may also ask a debugger to set a watchpoint on a variable. The debugger stops execution whenever an
instruction modifies data at the watchpoint address.

Yet another common method to enter a debugger is by hitting an attention key, but there are instances when
this won't work. If your code is sitting in a tight loop after disabling interrupts, the kernel will not get a chance
to process the attention key and enter the debugger. For example, you can't enter the debugger via an
attention key if your code does something like this:

unsigned long flags;

local_irq_save(flags);
while (1) continue;

local_irq_restore(flags);

When control is transferred to the debugger, you can start your analysis using various debugger commands.

Kernel Debugger (kdb)

Kdb is an instruction-level debugger used for debugging kernel code and device drivers. Before you can use it,
you need to patch your kernel sources with kdb support and recompile the kernel. (Refer to the section
"Downloads" for information on downloading kdb patches.) The main advantage of kdb is that it's easy to set
up, because you don't need an additional machine to do the debugging (unlike kgdb). The main disadvantage is
that you need to correlate your sources with disassembled code (again, unlike kgdb).

Let's wet our toes in kdb with the help of an example. Here's the crime scene: You have modified a kernel serial
driver to work with your x86-based hardware. But the driver isn't working, and you would like kdb to help nab
the culprit.

Let's start our search for fingerprints by setting a breakpoint at the serial driver open() entry point. Remember,
because kdb is not a source-level debugger, you have to open your sources and try to match the instructions
with your C code. Let's list the source snippet in question:

drivers/serial/myserial.c:

static int rs_open(struct tty_struct *tty, struct file *filp)
{

 struct async_struct *info;

 /* ... */

 retval = get_async_struct(line, &info);
 if (retval) return(retval);

 tty->driver_data = info;

 /* Point A */

 /* ... */
}

Press the Pause key and enter kdb. Let's find out how the disassembled rs_open() looks. As usual, all debug

sessions shown in this chapter attach explanations using the symbol.

Entering kdb (current=0xc03f6000, pid 0) on processor 0 due to
Keyboard Entry

kdb> id rs_open Disassemble rs_open

0xc01cce00 rs_open: sub $0x1c, %esp

0xc01cce03 rs_open+0x03: mov $ffffffed, %ecx

...
0xc01cce4b rs_open+0x4b: call 0xc01ccca0, get_async_struct

...

0xc01cce56 rs_open+0x56: mov 0xc(%esp,1), %eax

0xc01cce5a rs_open+0x5a: mov %eax, 0x9a4(%ebx)

...

Point A in the source code is a good place to attach a breakpoint because you can peek at both the tty

structure and the info structure to see what's going on.

Looking side by side at the source and the disassembly, rs_open+0x5a corresponds to Point A. Note that

correlation is easier if the kernel is compiled without optimization flags.

Set a breakpoint at rs_open+0x5a (which is address 0xc01cce5a) and continue execution by exiting the

debugger:

kbd> bp rs_open+0x5a Set breakpoint

kbd> go Continue execution

Now you need to get the kernel to call rs_open() to hit the breakpoint. To trigger this, execute an appropriate

user-space program. In this case, echo some characters to the corresponding serial port (/dev/ttySX):

bash> echo "kerala monsoons" > /dev/ttySX

This results in the invocation of rs_open(). The breakpoint gets hit, and kdb assumes control:

Entering kdb on processor 0 due to Breakpoint @ 0xc01cce5a
kdb>

Let's now find out the contents of the info structure. If you look at the disassembly, one instruction before the
breakpoint (rs_open+0x56), you will see that the EAX register contains the address of the info structure. Let's

look at the register contents:

kbd> r Dump register contents

eax = 0xcf1ae680 ebx = 0xce03b000 ecx = 0x00000000

...

So, 0xcf1ae680 is the address of the info structure. Dump its contents using the md command:

kbd> md 0xcf1ae680 Memory dump

0xcf1ae680 00005301 0000ABC 00000000 10000400

...

To make sense of this dump, let's look at the corresponding structure definition. info is defined as struct

async_struct in include/linux/serialP.h as follows:

struct async_struct {

 int magic; /* Magic Number */

 unsigned long port; /* I/O Port */
 int hub6;

 /* ... */

};

If you match the dump with the definition, 0x5301 is the magic number and 0xABC is the I/O port. Well, isn't this

interesting! 0xABC doesn't look like a valid port. If you have done enough serial port debugging, you will know
that the I/O port base addresses and IRQs are configured in include/asm-x86/serial.h for x86-based hardware.
Change the port definition to the correct value, recompile the kernel, and continue your testing!

Kernel GNU Debugger (kgdb)

Kgdb is a source-level debugger. It is easier to use than kdb because you don't have to spend time correlating
assembly code with your sources. However it's more difficult to set up because an additional machine is needed
to front-end the debugging.

You have to use gdb in tandem with kgdb to step through kernel code. gdb runs on the host machine, while the
kgdb-patched kernel (refer to the "Downloads" section for information on downloading kgdb patches) runs on
the target hardware. The host and the target are connected via a serial null-modem cable, as shown in Figure
21.1.[1]

[1] You can also launch kgdb debug sessions over Ethernet.

Figure 21.1. Kgdb setup.

You have to inform the kernel about the identity and baud rate of the serial port via command-line arguments.
Depending on the bootloader used, add the following kernel arguments to either syslinux.cfg, lilo.conf, or
grub.conf:

kgdbwait kgdb8250=X,115200

kgdbwait asks the kernel to wait until a connection is established with the host-side gdb, X is the serial port

connected to the host, and 115200 is the baud rate used for communication.

Now configure the same baud rate on the host side:

bash> stty speed 115200 < /dev/ttySX

If your host computer is a laptop that does not have a serial port, you may use a USB-to-serial converter for the
debug session. In that case, instead of /dev/ttySX, use the /dev/ttyUSBX node created by the usbserial driver.
Figure 6.4 of Chapter 6, "Serial Drivers," illustrates this scenario.

Let's learn kgdb basics using the example of a buggy kernel module. Modules are easier to debug because the
entire kernel need not be recompiled after making code changes, but remember to compile your module with
the -g option to generate symbolic information. Because modules are dynamically loaded, the debugger needs

to be informed about the symbolic information that the module contains. Listing 21.1 contains a buggy
trojan_function(). Assume that it's defined in drivers/char/my_module.c.

Listing 21.1. Buggy Function

char buffer;

int

trojan_function()

{

 int *my_variable = 0xAB, i;

 /* ... */

 Point A:

 i = *my_variable; /* Kernel Panic: my_variable points

 to bad memory */

 return(i);

}

Insert my_module.ko on the target and look inside /sys/module/my_module/sections/ to decipher ELF
(Executable and Linking Format) section addresses.[2] The .text section in ELF files contains code, .data

contains initialized variables, .rodata contains initialized read-only variables such as strings, and .bss contains
variables that are not initialized during startup. The addresses of these sections are available in the form of the
files .text, .data, .rodata, and .bss in /sys/module/my_module/sections/ if you enable CONFIG_KALLSYMS during
kernel configuration. To obtain the code section address, for instance, do this:

[2] If you are still using a 2.4 kernel, get the section addresses using the –m option to insmod instead:

bash> insmod my_module.o –m

Using /lib/modules/2.x.y/kernel/drivers/char/my_module.o

Sections: Size Address Align

.this 00000060 e091a000 2**2

.text 00001ec0 e091a060 2**4

...

.rodata 0000004c e091d1fc 2**2

.data 00000048 e091d260 2**5

.bss 000000e4 e091d2c0 2**5

...

bash> cat /sys/module/my_module/sections/.text

0xe091a060

More module load information is available from /proc/modules and /proc/kallsyms.

After you have the section addresses, invoke gdb on the host-side machine:

bash> gdb vmlinux vmlinux is the uncompressed kernel

(gdb) target remote /dev/ttySX Connect to the target

Because you passed kgdbwait as a kernel command-line argument, gdb gets control when the kernel boots on

the target. Now inform gdb about the preceding section addresses using the add-symbol-file command:

(gdb) add-symbol-file drivers/char/mymodule.ko 0xe091a060

 -s .rodata 0xe091d1fc -s .data 0xe091d260 -s .bss 0xe091d2c0

add symbol table from file "drivers/char/my_module.ko" at

 .text_addr = 0xe091a060
 .rodata_addr = 0xe091d1fc

 .data_addr = 0xe091d260
 .bss_addr = 0xe091d2c0

(y or n) y
Reading symbols from drivers/char/mymodule.ko ...done.

To debug the kernel panic, let's set a breakpoint at trojan_function():

(gdb) b trojan_function Set breakpoint

(gdb) c Continue execution

When kgdb hits the breakpoint, let's look at the stack trace, single-step until Point A, and display the value of
my_variable:

(gdb) bt Back (stack) trace
#0 trojan_function () at my_module.c :124

#1 0xe091a108 in my_parent_function (my_var1=438, my_var2=0xe091d288)
..

(gdb) step

(gdb) step Continue to single-step up to
 Point A

(gdb) p my_variable

$0 = 0

There is an obvious bug here. my_variable points to NULL because trojan_function() forgot to allocate

memory for it. Let's just allocate the memory using kgdb, circumvent the kernel crash, and continue testing:

(gdb) p &buffer Print address of buffer

$1 = 0xe091a100 ""

(gdb) set my_variable=0xe091a100 my_variable = &buffer

(gdb) c Continue your testing

Kgdb ports are available for several architectures such as x86, ARM, and PowerPC. When you use kgdb
to debug a target embedded device (instead of the PC shown in Figure 21.1), the gdb front-end that you
run on your host system needs to be compiled to work with your target platform. For example, to debug
a device driver developed for an ARM-based embedded device from your x86-based host development
system, you have to use the appropriately generated gdb, often named arm-linux-gdb. The exact name
depends on the distribution you use.

GNU Debugger (gdb)

As mentioned earlier, you can use plain gdb to gather some kernel debug information. However, you can't step
through kernel code, set breakpoints, or modify kernel variables. Let's use gdb to debug the kernel panic caused
by the buggy function in Listing 21.1, but assume this time that trojan_function() is compiled as part of the
kernel and not as a module, because you can't easily peek inside modules using gdb.

This is part of the "oops" message generated when trojan_function() is executed:

Unable to handle kernel NULL pointer dereference at
virtual address 000000ab

 ...
 eax: f7571de0 ebx: ffffe000 ecx: f6c78000 edx: f98df870

 ...
 Stack: c019d731 00000000

 ...
 bffffbe8 c0108fab

Call Trace: [<c019d731>] [<c013b8ac>] [<c0108fab>]
...

Copy this cryptic "oops" message to oops.txt and use the ksymoops utility to obtain more verbose output. You
might need to hand-copy the message if the system is hung:

bash> ksymoops oops.txt

Code; c019d710 <trojan_function+0/10>
00000000 <_EIP>:

Code; c019d710 <trojan_function+0/10> <=====

 0: a1 ab 00 00 00 mov 0xab,%eax <=====

Code; c019d715 <trojan_function+5/10>
 5: c3 ret

2.6 kernels emit "oops" output that can be used as is without the need of decoding using ksymoops if you
enable CONFIG_KALLSYMS during kernel configuration.

Looking at the preceding dump, the "oops" has occurred inside trojan_function(). Let's use gdb to obtain

more information. In the following invocation, vmlinux is the uncompressed kernel image, and /proc/kcore is
the kernel address space:

bash> gdb vmlinux /proc/kcore

(gdb) p xtime Test the waters by printing a kernel variable

$0 = 1113173755

Repeated access to the same variable will not yield refreshed values due to gdb's cached access. You can force
a fresh access by rereading the core file using gdb's core-file command. Let's now look at the disassembly of

trojan_function():

(gdb) x/2i trojan_function Disassemble trojan_function

0xc019d710 <trojan_function>: mov 0xab, %eax

0xc019d715 <trojan_function+5>: ret

trojan_function() looks laconic when seen in assembly due to compiler optimizations. It's effectively copying

the contents of address 0xab to the EAX register, which holds the return value from functions on x86-based
systems. But 0xab does not look like a valid kernel address! Fix the bug by allocating valid memory space to

my_variable, recompile, and continue your testing.

JTAG Debuggers

JTAG debuggers use hardware-assist to debug code. You need specialized monitor hardware[3] and a front-end
user interface (some JTAG debuggers use gdb as the front-end) to step through code. JTAG can also be used for
purposes other than debugging, such as burning code onto on-board flash memory, as discussed in Chapter 18,
"Embedding Linux." JTAG connectors are common on development boards but are usually not part of production
units.

[3] Some JTAG debuggers work with several processor architectures if you suitably replace the probe that connects the debugger to the target

board.

JTAG debuggers usually connect to target hardware via serial port, USB, or Ethernet. With Ethernet, you can
remotely access the JTAG debugger, and hence the target board, even if the board itself does not possess a
network interface.

Figure 21.2 shows a JTAG-based remote debugging session in action. The JTAG debugger used in this scenario
supports a gdb front end. The development host and the JTAG hardware are connected to an Ethernet LAN. The
debug serial port on the target hardware is connected to the serial port on the JTAG box. Figure 21.2 achieves
remote debugging on the Linux development host using five terminal sessions. Terminal 1 runs gdb, which
connects to the JTAG box over the network using telnet:

(gdb) target remote 10.1.1.2:1001 10.1.1.2 is the IP address of

 the JTAG hardware. 1001 is the
 JTAG TCP port that listens to

 incoming gdb connections

Figure 21.2. An example JTAG-based remote debug setup.

[View full size image]

To debug boot portions of the kernel, for example, set a gdb breakpoint at start_kernel(). (You can find its

address from System.map, which is generated in the root of your source tree when you build the kernel.)

Terminal 2 attaches a serial console to the target. A telnet client running on Terminal 2 connects to a
prespecified TCP port on the JTAG box, which is configured (using Terminal 3) to tunnel data arriving via its
serial port:

bash> telnet 10.1.1.2 50 10.1.1.2 is the IP address of

 the JTAG hardware. 50 is the

 JTAG TCP port that tunnels data

 arriving via its serial port

This is equivalent to running an emulator such as minicom after directly connecting the target's debug serial
port to the host (instead of to the JTAG box, as shown in Figure 21.2), but that'll constrain the host to be
physically adjacent to the target.

Terminal 3 telnets to the JTAG box and offers debugger-specific semantics. You can use it for example, to do
the following:

Pull a JTAG definition script over TFTP from the host and execute it during JTAG boot. A JTAG definition

script usually initializes the processor, clock registers, chip select registers, and memory banks. After this
is done, the JTAG hardware is ready to download code on to the target and execute it. The JTAG
manufacturer usually provides definition files for all supported platforms, so you are likely to have a close
starting point for your board.

Download your bootloader, kernel, or stand-alone code from the host over TFTP, to flash memory or RAM
on the target. File formats such as ELF and binary are usually supported by JTAG debuggers.

Single-step code, set breakpoints, examine registers, and dump memory regions.

Reset the target.

JTAG debugging can be flaky at times, so if you are debugging remotely, it might be a good idea to power the
target via a remote power control switch, as shown in Figure 21.2. That way, you can hard-reset the target from
the host using a web browser, as shown in Terminal 4. You may also choose to power the JTAG hardware via a
remote power switch. That will let you test run a bootloader directly from flash without the intervention of JTAG
and its definition files.

If the target board possesses a network interface, it can mount its root filesystem over NFS from the
development host. (See the section "NFS-Mounted Root" in Chapter 18 for details on doing this.) Terminal 5 on
the host operates locally on the exported root filesystem.[4]

[4] You may have more such terminals depending on your debug scenario. If you are using an oscilloscope that has remote display capabilities,

for example, you may operate it via a web browser on another terminal.

If your team is scattered geographically, run Terminals 1 through 5 within an environment such as Virtual
Network Computing (VNC). If VNC is not already part of your distribution, download it from www.realvnc.com.
With such a setup, you can debug the electrons on your remote board from the comfort of your home! Some
JTAG vendors provide a sophisticated integrated development environment[5] that encompasses all the
functionalities previously detailed, so you don't need to manage VNC terminal sessions if you're using one of
those.

[5] While JTAG hardware is independent of the target operating system, the front-end interface is likely to have OS dependencies.

During hardware bring up, when you are porting your bootloader or other stand-alone code to the target, it's a
good idea to first generate an ELF image and debug it from RAM before running it from flash. Remember,
however, to eliminate bootloader initializations that duplicate the ones performed by the JTAG definition script.

A key advantage of JTAG debuggers is that you can use a single tool to debug the different pieces that
constitute your firmware solution. So, you can use the same debugger to debug the BIOS, bootloader, base
kernel, device driver modules, as well as user-space applications, at source level.

Downloads

You may download kdb patches for the x86 and IA64 architectures from http://oss.sgi.com/projects/kdb. Each
supported kernel version needs two patches: a common one and an architecture-dependent one.

The home page for the kgdb project is http://kgdb.sourceforge.net. The website also has documentation on
configuring and using kgdb.

If your Linux distribution does not already contain gdb, you can obtain it from
www.gnu.org/software/gdb/gdb.html.

http://oss.sgi.com/projects/kdb
http://kgdb.sourceforge.net

Kernel Probes

Kernel probes can intrude into a kernel function and extract debug information or apply a medicated patch. It's
a useful addition to your debugging repertoire for investigating inexplicable behavior at a customer site,
especially when you don't have the luxury of rebooting the system. Linux supports a generic form of kernel
probes called Kprobes and two specialized variants, Jprobes and return probes.

Kprobes

Kprobes can save you the trouble of building and booting a debug kernel by providing capabilities to
dynamically dump kernel data structures or insert code into a running kernel. You can, for example, add a few
printks on-the-fly inside the scheduler without recompiling the kernel. You can even patch a bug on a Mars

rover without rebooting it.

To insert a kprobe inside a kernel function, follow these steps:

1. Turn on CONFIG_KPROBES (Instrumentation Support Kprobes) in the kernel configuration menu.

2. Implement a kernel module that registers a kprobe at the instruction of interest. You need to register a
pre-handler that Kprobes will run just before executing the probed instruction and a post-handler that
Kprobes will run after executing the probed instruction. You may also supply a fault-handler that will run if
a fault is detected while executing the pre- or post-handlers (because you don't want to "oops" due to a
debugging bug!).

When a kprobe is registered, it saves the probed instruction and replaces it with an instruction that generates a
breakpoint (int 0x03 on x86-based systems). When the breakpoint is hit, the kernel generates a die

notification. (We discussed notifier chains in Chapter 3, "Kernel Facilities.") Kprobes inserts itself into the die
notifier chain, so it gets notified about the breakpoint hit.

When notified, Kprobes executes the registered pre-handler. Next, it steps through a copy of the probed
instruction. It executes a copy instead of swapping the probed instruction with the breakpoint instruction for
reasons of SMP consistency. Finally, it runs the post-handler. The pre- and post-handler windows are the hooks
offered to the Kprobes user to inject debug code. The handlers can be registered and unregistered on-the-fly, so
serviceability is not merely static at compile time but programmable during runtime.

Let's learn to use Kprobes with the help of an example. Consider the code snippet in Listing 21.2, which is a
kernel thread that adds npages number of pages to the free memory pool, whenever a SIGUSR1 signal is

delivered to it. Most of the logic has been scissored out of the listing because it's not relevant. Assume that you
are at a customer site to debug a problem reported with this code. You notice bad things whenever npages

crosses 10, so you want to apply a runtime patch that limits it to 10.

Listing 21.2. Problem Code (mydrv.c)

Code View:
int npages=0;

EXPORT_SYMBOL(npages);

static int memwalkd(void *unused)

{

 long curr_pfn = (64*1024*1024 >> PAGE_SHIFT);

 struct page *curr_page;

 /* ... */

 daemonize("memwalkd"); /* kernel thread */

 sigfillset(¤t->blocked);

 allow_signal(SIGUSR1);

 for (;;) {

 /* Dequeue a signal if it's pending */

 if (signal_pending(current)) {

 sig = dequeue_signal(current, ¤t->blocked, &info);

 /* Point A */

 /* Free npages pages when SIGUSR1 is received */

 if (sig == SIGUSR1) {

 /* Point B */

 /* Problem manifests when npages crosses 10 in the following

 loop. Let's apply run time medication here via Kprobes */

 for (i=0; i < npages; i++, curr_pfn++) {

 /* ... */

 }

 }

 /* ... */

 }

 /* ... */

}

Listing 21.3. Registering Kprobe Handlers

Code View:
#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/kprobes.h>

#include <linux/kallsyms.h>

#include <linux/sched.h>

extern int npages; /* Defined in Listing 21.2 */

/* Per-probe structure */

static struct kprobe bandaid;

/* Pre Handler: Invoked before running probed instruction */

int bandaid_pre(struct kprobe *p, struct pt_regs *regs)

{

 if (npages > 10) npages = 10;

 return 0;

}

/* Post Handler: Invoked after running probed instruction */

void bandaid_post(struct kprobe *p, struct pt_regs *regs,

 unsigned long flags)

{

 /* Nothing to do */

}

/* Fault Handler: Invoked if the pre/post-handlers

 encounter a fault */

int bandaid_fault(struct kprobe *p, struct pt_regs *regs,

 int trapnr)

{

 return 0;

}

int init_module(void)

{

 int retval;

 /* Fill the kprobe structure */

 bandaid.pre_handler = bandaid_pre;

 bandaid.post_handler = bandaid_post;

 bandaid.fault_handler = bandaid_fault;

 /* Arrive at the target address as explained */

 bandaid.addr = (kprobe_opcode_t*)

 kallsyms_lookup_name("memwalkd") + 0xaa;

 if (!bandaid.addr) {

 printk("Bad Probe Point\n");

 return -1;

 }

 /* Register the kprobe */

 if ((retval = register_kprobe(&bandaid)) < 0) {

 printk("register_kprobe error, return value=%d\n",

 retval);

 return -1;

 }

 return 0;

}

void module_cleanup(void)

{

 unregister_kprobe(&bandaid);

}

MODULE_LICENSE("GPL"); /* You can't link the Kprobes API

 unless your user module is GPL'ed */

Listing 21.3 uses Kprobes to insert a patch at kallsyms_lookup_name("memwalkd") + 0xaa, which limits

npages to 10. To figure out how to arrive at this probe address, take another look at Listing 21.2. You want the
patch to be inserted at Point B. To calculate the kernel address at Point B, disassemble the contents of mydrv.ko
using objdump:

Code View:
bash> objdump -D mydrv.ko

mydrv.ko: file format elf32-i386

Disassembly of section .text:

00000000 <memwalkd>:
 0: 55 push %ebp

 1: bd 00 40 00 00 mov $0x4000,%ebp

 6: 57 push %edi
 7: 56 push %esi

 8: 53 push %ebx

 9: bb 00 f0 ff ff mov $0xfffff000,%ebx

 e: 81 ec 90 00 00 00 sub $0x90,%esp

 ...
 ...

 7a: 83 f8 0a cmp $0xa,%eax Point A
 7d: 74 2b je aa <memwalkd+0xaa>
 7f: 83 f8 09 cmp $0x9,%eax

 82: 75 cc jne 50 <memwalkd+0x50>
 ...

 a9: c3 ret

 aa: a1 00 00 00 00 mov 0x0,%eax Point B

 af: 85 c0 test %eax,%eax
 b1: 0f 8e b5 00 00 00 jle 16c <memwalkd+0x16c>

 b7: 81 fd 7b f6 00 00 cmp $0xf67b,%ebp
 ...
 fa: a1 00 00 00 00 mov 0x0,%eax

You have to use an architecture-specific objdump if you're cross-compiling for a different processor
platform. You will need something like arm-linux-objdump if you're disassembling a binary cross-
compiled for an ARM-based target device. Pass the -S option to objdump to mix source code with the
disassembled output:

bash> arm-linux-objdump –d –S mydrv.ko

If you try and match the C code in Listing 21.2 with its disassembled dump above, you can associate Point A
and Point B with the shown kernel addresses. kallsyms_lookup_name()[6] locates the address of memwalkd(),

and 0xaa is the offset where Point B resides, so apply the kprobe at kallsyms_lookup_name("memwalkd") +
0xaa.

[6] You have to enable CONFIG_KALLSYMS during kernel configuration to obtain the services of this function.

After you register the kprobe, memwalkd() equivalently looks like this:

static int memwalkd(void *unused)

{

 /* ...*/

 for (;;) {
 /* ... */

 /* Point A */

 /* Free npages pages when SIGUSR1 is received */

 if (sig == SIGUSR1) {
 /* Point B */

 if (npages > 10) npages = 10; /* The medicated patch! */

 for (i=0; i < npages; i++, curr_pfn++) {

 /* ... */
 }

 }

 /* ... */
 }

 /* ... */
}

Whenever npages is assigned a value greater than 10, the kprobed patch pulls it back to 10, thus stepping
around the problem.

In the next two sections, let's look at a couple of helper facilities that make it easier to use Kprobes during
function entry and exit.

Jprobes

A jprobe is a specialized kprobe. It eases the work of adding a probe when the point of investigation is at the
entry to a kernel function. The jprobe handler has the same prototype as the probed function. It's invoked with
the same argument list as the probed function, so you can easily access the function arguments from the jprobe
handler. If you use Kprobes rather than Jprobes, imagine the hassles your probe handler needs to undergo,
wading through the dark alleys of the function stack to extract function arguments! And this code that delves
into the stack to elicit argument values has to be heavily function-specific, not to mention being architecture-
dependent and unportable.

To learn how to use Jprobes, let's revert to an example. Assume that you're debugging a network device driver
(that is built as part of the kernel) by looking at the printk() messages it's generating. The driver is emitting

crucial values in octal (base 8), but to your horror, the driver writer has introduced a typo in the print format
string by coding %O rather than %o. So, all you can see are messages such as this:

Number of Free Receive buffers = %O.

Jprobes to the rescue. You can fix this in a few seconds, without recompiling or rebooting the kernel. First, take
a look at printk() defined in kernel/printk.c:

asmlinkage int printk(const char *fmt, ...)
{

 va_list args;

 int r;

 va_start(args, fmt);

 r = vprintk(fmt, args);

 va_end(args);

 return r;

}

Let's add a simple jprobe at the entry to printk() and transform every %O into %o. Listing 21.4 does this job.

Note that the jprobe handler needs to have the same prototype as printk(). Both functions are marked with

the asmlinkage tag that asks them to expect arguments from the stack, rather than from CPU registers.

Listing 21.4. Registering Jprobe Handlers

Code View:
#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/kprobes.h>

#include <linux/kallsyms.h>

/* Jprobe the entrance to printk */

asmlinkage int

jprintk(const char *fmt, ...)

{

 for (; *fmt; ++fmt) {

 if ((*fmt=='%')&&(*(fmt+1) == 'O')) *(char *)(fmt+1) = 'o';

 }

 jprobe_return();

 return 0;

}

/* Per-probe structure */

static struct jprobe jprobe_eg = {

 .entry = (kprobe_opcode_t *) jprintk

};

int

init_module(void)

{

 int retval;

 jprobe_eg.kp.addr = (kprobe_opcode_t*)

 kallsyms_lookup_name("printk");

 if (!jprobe_eg.kp.addr) {

 printk("Bad probe point\n");

 return -1;

 }

 /* Register the Jprobe */

 if ((retval = register_jprobe(&jprobe_eg) < 0)) {

 printk("register_jprobe error, return value=%d\n",

 retval);

 return -1;

 }

 printk("Jprobe registered.\n");

 return 0;

}

void

module_cleanup(void)

{

 unregister_jprobe(&jprobe_eg);

}

MODULE_LICENSE("GPL");

When Listing 21.4 invokes register_jprobes() to register the jprobe, a kprobe is inserted at the beginning of
printk(). When this probe is hit, Kprobes replace the saved return address with that of the registered jprobe

handler, jprintk(). It then copies a portion of the stack and returns, thus passing control to jprintk() with

printk()'s argument list. When jprintk() calls jprobe_return(), the original call state is restored, and
printk() continues to execute normally.

When you insert this jprobe user module, the network driver no longer emits useless messages announcing %O
buffers, rather it prints saner information such as this:

Number of Free Receive buffers = 12.

Return Probes

A return probe (or a kretprobe in Kprobes terminology) is another specialized Kprobes helper. It eases the work
of inserting a kprobe when you need to probe a function's return point. If you use vanilla Kprobes to investigate
return points, you might need to register them at multiple places because a function can return via multiple
code paths. However, if you use return probes, you need to insert only one kretprobe, rather than register, say,
20 Kprobes to cover a function's 20 return paths.

The function tty_open() defined in drivers/char/tty_io.c has seven return paths. The successful path returns 0,

and others return error values such as –ENXIO and -ENODEV. A single kretprobe is sufficient to alert you about
failures, irrespective of the associated code path. Listing 21.5 implements this kretprobe.

Listing 21.5. Registering Return Probe Handlers

Code View:
#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/kprobes.h>

#include <linux/kallsyms.h>

/* kretprobe at exit from tty_open() */

static int

kret_tty_open(struct kretprobe_instance *kreti,

 struct pt_regs *regs)

{

 /* The EAX register contains the function return value

 on x86 systems */

 if ((int) regs->eax) {

 /* tty_open() failed. Announce the return code */

 printk("tty_open returned %d\n", (int)regs->eax);

 }

 return 0;

}

/* Per-probe structure */

static struct kretprobe kretprobe_eg = {

 .handler = (kretprobe_handler_t)kret_tty_open

};

int

init_module(void)

{

 int retval;

 kretprobe_eg.kp.addr = (kprobe_opcode_t*)

 kallsyms_lookup_name("tty_open");

 if (!kretprobe_eg.kp.addr) {

 printk("Bad Probe Point\n");

 return -1;

 }

 /* Register the kretprobe */

 if ((retval = register_kretprobe(&kretprobe_eg) < 0)) {

 printk("register_kretprobe error, return value=%d\n",

 retval);

 return -1;

 }

 printk("kretprobe registered.\n");

 return 0;

}

void module_cleanup(void)

{

 unregister_kretprobe(&kretprobe_eg);

}

MODULE_LICENSE("GPL");

When Listing 21.5 invokes register_kretprobes(), a kprobe is internally inserted at the beginning of

tty_open(). When this probe gets hit, this internal kprobe handler replaces the function return address with
that of a special routine (called a trampoline in Kprobes terminology). Look at arch/your-arch/kernel/kprobes.c
for the implementation of the trampoline.

When tty_open() returns via any of its seven return paths, control returns to the trampoline instead of the
caller function. The trampoline invokes the kretprobe handler, kret_tty_open() registered by Listing 21.5,

which prints the return value if tty_open() has not returned successfully.

Limitations

Kprobes has its limitations. Some of them are obvious. You won't, for example, see desired results if you insert
a kprobe inside an inline function. And, of course, you can't probe Kprobes code.

Kprobes are more useful for applying probes inside the base kernel. If the subject code is part of a dynamically
loadable module, you might as well rewrite and recompile your module rather than write and compile a new
module to "kprobe" it. However, you might still want to use Kprobes if bringing down the module is not
acceptable.

There are less-obvious limitations, too. Optimizations are done at compile time, whereas Kprobes are inserted
during runtime. So, the effect of inserting instructions via Kprobes is not equivalent to adding code in the
original source files. For example, the buggy code snippet

volatile int *integerp = 0xFF;

int integerd = *integerp;

is reduced by the compiler to

mov 0xff, %eax

So, you can't easily use Kprobes if you want to sneak in between those two lines of C code, allocate a word of
memory, point integerp to the allocated word, and circumvent a kernel crash.

SystemTap (http://sourceware.org/systemtap/) is a diagnostic tool that eases the use of Kprobes.

Looking at the Sources

The Kprobes implementation consists of a generic portion defined in kernel/kprobes.c (and
include/linux/kprobes.h) and an architecture-dependent part that lives in arch/your-arch/kernel/kprobes.c (and
include/asm-your-arch/kprobes.h).

Peek inside Documentation/kprobes.txt for further information about Kprobes, Jprobes, and Kretprobes.

http://sourceware.org/systemtap/

Kexec and Kdump

Now that you have learned how to use Kprobes, let's continue and look at more facets of Linux RAS. Kexec and
kdump are serviceability features introduced in the 2.6 kernel.

Kexec uses the image overlay philosophy of the UNIX exec() system call to spawn a new kernel over a running

kernel without the overhead of boot firmware. This can save several seconds of reboot time because boot
firmware spends cycles walking buses and recognizing devices. The less the reboot latency, the less the system
downtime; so, this was one of the main motivations for developing kexec. However, kexec's most popular user
is kdump. Capturing a dump after a kernel crash is inherently unreliable because kernel code that accesses the
dump device might be in an unstable state. Kdump circumvents this problem by collecting the dump after
booting into a healthy kernel via kexec.

Kexec

Before you can kexec a kernel, you need to do some preparations:

1. Compile and boot into a kernel that has kexec support. For this, turn on CONFIG_KEXEC (Processor Type

and Features Kexec System Call) in the kernel configuration menu. This kernel is called the first kernel
or the running kernel.

2. Prepare the kernel that is to be kexec-ed. This second kernel can be the same as the first kernel.

3. Download the kexec-tools package source tar ball from
www.kernel.org/pub/linux/kernel/people/horms/kexec-tools/kexec-tools-testing.tar.gz. Build and produce
the user-space tool called kexec.

The kexec tool built in Step 3 is invoked in two stages. The first stage loads the second kernel image into the
buffers of the running kernel, while the second stage actually overlays the running kernel:

1. Load the second (overlay) kernel using the kexec command:

bash> kexec -l /path/to/kernelsources/arch/x86/boot/bzImage --
append="root=/dev/hdaX" --initrd=/boot/myinitrd.img

bzImage is the second kernel, hdaX is the root device, and myinitrd.img is the initial root filesystem. The
kernel implementation of this stage is mostly architecture-independent. At the heart of this stage is the
sys_kexec() system call. The kexec command loads the new kernel image into the running kernel's

buffers using the services of this system call.

2. Boot into the second kernel:

bash> kexec -e
... Kernel boot up messages

Kexec abruptly starts the new kernel without gracefully halting the operating system. To shut down prior to
reboot, invoke kexec from the bottom of the halt script (usually /etc/rc.d/rc0.d/S01halt) and invoke halt
instead.

The implementation of the second stage is architecture-dependent. The crux of this stage is a
reboot_code_buffer that contains assembly code to put the new kernel in place to boot.

Kexec bypasses the initial kernel code that invokes the services of boot firmware and directly jumps to the
protected mode entry point (for x86 processors). An important challenge to implement kexec is the interaction
that happens between the kernel and the boot firmware (BIOS on x86-based systems, Openfirmware on
POWER-based machines, and so on). On x86 systems, information such as the e820 memory map passed to the
kernel by the BIOS (see Appendix B, "Linux and the BIOS") needs to be supplied to the kexec-ed kernel, too.

Kexec with Kdump

The kexec invocation semantics is somewhat special when it's used in tandem with kdump. In this case, kexec is
required to automatically boot a new kernel when it encounters a kernel panic. If the running kernel crashes,
the new kernel (called the capture kernel) is booted to reliably collect the dump. A typical call syntax is this:

bash> kexec -p /path/to/capture-kernel-sources/vmlinux

 --args-linux --append="root=/dev/hdaX irqpoll"

 --initrd=/boot/myinitrd.img

The -p option asks kexec to trigger a reboot when a kernel panic occurs. A vmlinux ELF kernel image is used as

the capture kernel. Because vmlinux is a general ELF boot image and because kexec is theoretically OS
agnostic, you need to specify via the --args-linux option that the following arguments have to be interpreted

in a Linux-specific manner. The capture kernel boots asynchronously during a kernel crash, so device drivers
using shared interrupts may fatally express their unhappiness during boot. To be nice to such drivers, specify
irqpoll in the command line passed to the capture kernel using --append.

To use kexec with kdump, you need some additional kernel configuration settings. The capture kernel requires
access to kernel memory of the crashed kernel to generate a full dump, so the latter cannot just overwrite the
former as was done by kexec in the non-kdump case. The running kernel needs to reserve a memory region to
run the capture kernel. To mark this region

Boot the first kernel with the command-line argument crashkernel=64M@16M (or other suitable
size@start values). Also include debug symbols in the kernel image by enabling CONFIG_DEBUG_INFO

(Kernel Hacking Compile the Kernel with Debug Info) in the configuration menu.

While configuring the capture kernel, set CONFIG_PHYSICAL_START to the same start value assigned

above (16M in this case). If you kexec into the capture kernel and peek inside /proc/meminfo, you will find
that size (64M in this case) is the total amount of physical memory that this kernel can see.

Now that you're comfortable with kexec and have mastered it from the perspective of a kdump user, let's delve
into kdump and use it to analyze some real-world kernel crashes.

Kdump

An image of system memory captured after a kernel crash or hang is called a crash dump. Analyzing a crash
dump can give valuable clues for postmortem analysis of kernel problems. However, obtaining a dump after a
kernel crash is inherently unreliable because the storage driver responsible for logging data onto the dump
device might be in an undefined state.

Until the advent of kdump, Linux Kernel Crash Dump (LKCD) was the popular mechanism to obtain and analyze
dumps. LKCD uses a temporary dump device (such as the swap partition) to capture the dump. It then warm
reboots back to a healthy state and copies the dump from the temporary device to a permanent location. A tool
called lcrash is used to analyze the dump. The disadvantages with LKCD include the following:

Even copying the dump to a temporary device might be unreliable on a crashed kernel.

Dump device configuration is nontrivial.

The reboot might be slow because swap space can be activated only after the dump has been safely saved
away to a permanent location.

LKCD is not part of the mainline kernel, so installing the proper patches for your kernel version is a hurdle.

Kdump is not burdened with these shortfalls. It eliminates indeterminism by collecting the dump after booting
into a healthy kernel via kexec. Also, because memory state is preserved after a kexec reboot, the memory
image can be accurately accessed from the capture kernel.

Let's first get the preliminary kdump setup out of the way:

1. Ask the running kernel to kexec into a capture kernel if it encounters a panic. The capture kernel should
additionally have CONFIG_HIMEM and CONFIG_CRASH_DUMP turned on. (Both these options sit inside

Processor type and Features in the kernel configuration menu.)

2. After the capture kernel boots, copy the collected dump information from /proc/vmcore (obtained by

enabling CONFIG_PROC_VMCORE in the kernel configuration menu) to a file on your hard disk:

bash> cp /proc/vmcore /dump/vmcore.dump

You can also save other information such as the raw memory snapshot of the crashed kernel, via
/dev/oldmem.

3. Boot back into the first kernel. You are now ready to start dump analysis.

Let's use the collected dump file and the crash tool to analyze some example kernel crashes. Introduce this bug
inside the interrupt handler of the RTC driver (drivers/char/rtc.c):

irqreturn_t rtc_interrupt(int irq, void *dev_id)
{
+ volatile int *integerp = 0xFF;

+ int integerd = *integerp; /* Bad memory reference! */

 spin_lock(&rtc_lock);

 /* ... */

Trigger execution of the handler by enabling interrupts via the hwclock command:

bash> hwclock

... Kernel panic occurs when execution hits rtc_interrupt()

 causing kexec to boot into the capture kernel.

Save /proc/vmcore to /dump/vmcore.dump, reboot back into the first (crashed) kernel, and start analysis using
the crash tool. In a real-world situation, of course, the dump might be captured at a customer site, whereas the

analysis is done at a support center:

bash> crash /usr/src/linux/vmlinux /dump/vmcore.dump

crash 4.0-2.24

...

 KERNEL: /usr/src/linux/vmlinux

 DUMPFILE: /root/vmcore.dumpfile

 CPUS: 1
 DATE: Mon Nov 26 04:15:49 2007

 UPTIME: 00:17:22

LOAD AVERAGE: 0.82, 1.02, 0.87

 TASKS: 63

 ...
 PANIC: "Oops: 0000 [#1]" (check log for details)

crash>

Examine the stack trace to understand the cause of the crash:

crash> bt

PID: 0 TASK: c03a32e0 CPU: 0 COMMAND: "swapper"
 #0 [c0431eb8] crash_kexec at c013a8e7

 #1 [c0431f04] die at c0103a73
 #2 [c0431f44] do_page_fault at c0343381

 #3 [c0431f84] error_code (via page_fault) at c010312d
 EAX: 00000008 EBX: c59a5360 ECX: c03fbf90 EDX: 00000000

 EBP: 00000000
 DS: 007b ESI: 00000000 ES: 007b EDI: c03fbf90
 CS: 0060 EIP: f8a8c004 ERR: ffffffff EFLAGS: 00010092

 #4 [c0431fb8] rtc_interrupt at f8a8c004
 #5 [c0431fc4] handle_IRQ_event at c013de51

 #6 [c0431fdc] __do_IRQ at c013df0f

The stack trace points the needle of suspicion at rtc_interrupt(). Let's disassemble the instructions near

rtc_interrupt():

crash> dis 0xf8a8c000 5
0xf8a8c000 <rtc_interrupt>: push %ebx

0xf8a8c001 <rtc_interrupt+1>: sub $0x4,%esp
0xf8a8c004 <rtc_interrupt+4>: mov 0xff,%eax

0xf8a8c009 <rtc_interrupt+9>: mov $0xc03a6640,%eax

0xf8a8c00e <rtc_interrupt+14>: call 0xc0342300 <_spin_lock>

The instruction at address 0xf8a8c004 is attempting to move the contents of the EAX register to address 0xff,

which is clearly the invalid deference that caused the crash. Fix this and build a new kernel.

If you use the irq command, you can figure out the identity of the interrupt that was in progress during the

time of the crash. In this case, the output confirms that the RTC interrupt was indeed active:

crash> irq
 IRQ: 8

 STATUS: 1 (IRQ_INPROGRESS)

...

...

handler: f8a8c000 <rtc_interrupt>

 flags: 20000000 (SA_INTERRUPT)
 mask: 0

 name: f8a8c29d "rtc"

crash> quit

bash>

Let's now shift gears and look at a case where the kernel freezes, rather than generate an "oops." Consider the
following buggy driver init() routine:

static int __init

mydrv_init(void)

{

 spin_lock(&mydrv_wq.lock); /* Usage before initialization! */
 spin_lock_init(&mydrv_wq.lock);

 /* ... */

}

The code is erroneously using a spinlock before initializing it. Effectively, the CPU spins forever trying to acquire
the lock, and the kernel appears to hang. Let's debug this problem using kdump. In this case, there will be no
auto-trigger because there is no panic, so force a crash dump by pressing the magic Sysrq key combination, Alt-
Sysrq-c. You may need to enable Sysrq by writing a 1 to /proc/sys/kernel/sysrq:

bash> echo 1 > /proc/sys/kernel/sysrq

bash> insmod mydrv.ko

This induces the kernel to hang inside mydrv_init(). Press the Alt-Sysrq-c key combination to trigger a crash
dump:

Alt-Sysrq-c

... Messages announcing that a crash dump

 has been triggered

Save the dump to disk after kexec boots the capture kernel, boot back to the original kernel, and run crash on
the saved dump:

bash> crash vmlinux vmcore.dump

 ...

 PANIC: "SysRq : Trigger a crashdump"
 PID: 2115

 COMMAND: "insmod"

 TASK: f7c57000 [THREAD_INFO: f6170000]

 CPU: 0
 STATE: TASK_RUNNING (SYSRQ)

crash>

Test the waters by checking the identity of the process that was running at the time of the crash. In this case, it

was apparently insmod(of mydrv.ko):

crash> ps

 ...
 2171 2137 0 f6bb7000 IN 0.5 11728 5352 emacs-x

 2214 1 0 f6b5b000 IN 0.1 2732 1192 login

 2230 2214 0 f6bb0550 IN 0.1 4580 1528 bash

 > 2261 2230 0 c596f550 RU 0.0 1572 376 insmod

The stack trace doesn't yield much information other than telling you that a Sysrq key press was responsible for
the dump:

crash> bt

PID: 2115 TASK: f7c57000 CPU: 0 COMMAND: "insmod"

 #0 [c0431e68] crash_kexec at c013a8e7

 #1 [c0431eb4] __handle_sysrq at c0254664
 #2 [c0431edc] handle_sysrq at c0254713

Let's next try peeking at the log messages generated by the crashed kernel. The log command reads the
messages from the kernel printk ring buffer present on the dump file:

crash> log

...
BUG: soft lockup detected on CPU#0!

Pid: 2261, comm: insmod
EIP: 0060:[<c010ec1b>] CPU: 0

EIP is at delay_pmtmr+0xb/0x20
EFLAGS: 00000246 Tainted: P (2.6.16.16 #11)

EAX: 5caaa48c EBX: 00000001 ECX: 5caaa459 EDX: 00000012
ESI: 02e169c9 EDI: 00000000 EBP: 00000001 DS: 007b ES: 007b

CR0: 8005003b CR2: 08062017 CR3: 35e89000 CR4: 000006d0
 [<c01fede9>] __delay+0x9/0x10

 [<c0200089>] _raw_spin_lock+0xa9/0x150
 [<f893d00d>] mydrv_init+0xd/0xb2 [wqdrv]
 [<c0136565>] sys_init_module+0x175/0x17a2

 [<c015d834>] do_sync_read+0xc4/0x100
 [<c013ce4d>] audit_syscall_entry+0x13d/0x170

 [<c0105578>] do_syscall_trace+0x208/0x21a

 [<c0102f05>] syscall_call+0x7/0xb
SysRq : Trigger a crashdump

crash>

The log offers two useful pieces of debug information. First, it lets you know that a soft lockup was detected on
the crashed kernel. As discussed in the section "Device Example: Watchdog Timer" in Chapter 5, "Character
Drivers," the kernel detects soft lockups as follows: A kernel watchdog thread runs once a second and touches a
per-CPU timestamp variable. If the CPU sits in a tight loop, the watchdog thread cannot update this timestamp.
An update check is carried out during timer interrupts using softlockup_tick() (defined in

kernel/softlockup.c). If the watchdog timestamp is more than 10 seconds old, it concludes that a soft lockup has
occurred and emits a kernel message to that effect.

Second, the log frowns upon mydrv_init()+0xd (or 0xf893d00), so let's look at the disassembly of the

surrounding code region:

crash> dis f893d000 5

dis: WARNING: f893d000: no associated kernel symbol found
0xf893d000: mov $0xf89f1208,%eax

0xf893d005: sub $0x8,%esp

0xf893d008: call 0xc0342300 <_spin_lock>

0xf893d00d: movl $0xffffffff,0xf89f1214
0xf893d017: movl $0xffffffff,0xf89f1210

The return address in the stack is 0xf893d00d, so the kernel is hanging inside the previous instruction, which is

a call to spin_lock(). If you co-relate this with the earlier source snippet and look at it in the eye, you can see

the error sequence, spin_lock()/spin_lock_init(), staring sorrowfully back at you. Fix the problem by

swapping the sequence.

You may also use crash to peek at data structures of interest, but be aware that memory regions that were
swapped out during the crash are not part of the dump. In the preceding example, you can examine mydrv_wq

as follows:

crash> rd mydrv_wq 100
f892c200: 00000000 00000000 00000000 00000000

...

f892c230: 2e636373 00000068 00000000 00000011 scc.h...........

Gdb is integrated with crash, so you can pass commands from crash to gdb for evaluation. For example, you can
use gdb's p command to print data structures.

Looking at the Sources

Architecture-dependent portions of kexec reside in arch/your-arch/kernel/machine_kexec.c and arch/your-
arch/kernel/relocate_kernel.S. The generic parts live in kernel/kexec.c (and include/linux/kexec.h). Peek inside
arch/your-arch/kernel/crash.c and arch/your-arch/kernel/crash_dump.c for the kdump implementation.
Documentation/kdump/kdump.txt contains installation information.

Profiling

Profiling points you to those regions of code that burn more CPU cycles. Profilers help sense the presence of
code bottlenecks and come in different flavors. The OProfile kernel profiler, included with the 2.6 kernel, uses
hardware assist to gather profile data. The gprof application profiler, on the other hand, relies on compiler assist
to collect profiling information.

Kernel Profiling with OProfile

OProfile samples data at regular intervals using hardware performance counters supported by many processors.
The performance counters can be programmed to count events such as the number of cache misses. On
systems where the processor does not support performance counters, OProfile obtains limited information by
collecting data during timer events.

OProfile consists of the following:

A kernel layer that collects profiling information.[7] To enable OProfile in your kernel, enable
CONFIG_PROFILING, CONFIG_OPROFILE, and CONFIG_APIC and recompile.

[7] If you are still using a 2.4 kernel, you have to patch your kernel sources with OProfile support.

The oprofiled daemon.

A suite of post-profiling tools such as opcontrol, opreport, and op_help that help in detailed analysis of the
collected data. These tools are included with several distributions; if your distribution doesn't have them,
however, you can download precompiled binaries.

To illustrate the basics of kernel profiling, let's simulate a bottleneck in the filesystem layer and use OProfile to
detect it. Our code area of interest is the portion of the filesystem layer that reads directories (function
vfs_readdir() in fs/readdir.c)

First, use opcontrol to configure OProfile:

bash> opcontrol --setup --vmlinux=/path/to/kernelsources/vmlinux

 --event=GLOBAL_POWER_EVENTS:100000:1:1:1

The event specifier asks OProfile to collect samples during GLOBAL_POWER_EVENTS (time during which the

processor is not stopped). The numerals adjacent to the event specifier denote the sampling count in clock
cycles, unit mask filter, kernel-space counting, and user-space counting, respectively. If you would like to
sample x times every second and your processor is running at a frequency of cpu_speed HZ, your sample count
should approximately be (cpu_speed/x). A larger count generates a finer profile but also results in more CPU

overhead.

The events supported by OProfile depend on your processor:

bash> opcontrol -l List available events on a Pentium 4 CPU

GLOBAL_POWER_EVENTS: (counter: 0, 4)

 time during which processor is not stopped (min count: 3000)

BRANCH_RETIRED: (counter: 3, 7)

 retired branches (min count: 3000)
MISPRED_BRANCH_RETIRED: (counter: 3, 7)

 retired mispredicted branches (min count: 3000)

BSQ_CACHE_REFERENCE: (counter: 0, 4)
...

Next, start OProfile and run a benchmarking tool that stresses those parts of the kernel you would like to
profile. Look at http://lbs.sourceforge.net/ for a list of benchmarking projects on Linux. For this example, let's
exercise the Virtual File System (VFS) layer by recursively listing all files in the system:

bash> opcontrol --start Start data collection

bash> ls -lR / Stress test

bash> opcontrol --dump Save profiled data

Use opreport to look at the profiling results. The % column provides a measure of the function's load on the
system:

Code View:
bash> opreport -l /path/to/kernelsources/vmlinux

CPU: P4 / Xeon, speed 2992.9 MHz (estimated)

Counted GLOBAL_POWER_EVENTS events (time during which processor
is not stopped) with a unit mask of 0x01 (count cycles when processor is active)

count 100000
samples % symbol name

914506 24.2423 vgacon_scroll ls output printed to console

406619 10.7789 do_con_write
273023 7.2375 vgacon_cursor

206611 5.4770 __d_lookup
...

1380 0.0366 vfs_readdir Our routine of interest

...
1 2.7e-05 vma_prio_tree_next

Let's now simulate a bottleneck in the VFS code by introducing a 1-millisecond delay in vfs_readdir(). This is

done in Listing 21.6.

Listing 21.6. vfs_readdir() Defined in fs/read_dir.c

http://lbs.sourceforge.net/

int vfs_readdir(struct file *file, filldir_t filler, void *buf)

{

 struct inode *inode = file->f_ dentry->d_inode;

 int res = -ENOTDIR;

+ /* Introduce a millisecond bottleneck

+ (HZ is set to 1000 on this system) */

+ unsigned long timeout = jiffies+1;

+ while (time_before(jiffies, timeout));

+ /* End of bottleneck */

 /* ... */

}

Compile the kernel with this change and recollect the profile. The new data looks like this:

Code View:
bash> opreport -l /path/to/kernelsources/vmlinux

CPU: P4 / Xeon, speed 2993.08 MHz (estimated)

Counted GLOBAL_POWER_EVENTS events (time during which processor is not stopped)
with a unit mask of 0x01 (count cycles when processor is active)

count 100000
samples % symbol name

6178015 57.1640 vfs_readdir Our routine of interest

1065197 9.8561 vgacon_scroll ls output printed to console

479801 4.4395 do_con_write

...

As you can see, the bottleneck is clearly reflected in the profiled data. vfs_readdir() has now jumped to the
top of the list!

You can use OProfile to obtain a lot more information. You can, for example, gather the percentage of data
cache line misses. Caches are fast memory close to the processor. Fetches to cache are done in units of the
processor cache line (32 bytes for Pentium 4). If the data you need to access is not already present in the cache
(a cache miss), the processor has to fetch it from main memory, and this burns more CPU cycles. Subsequent
accesses to that memory (and the surrounding bytes touched into the cache) will be faster until the
corresponding cache line gets invalidated. You can configure OProfile to count the number of cache misses by
profiling your kernel code for the BSQ_CACHE_REFERENCE event (for Pentium 4). You can then tune your code,

possibly by realigning fields in data structures, to achieve better cache utilization:

Code View:
bash> opcontrol --setup

 --event=BSQ_CACHE_REFERENCE:50000:0x100:1:1

 --vmlinux=/path/to/kernelsources/vmlinux

 Unit mask 0x100 denotes an L2 cache miss

bash> opcontrol --start Start data collection

bash> ls -lR / Stress

bash> opcontrol --dump Save profile

bash> opreport -l /path/to/kernelsources/vmlinux

CPU: P4 / Xeon, speed 2993.68 MHz (estimated)

Counted BSQ_CACHE_REFERENCE events (cache references seen by the bus unit) with a

unit mask of 0x100 (read 2nd level cache miss) count 50000

samples % symbol name
73 29.6748 find_inode_fast

59 23.9837 __d_lookup

27 10.9756 inode_init_once
...

If you run OProfile on different kernel versions and look at the corresponding change logs, you might be able to
figure out reasons for code changes in different parts of the kernel.

You have only touched the surface of what can be accomplished using OProfile. For more information, visit
http://oprofile.sourceforge.net/.

Application Profiling with Gprof

If you need to profile only an application process in isolation without profiling the kernel code that might get
executed on its behalf, use gprof rather than OProfile. Gprof relies on additional code generated by the compiler
to profile C, Pascal, or Fortran programs. Let's use gprof to profile the following code snippet:

main(int argc, char *argv[])
{
 int i;

 for (i=0; i<10; i++) {

 if (!do_task()) { /* Perform task */
 do_error_handling(); /* Handle errors */

 }
 }

}

Use the -pg option to ask the compiler to include extra code that generates a call graph profile when the

program runs. The -g option generates symbolic information:

bash> gcc -pg -g -o myprog myprog.c

bash> ./myprog

This produces gmon.out, which is a call graph of myprog. Run gprof to view the profile:

bash> gprof -p -b myprog

Flat profile:

Each sample counts as 0.01 seconds.

 % cumulative self self total

 time seconds seconds calls s/call s/call name

 65.17 2.75 2.75 2 1.38 1.38 do_error_handling
 34.83 4.22 1.47 10 0.15 0.15 do_task

This shows that the error path was hit twice during execution. You can tune the code to produce fewer

http://oprofile.sourceforge.net/

traversals of the error path and rerun gprof to generate an updated profile.

Tracing

Tracing provides insight into behavioral problems that manifest during interactions between different code
modules. A common way to obtain execution traces is by using printks. While printk is perhaps the most
heavily used method for kernel debugging (there are more than 62,000 printk() statements in the 2.6.23

source tree), it is not sophisticated enough for high-volume tracing. Linux Trace Toolkit (LTT) is a powerful tool
that lets you obtain complex system level traces with minimum overhead.

Linux Trace Toolkit

LTT extracts execution traces that are useful for postmortem analysis and is valuable in situations where it may
not be possible to use a debugger. Unlike OProfile, which collects data by sampling events at regular intervals,
LTT provides exact traces of events as and when they occur.

LTT consists of four components:

A core module that provides trace services to the rest of the kernel. The collected traces are copied to a
kernel buffer.

Code that makes use of the trace services. These are inserted at points where you want to capture trace
dumps.

A trace daemon that pulls trace information from the kernel buffer to a permanent location in the
filesystem.

Utilities such as tracereader and tracevisualizer that interpret raw trace data and convert it into human-
readable form. If you are developing code for an embedded device having no GUI support, you can
transparently run these tools on another machine.

LTT is not part of the mainline kernel.[8] You may download LTT kernel patches, trace daemon, and user-space
trace utilities from www.opersys.com/LTT.

[8] LTT was included as a release candidate in the 2.6.11-rc1-mm1 patch, downloadable from www.kernel.org.

Let's find out what LTT offers with the help of a simple example. Assume that you are seeing data corruption
when your application is reading from a device. You first want to figure out whether the device is sending bad
data or whether a kernel layer is introducing the corruption. To do that, dump data packets and data structures
at the device driver level. Listing 21.7 initializes the LTT events that you plan to generate.

Listing 21.7. Creating LTT Events

#include <linux/trace.h>

int data_packet, driver_data; /* Trace events */

/* Driver init */

static int __init mydriver_init(void)

{

 /* ... */

 /* Event to dump packets received from the device */

 data_packet = trace_create_event("data_pkt",

 NULL,

 CUSTOM_EVENT_FORMAT_TYPE_HEX,

 NULL);

 /* Event to dump a driver structure */

 driver_data = trace_create_event("dvr_data",

 NULL,

 CUSTOM_EVENT_FORMAT_TYPE_HEX,

 NULL);

 /* ... */

}

Next, let's add trace hooks to dump received packets and data structures when the driver reads data from the
device. This is done in Listing 21.8 in the driver read() method.

Listing 21.8. Obtaining Trace Dumps

Code View:
struct mydriver_data driver_data; /* Private device structure */

/* Driver read() method */

ssize_t

mydriver_read(struct file *file, char *buf,

 size_t count, loff_t *ppos)

{

 char *buffer;

 /* Read numbytes bytes of data from the device into

 buffer */

 /* ... */

 /* Dump data Packet. If you see the problem only

 under certain conditions, say, when the packet length is

 greater than a value, use that as a filter */

 if (condition) {

 /* See Listing 21.7 for the definition of data_packet*/

 trace_raw_event(data_packet, numbytes, buffer);

 }

 /* Dump driver data structures */

 if (some_other_condition) {

 /* See Listing 21.7 for the definition of driver_data */

 trace_raw_event(driver_data, sizeof(driver_data), &driver_data);

 }

 /* ... */

}

Compile and run this code as part of the kernel or as a module. Remember to turn on trace support in the
kernel by setting CONFIG_TRACE while configuring the kernel. The next step is to start the trace daemon:

bash> tracedaemon -ts60 /dev/tracer mylog.txt mylog.proc

/dev/tracer is the interface used by the trace daemon to access the trace buffer, -ts60 asks the daemon to run
for 60 seconds, mylog.txt is the file where you want to store the generated raw trace, and mylog.proc is where
you want to save the system state obtained from procfs. Later versions of LTT use a mechanism called relayfs
rather than the /dev/tracer device for efficiently transferring data from the kernel trace buffer to user space.

Run your application that reads data from the device:

bash> ./application Trigger invocation of mydriver_read()

mylog.txt should now contain the requested trace data. The generated raw trace can be analyzed using the
tracevisualizer tool. Choose the Custom Events option and search for data_pkt and dvr_data events. The
output looks like this:

##

Event Time SECS MICROSEC PID Length Description
##

data_pkt 1,110,563,008,742,457 0 27 12 43 AB AC 00 01 0D 56
data_pkt 1,110,563,008,743,151 0 27 01 D4 73 F1 0A CB DD 06
dvr_data 1,110,563,008,743,684 0 25 0D EF 97 1A 3D 4C

...

The last column holds the trace data. The timestamp shows the instant when the trace was collected. If the data
looks corrupt, the device could be sending bad data. Otherwise, the problem must be in a higher kernel layer
and can be further isolated by obtaining traces from a different point in the data-flow path.

The next generation of LTT called LTTng is available for download from http://ltt.polymtl.ca/. This project also
includes a post-trace analyzer called Linux Trace Toolkit Viewer (LTTV).

If your need is only to perform limited tracing of a user application, you can use the strace utility rather than
LTT. Strace uses the ptrace support in the kernel to intercept system calls. It prints out a list of system calls
made by your application, along with the corresponding arguments and return values.

http://ltt.polymtl.ca/

Linux Test Project

Linux Test Project (LTP), hosted at http://ltp.sourceforge.net/, is a suite consisting of around 3,000 tests
designed to exercise different parts of the kernel. Most tests run without user intervention. Others such as
networking and storage media tests need some manual configuration.

Download the source tar ball from the LTP home page, run make, and invoke the wrapper script runltp from the
root of the source tree to start the tests. To capture the results in logfile in the results/ directory, do this:

bash> runltp –p –l logfile

Some errors generated by LTP are "expected." The LTP website documents the list of expected errors for
various kernel versions. Also in the website is an interesting analysis of LTP's code coverage (overall coverage,
lines in path, and distinct lines hit) for a few kernel versions, split across directories in the kernel tree.

http://ltp.sourceforge.net/

User Mode Linux

User Mode Linux (UML), hosted at http://user-mode-linux.sourceforge.net/, lets you debug the kernel without
"oops"ing the machine. To accomplish this, an instance of the kernel (called the guest kernel) runs as a user
mode process over the running kernel (called the host kernel).

UML has diverse users. It can function as an environment for testing kernel and application code, a vehicle to
experiment with unstable kernels, a secure pseudo computer for hosting services such as web servers, or a tool
to learn Linux internals. UML is more useful for debugging hardware-independent portions of the kernel than for
device driver debugging.

http://user-mode-linux.sourceforge.net/

Diagnostic Tools

The sysfsutils package helps you navigate the voluminous amount of data present inside sysfs. This, and other
Linux diagnostic tools such as sysdiag and lsvpd, can be downloaded from http://linux-diag.sourceforge.net/.

http://linux-diag.sourceforge.net/

Kernel Hacking Config Options

Several options exist under Kernel hacking in the kernel configuration menu that can emit valuable debug
information. If you enable an option, corresponding debug code gets compiled when you build the kernel.[9]

Here are a few examples:

[9] Some kernel hacking options are architecture-dependent.

1. Show Timing information on printks (CONFIG_PRINTK_TIME) adds timing instrumentation to printk()
output, so you can use printks as checkpoints for measuring execution times and identifying slow code

regions.

2. Using freed memory results in memory poisoning. Debug slab memory allocations (CONFIG_DEBUG_SLAB)

helps you detect such problems.

3. Spinlock and rw-lock debugging: basic checks (CONFIG_DEBUG_SPINLOCK) finds lock-related problems such
as uninitialized spinlock usage and helps catch code that is not SMP-safe.

4. You have already worked with Magic SysRq key(CONFIG_MAGIC_SYSRQ) when you learned to use kdump. If
you turn this on, you will have some avenues left even if the kernel crashes during debugging. For
example, pressing Alt-Sysrq-t produces a dump of current tasks, whereas Alt-Sysrq-p prints the contents
of processor registers.

5. Detect Soft Lockups (CONFIG_DETECT_SOFTLOCKUP) utilizes the services of a watchdog to detect tight loops
in kernel code that last for more than 10 seconds. We looked at this when we analyzed a kernel hang using
kdump. Note that hardware lockups cannot be found this way. For that, use the services of a Non-Maskable
Interrupt (NMI)-watchdog if your platform supports it.

6. If you enable CONFIG_DEBUG_SLAB, CONFIG_DEBUG_HIMEM, or CONFIG_DEBUG_PAGE_ALLOC while configuring

your kernel, additional error-checking code gets compiled that help debug problems related to memory
management.

7. Check for stack overflows (CONFIG_DEBUG_STACKOVERFLOW) adds code to emit warnings if the available
stack space falls below a threshold. Stack utilization instrumentation (CONFIG_DEBUG_STACK_USAGE) adds

stack space instrumentation to the magic Sysrq key output. Another related option, CONFIG_4KSTACKS, lets
you set the kernel stack size to 4KB rather than 8KB.

8. Verbose BUG() reporting (CONFIG_DEBUG_BUGVERBOSE) produces extra debug information when any kernel

code invokes BUG(), assuming that you have CONFIG_BUG turned on during kernel configuration.

Some debug options live outside the Kernel hacking submenu, too. For example, we enabled CONFIG_KALLSYMS

in this chapter to debug an "oops" message using gdb and to kprobe a kernel module. This option lives under
General setup Configure Standard Kernel Features (for small systems) in the configuration menu.

Kernel hacking options result in overhead and increased footprint, so don't leave them on in production-level
kernels.

Test Equipment

It goes without saying that you need the full complement of relevant test equipment for device driver
debugging. If you are testing a modem interface in a digital-only laboratory environment for example, you will
be well served by a phone simulator. If a high-speed serial driver is manifesting parity errors, an oscilloscope
will aid your problem analysis. If you are writing an I/O device driver, it will help if you have the associated bus
analyzer. If you are writing a network driver, the corresponding protocol line sniffer will ease your debugging
effort.

Chapter 22. Maintenance and Delivery

In This Chapter

Coding Style

642

Change Markers

642

Version Control

643

Consistent Checksums
643

Build Scripts

645

Portable Code
647

You have reached the end of the device driver tour, but implementing a driver is only a part of the
software development life cycle. Before wrapping up, let's discuss a few ideas that contribute to
operational efficiency during software maintenance and delivery.

Coding Style

The life span of many Linux devices range from 5 to 10 years, so adherence to a standard coding style helps
support the product long after you have moved out of the project.

A powerful editor coupled with an organized writing style makes it easier to correlate code with thought. There
can be no infallible guidelines for good style because it's a matter of personal preference, but a uniform manner
of coding is invaluable if there are multiple developers working on a project.

Agree on common coding standards with team members and the customer before starting a project. The coding
style preferred by kernel developers is described in Documentation/CodingStyle in the source tree.

Chapter 22. Maintenance and Delivery

In This Chapter

Coding Style

642

Change Markers

642

Version Control

643

Consistent Checksums
643

Build Scripts

645

Portable Code
647

You have reached the end of the device driver tour, but implementing a driver is only a part of the
software development life cycle. Before wrapping up, let's discuss a few ideas that contribute to
operational efficiency during software maintenance and delivery.

Coding Style

The life span of many Linux devices range from 5 to 10 years, so adherence to a standard coding style helps
support the product long after you have moved out of the project.

A powerful editor coupled with an organized writing style makes it easier to correlate code with thought. There
can be no infallible guidelines for good style because it's a matter of personal preference, but a uniform manner
of coding is invaluable if there are multiple developers working on a project.

Agree on common coding standards with team members and the customer before starting a project. The coding
style preferred by kernel developers is described in Documentation/CodingStyle in the source tree.

Change Markers

Using a marker such as CONFIG_MYPROJECT to tag additions and deletions to existing kernel source files helps
highlight project-specific changes to the source tree. One can recursively grep for the marker string from the
root of the code tree to learn the location of all kernel changes implemented for the project. The following
example marks code changes to drivers/i2c/busses/i2c-i801.c. The modification introduces a check for a new
PCI device ID during setup and eliminates a configuration byte access:

/* ... */

switch(dev->device) {

 case PCI_DEVICE_ID_INTEL_82801DB_3:
#if defined (CONFIG_MYPROJECT)

 case PCI_DEVICE_ID_MYID :

#endif

 /* ... */

}
/* ... */

#if !defined (CONFIG_MYPROJECT)

 pci_write_config_byte(I801_dev, SMBHSTCFG, temp);

#endif

return 0;
/* ... */

CONFIG_MYPROJECT also functions as a configuration-time switch to enable or disable project-specific changes.

It's a good idea to have submarkers for various subtasks in your project. So, if you are modifying the kernel for
fast boot as part of your project, wrap those changes within a submarker such as CONFIG_MYPROJECT_FASTBOOT.

Version Control

You can't execute a serious project without the services of a robust version control repository. A version control
system helps manage multiple versions of source code and regulates file accesses by team members.
Concurrent Versions System or CVS (www.nongnu.org/cvs) is an open source revision control software that has
been around for a long time and comes bundled with many Linux distributions. Another versioning system called
subversion (http://subversion.tigris.org) was developed as an intended replacement for CVS. Git
(http://git.or.cz) is the version control system of choice for kernel developers and is used to maintain several
open source projects, including the Linux kernel. Ample documentation on these systems is available on the
Internet.

http://subversion.tigris.org
http://git.or.cz

Consistent Checksums

Because of legal issues latent in distributing the kernel, companies often ship kernel modifications to customers
in the form of a source patch generated against an agreed-upon base. Customers, in turn, integrate the patch
into an in-house code repository and build the software locally.

Comparing the MD5 checksum of your binary images with that of your customer's is a guard against patching
errors, but the values may not match as-is because the kernel and module images often contain information
specific to the build environment. To force identical MD5 sums, exclude such data while generating kernel and
module images at either end. Here are some typical scenarios that inject environmental data into the object
image:

Some driver methods toss a call to BUG() to announce conditions that are never supposed to occur. BUG()
spits out, among other things, the offending filename and line number. The pathname of the file depends
on the location of your build sandbox. It gets imprinted in the produced image and contributes to MD5
variance. For example, look at nfs_unlock_request() in fs/nfs/pagelist.c:

 void

 nfs_unlock_request(struct nfs_page *req)
 {
 if (!NFS_WBACK_BUSY(req)) {

 printk(KERN_ERR "NFS: Invalid unlock attempted\n");
 BUG();

 }
 /* ... */

 }

BUG() is defined in include/asm-your-arch/bug.h:

#define BUG() do {\

__asm__ __volatile__ ("ud2\n"\
 ...

 : : "I" (__LINE__), "I"(__FILE__))

You can compile BUG() away by disabling CONFIG_BUG during kernel configuration. Or you may get rid of

the line number and filename information emitted by BUG() by switching off CONFIG_DEBUG_BUGVERBOSE.

The wd33c93 driver (drivers/scsi/wd33c93.c) announces the time of compilation during initialization. You
will find this snippet if you go to the end of the initialization routine, wd33c93_init():

 void

 wd33c93_init(struct Scsi_Host *instance,

 const wd33c93_regs regs, dma_setup_t setup,

 dma_stop_t stop, int clock_freq)
 {

 /* ... */

 printk(" Version %s - %s, Compiled %s at %s\n",
 WD33C93_VERSION, WD33C93_DATE, __DATE__, __TIME__);

 }

The build timestamp thus gets embedded inside the image, causing the MD5 checksum to depend on it.

The CONFIG_IKCONFIG_PROC configuration option, if enabled, introduces the configuration timestamp in
the kernel image. This information is available as part of /proc/config.gz at runtime.

Utilities living inside the scripts/ directory in the kernel tree also contribute to MD5 variance by injecting
the output of programs such as hostname, date, whoami and domainname, into kernel header files such
as include/linux/ -compile.h.

Hunt down and mask out such direct and indirect references to environmental information to generate identical
checksums at both ends. Of course, you need not bother about kernel modules that aren't relevant. Envelope
your code modifications within a change marker such as CONFIG_MYPROJECT_SAME_MD5 and create a kernel
configuration switch to turn consistent MD5 generation on or off. When you finish, run md5sum on the stripped
vmlinux image.

Build Scripts

Customers generally ask for periodic software builds during the development cycle. Each build includes new
features or bug fixes. The deliverables for an embedded PC derivative, for example, may include firmware
components such as the base kernel, loadable device driver modules, filesystem utilities, bootloader, BIOS, and
on-card microcode. To automate build generation, it's a good idea to implement a set of versatile build scripts
that obtain a source code snapshot from the version control repository and generate a packaged deliverable.

Listing 22.1 shows a skeletal build script that assumes use of CVS for version control. This is a simple script that
shows only the kernel build. In the real world, you might need a sophisticated suite of scripts that package
several software components and manage different installation scenarios.

Listing 22.1. A Simple Build Script

Code View:
Check that compilation tools are installed

#...

Assume that $user contains the user name, $cvsserver contains

the CVS server name and /path/to/repository is the location

of your project's repository on the CVS server

CVS="cvs –d :pserver:$user@$cvsserver:/path/to/repository"

$CVS login

Check-out the kernel

$CVS checkout kernel

Build the kernel

cd kernel

make mrproper

#Get the .config file for your platform

cp arch/your-arch/configs/your_platform_defconfig .config

make oldconfig

make –j5 bzImage # Accelerate by spawning 5 instances of 'make'

if [$? != 0]

then

 echo "Error building Kernel. Bailing out.."

 exit 1

fi

Copy the kernel image to a target directory

cp arch/x86/boot/bzImage /path/to/target_directory/productname.kernel

Build modules and install them in an appropriate directory

make modules

if [$? != 0]

then

 echo "Error building modules. Bailing.."

 exit 2

fi

export INSTALL_MOD_PATH=»$TARGET_DIRECTORY/modules»

make modules_install

Rebuild after forcing generation of identical MD5 sums and

package the resulting checksum information.

#...

Generate a source patch from the base starting point, assuming

that KERNELBASE is the CVS tag for the vanilla kernel

cvs rdiff –u –r KERNELBASE kernel > patch.kernel

Generate a changelog using "cvs log"

#...

Package everything nicely into a tar ball

#...

After you satisfactorily complete build verification tests on the generated deliverable, initiate a post-build
process to tag the current state of the version control system with a build identifier. This essentially attaches a
name to the source snapshot corresponding to the build and helps trace problems to code versions. You can
check out source versions based on the relevant build identifier when you later attempt to re-create reported
field problems in your lab.

Portable Code

Portability directly translates to code reusability and easier maintenance. This is significant in today's
marketplace, where there are an assortment of processors and innumerable peripheral chipsets. Things will fast
spin out of control if you have to code separate bus drivers for each processor and different client device drivers
for each host controller. Here are some hints for writing portable drivers:

Make portability a design goal while architecting your driver.

Using appropriate kernel APIs automatically injects a degree of portability. A USB driver using the services
of the USB core is rendered independent of the USB host controller. It will work unchanged on different
systems, irrespective on whether they use UHCI, OHCI, or something else.

Write SMP-safe code.

Write code that is 64-bit clean. Do not, for example, assign a pointer to an integer, even with valid
typecasts.

Write drivers such that they can be easily adapted for other similar devices.

Use architecture-independent APIs wherever available. For example, calls to outb() or inb() will work
irrespective of whether the processor uses I/O-mapped or memory-mapped addressing. If you do need to
use architecture-specific code such as inline assembly, stow it away inside the appropriate arch/your-arch/
directory.

Push policy to header files and user space. Use macros and definitions wherever suitable.

Chapter 23. Shutting Down

In This Chapter

Checklist

650

What Next?

651

Before transitioning to init runlevel 0, let's summarize how to set forth on your way to Linux-
enablement when you get hold of a new device. Here's a quick checklist.

Checklist

Identify the device's functionality and interface technology. Depending on what you find, review the
chapter describing the associated device driver subsystem. As you learned, almost every driver subsystem
on Linux contains a core layer that offers driver services, and an abstraction layer that renders
applications independent of the underlying hardware (revisit Figure 18.3 in Chapter 18, "Embedding
Linux"). Your driver needs to fit into this framework and interact with other components in the subsystem.
If your device is a modem, learn how the UART, tty, and line discipline layers operate. If your chip is an
RTC or a watchdog, learn how to conform to the respective kernel APIs. If what you have is a mouse, find
out how to tie it with the input event layer. If your hardware is a video controller, glean expertise on the
frame buffer subsystem. Before embarking on driving an audio codec, investigate the ALSA framework.

1.

Obtain the device's data sheet and understand its register programming model. For an I2C DVI
transmitter, for example, get the device's slave address and the programming sequence for initialization.
For an SPI touch controller, understand how to implement its finite state machine. For a PCI Ethernet
card, find out the configuration space semantics. For a USB device, figure out the supported endpoints and
learn how to communicate with them.

2.

Search for a starting point driver inside the mighty kernel source tree. Research candidate drivers and
hone in on a suitable one. Certain subsystems offer skeletal drivers that you can model after, if you don't
find a close match. Examples are sound/drivers/dummy.c, drivers/usb/usb-skeleton.c, drivers/net/pci-
skeleton.c, and drivers/video/skeletonfb.c.

3.

If you obtain a starting point driver, investigate the exact differences between the associated device and
your hardware by comparing the respective data sheets and schematics. For illustration, assume that you
are putting Linux on a custom board that is based on a distribution-supported reference hardware. Your
distribution includes the USB controller driver that is tested on the reference hardware, but does your

4.

custom board use different USB transceivers? You have a frame buffer driver for the LCD controller, but
does your board use a different display panel interface such as LVDS? Perhaps an EEPROM that sat on the
I2C bus on the reference board now sits on a 1-wire bus. Is the Ethernet controller now connected to a
different PHY chip or even to a Layer 2 switch chip? Or perhaps the RS-232 interface to the UART has
given way to RS-485 for better range and fidelity.

4.

If you don't have a close starting point or if you decide to write your own driver from scratch, invest time
in designing and architecting the driver and its data structures.

5.

Now that you have all the information you need, arm yourself with software tools (such as ctags, cscope,
and debuggers) and lab equipment (such as oscilloscopes, multimeters, and analyzers) and start writing
code.

6.

Chapter 23. Shutting Down

In This Chapter

Checklist

650

What Next?

651

Before transitioning to init runlevel 0, let's summarize how to set forth on your way to Linux-
enablement when you get hold of a new device. Here's a quick checklist.

Checklist

Identify the device's functionality and interface technology. Depending on what you find, review the
chapter describing the associated device driver subsystem. As you learned, almost every driver subsystem
on Linux contains a core layer that offers driver services, and an abstraction layer that renders
applications independent of the underlying hardware (revisit Figure 18.3 in Chapter 18, "Embedding
Linux"). Your driver needs to fit into this framework and interact with other components in the subsystem.
If your device is a modem, learn how the UART, tty, and line discipline layers operate. If your chip is an
RTC or a watchdog, learn how to conform to the respective kernel APIs. If what you have is a mouse, find
out how to tie it with the input event layer. If your hardware is a video controller, glean expertise on the
frame buffer subsystem. Before embarking on driving an audio codec, investigate the ALSA framework.

1.

Obtain the device's data sheet and understand its register programming model. For an I2C DVI
transmitter, for example, get the device's slave address and the programming sequence for initialization.
For an SPI touch controller, understand how to implement its finite state machine. For a PCI Ethernet
card, find out the configuration space semantics. For a USB device, figure out the supported endpoints and
learn how to communicate with them.

2.

Search for a starting point driver inside the mighty kernel source tree. Research candidate drivers and
hone in on a suitable one. Certain subsystems offer skeletal drivers that you can model after, if you don't
find a close match. Examples are sound/drivers/dummy.c, drivers/usb/usb-skeleton.c, drivers/net/pci-
skeleton.c, and drivers/video/skeletonfb.c.

3.

If you obtain a starting point driver, investigate the exact differences between the associated device and
your hardware by comparing the respective data sheets and schematics. For illustration, assume that you
are putting Linux on a custom board that is based on a distribution-supported reference hardware. Your
distribution includes the USB controller driver that is tested on the reference hardware, but does your

4.

custom board use different USB transceivers? You have a frame buffer driver for the LCD controller, but
does your board use a different display panel interface such as LVDS? Perhaps an EEPROM that sat on the
I2C bus on the reference board now sits on a 1-wire bus. Is the Ethernet controller now connected to a
different PHY chip or even to a Layer 2 switch chip? Or perhaps the RS-232 interface to the UART has
given way to RS-485 for better range and fidelity.

4.

If you don't have a close starting point or if you decide to write your own driver from scratch, invest time
in designing and architecting the driver and its data structures.

5.

Now that you have all the information you need, arm yourself with software tools (such as ctags, cscope,
and debuggers) and lab equipment (such as oscilloscopes, multimeters, and analyzers) and start writing
code.

6.

What Next?

Linux is here to stay, but internal kernel interfaces tend to get fossilized as soon as someone figures out a
cleverer way of doing things. No kernel code is etched in stone. As you learned, even the scheduler, considered
sacred, has undergone two rewrites since the 2.4 days. The number of new lines of code appearing in the kernel
tree runs into the millions each year. As the kernel evolves, new features and abstractions keep getting added,
programming interfaces redesigned, subsystems restructured for extracting better performance, and reusable
regions filtered into common cores.

You now have a solid foundation, so you can adapt to these changes. To maintain your cutting-edge, refresh
your kernel tree regularly, browse the kernel mailing list frequently, and write code whenever you can. Linux is
the future, and being a kernel guru pays. Stay at the front lines!

Appendix A. Linux Assembly

Device drivers sometimes need to implement some code snippets in assembly, so let's take a look
at the different facets of assembly programming on Linux.

Figure A.1 shows the Linux boot sequence on a PC-compatible system and is a simpler version of Figure 2.1 in
Chapter 2, "A Peek Inside the Kernel." The firmware components in the figure are implemented using different
assembly syntaxes:

The BIOS is typically written wholly in assembly. Some of the popular PC BIOSes are coded using
assemblers such as the Microsoft Macro Assembler (MASM).

Linux bootloaders such as LILO and GRUB are implemented using a mix of C and assembly. The SYSLINUX
bootloader is entirely written in assembly using the Netwide Assembler (NASM).

Real mode Linux startup code uses the GNU Assembler (GAS).

Protected mode BIOS invocations are done in inline assembly, which is a construct supported by GCC to
insert assembly in between C statements.

Figure A.1. Firmware components and assembly syntaxes.

In Figure A.1, the top two components generally follow Intel-based assembly syntax, whereas the bottom two
are coded in AT&T (or GAS) syntax. There are exceptions; the assembly parts of GRUB use GAS.

To illustrate the differences between these two syntaxes, consider code that outputs a byte to the parallel port.
In Intel format used by the BIOS or the bootloader, you would write the following:

mov dx, 03BCh ;0x3BC is the I/O address of the parallel port
mov al, 0ABh ;0xAB is the data to be output

out dx, al ;Send data to the parallel port

However, if you want to perform the same task from Linux real mode startup code, you need to do this:

movw $0x3BC, %dx

movb $0xAB, %al
outb %al, %dx

You can see that unlike in Intel format, in AT&T syntax, the source operand comes first, and the destination
operand comes second. Register names in AT&T format are preceded by %, and immediate operands are

preceded by $. AT&T opcodes have suffixes such as b (for byte) and w (for word) to specify the size of memory

operands, whereas Intel syntax accomplishes this by looking at the operands rather than the opcodes. To move
pointer references in Intel syntax, you have to specify operand prefixes such as byte ptr.

The advantage of learning AT&T syntax is that it's understood by GAS and inline GCC, which work not
only on Intel-based systems, but also on a variety of processor architectures.

Next, let's rewrite the preceding snippet using GCC inline assembly, which is what you would use from the
protected mode kernel:

unsigned short port = 0x3BC;

unsigned char data = 0xAB;

asm("outb %%al, %%dx\n\t"
 :

 : "a" (data), "d" (port)

);

The general format of the asm construct supported by GCC is as follows:

asm(assembly

 : output operand constraints

 : input operand constraints
 : clobbered operand specifier

);

In the operand sections, a, b, c, d, S, and D stand for EAX, EBX, ECX, EDX, ESI, and EDI registers, respectively.

Input operand constraints copy data from the supplied variables to the specified registers before executing the
assembly instructions, whereas output operand constraints (written as =a, =b, and so on) copy data from the

specified registers to the supplied variables after executing the assembly instructions. The clobbered operand
constraints ask GCC to assume that the listed registers are not available for use. Look at the GCC Inline
Assembly HOWTO (www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html) for more details on the GCC
inline assembly syntax.

The only constraint used in our example is specific to input operands. This effectively copies the value of data to

the AL register and the value of port to the DX register. Register names are preceded by %% in inline assembly,
because % is used to refer to the supplied operands. %i stands for the i th operand; so, if you want to refer to

data and port inside the example inline assembly snippet, you may respectively use %0 and %1.

To obtain a clearer picture of inline assembly translation, let's look at the assembly code generated by the
compiler corresponding to the preceding inline assembly snippet by supplying the -s command-line argument to
GCC. Look at the comment against each generated code line for explanations:

 movw $956, -2(%ebp) # Value of data in stack set to 0x3BC

 movb $-85, -3(%ebp) # Value of port in stack set to 0xAB

 movb -3(%ebp), %al # movb 0xAB, %al

 movw -2(%ebp), %dx # movw 0x3BC, %dx

#APP # Marker to note start of inline assembly
 outb %al, %dx # Write to parallel port

#NO_APP # Marker to note end of inline assembly

You may use inline assembly from user mode programs, too. Here is an application written using inline
assembly that invokes the syslog() system call to read the last 128 bytes from the kernel printk() ring
buffer:

Code View:
#define READ_COMMAND 3 /* First argument to
 syslog() system call */

#define MSG_LENGTH 128 /* Third argument to syslog() */

int

main(int argc, char *argv[])

{
 int syslog_command = READ_COMMAND;

 int bytes_to_read = MSG_LENGTH;

 int retval;
 char buffer[MSG_LENGTH]; /* Second argument to syslog() */

 asm volatile(
 "movl %1, %%ebx\n" /* READ_COMMAND */

 "movl %2, %%ecx\n" /* buffer */

 "movl %3, %%edx\n" /* bytes_to_read */

 "movl $103, %%eax\n" /* __NR_syslog */

 "int $128\n" /* Generate System Call */
 "movl %%eax, %0" /* retval */

 :"=r" (retval)

 :"m"(syslog_command),"r"(buffer),"m"(bytes_to_read)
 :"%eax","%ebx","%ecx","%edx");

 if (retval > 0) printf("%s\n", buffer);
}

As you learned in Chapter 4, "Laying the Groundwork," the int $128 (or int 0x80) instruction generates a
software interrupt that traps into system calls. Because system calls result in transition from user mode to
kernel mode, the function arguments are not passed in user or kernel stacks, but in CPU registers. The system
call number (include/asm-your-arch/unistd.h has the full list) is stored in the EAX register. For the syslog()

system call, this number is 103. If you look at the man page for syslog(), you will see that it takes three
arguments: a command, the address of a buffer to hold returned data, and the length of the buffer. These are
passed in registers EBX, ECX and EDX, respectively. The return value is transferred from EAX to retval. The
inline assembly invocation effectively translates to this:

retval = syslog(syslog_command, buffer, bytes_to_read);

If you compile and run the code, you will see output like this, fetched from the kernel ring buffer:

0:0:0:0: Attached scsi removable disk sda
<5>sd 0:0:0:0: Attached scsi generic sg0 type 0

<7>usb-storage: device scan complete
...

The kernel system call trap in arch/x86/kernel/entry_32.S saves all register contents to stack, so the real
system calls see their arguments on stack, even though user-space code passes them in CPU registers. To
ensure that system call routines expect arguments on stack, they are all tagged with the GCC attribute,
asmlinkage. Note that asmlinkage has nothing to do with the asm (or __asm__) that is used to declare inline
assembly.

Let's end this section by illustrating an example of inline assembly modification to a Linux bootloader for a
PowerPC-based board. Assume that the flash memory on the board does not support BackGround Operation
(BGO). This means that the bootloader code cannot write to flash while executing from flash, which is needed,
for example, if the bootloader needs to update a kernel image that is residing in another part of the flash. One
solution is to modify the bootloader so that the boot code used to write and erase the flash gets executed
entirely from Instruction Cache (I-cache) with the data segment residing in Data Cache (D-cache). The sample

macro written here in GCC inline assembly does the job of pretouching the necessary bootloader instructions
onto I-cache. You need a working knowledge of PowerPC assembly to understand this code snippet:

Code View:
/* instr_length is the number of instructions to touch
 into I-cache. _load_i$_copy and _end_i$_copy are

 program labels */

#define load_into_icache_copy(instr_length) \
asm volatile("lis %%r3, 0x1@h\n \

 ori %%r3, %%r3, 0x1@l\n \

 mticcr %%r3\n \

 isync\n \

 \n \
 lis %%r6, _end_i$_copy@h\n \

 ori %%r6, %%r6, _end_i$_copy@l\n \

 icbt %%r0, %%r6\n \
 lis %%r4, %0@h\n \

 ori %%r4, %%r4, %0@l\n \

 mtctr %%r4\n \
 _load_i$_copy: \

 addis %%r6, %%r6, 32@ha\n \

 addi %%r6, %%r6, 32@l\n \
 icbt %%r0, %%r6\n \

 bdnz _load_i$_copy\n \
 _end_i$_copy: \

 nop\n" \
 : \

 : "i"(instr_length) \
 :"%r6","%r4","%r0","r8","r9");

Debugging

To debug the real mode kernel, you cannot use debuggers such as the Kernel Debugger (kdb) or the Kernel
GNU Debugger (kgdb), which we discussed in Chapter 21, "Debugging Device Drivers." A quick way to debug
kernel assembly snippets is by using the DOS debug tool after converting your code to Intel-style syntax. But
debug was created in the 16-bit era, so you can't, for instance, step through code that initializes the EAX

register. You can find 32-bit debug-type freeware tools available for download on the Internet. JTAG debuggers,
also discussed in Chapter 21, are a kind of panacea because a single tool can be used to debug the BIOS,
bootloader, Linux real mode code, and kernel-BIOS interactions.

Appendix A. Linux Assembly

Device drivers sometimes need to implement some code snippets in assembly, so let's take a look
at the different facets of assembly programming on Linux.

Figure A.1 shows the Linux boot sequence on a PC-compatible system and is a simpler version of Figure 2.1 in
Chapter 2, "A Peek Inside the Kernel." The firmware components in the figure are implemented using different
assembly syntaxes:

The BIOS is typically written wholly in assembly. Some of the popular PC BIOSes are coded using
assemblers such as the Microsoft Macro Assembler (MASM).

Linux bootloaders such as LILO and GRUB are implemented using a mix of C and assembly. The SYSLINUX
bootloader is entirely written in assembly using the Netwide Assembler (NASM).

Real mode Linux startup code uses the GNU Assembler (GAS).

Protected mode BIOS invocations are done in inline assembly, which is a construct supported by GCC to
insert assembly in between C statements.

Figure A.1. Firmware components and assembly syntaxes.

In Figure A.1, the top two components generally follow Intel-based assembly syntax, whereas the bottom two
are coded in AT&T (or GAS) syntax. There are exceptions; the assembly parts of GRUB use GAS.

To illustrate the differences between these two syntaxes, consider code that outputs a byte to the parallel port.
In Intel format used by the BIOS or the bootloader, you would write the following:

mov dx, 03BCh ;0x3BC is the I/O address of the parallel port
mov al, 0ABh ;0xAB is the data to be output

out dx, al ;Send data to the parallel port

However, if you want to perform the same task from Linux real mode startup code, you need to do this:

movw $0x3BC, %dx

movb $0xAB, %al
outb %al, %dx

You can see that unlike in Intel format, in AT&T syntax, the source operand comes first, and the destination
operand comes second. Register names in AT&T format are preceded by %, and immediate operands are

preceded by $. AT&T opcodes have suffixes such as b (for byte) and w (for word) to specify the size of memory

operands, whereas Intel syntax accomplishes this by looking at the operands rather than the opcodes. To move
pointer references in Intel syntax, you have to specify operand prefixes such as byte ptr.

The advantage of learning AT&T syntax is that it's understood by GAS and inline GCC, which work not
only on Intel-based systems, but also on a variety of processor architectures.

Next, let's rewrite the preceding snippet using GCC inline assembly, which is what you would use from the
protected mode kernel:

unsigned short port = 0x3BC;

unsigned char data = 0xAB;

asm("outb %%al, %%dx\n\t"
 :

 : "a" (data), "d" (port)

);

The general format of the asm construct supported by GCC is as follows:

asm(assembly

 : output operand constraints

 : input operand constraints
 : clobbered operand specifier

);

In the operand sections, a, b, c, d, S, and D stand for EAX, EBX, ECX, EDX, ESI, and EDI registers, respectively.

Input operand constraints copy data from the supplied variables to the specified registers before executing the
assembly instructions, whereas output operand constraints (written as =a, =b, and so on) copy data from the

specified registers to the supplied variables after executing the assembly instructions. The clobbered operand
constraints ask GCC to assume that the listed registers are not available for use. Look at the GCC Inline
Assembly HOWTO (www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html) for more details on the GCC
inline assembly syntax.

The only constraint used in our example is specific to input operands. This effectively copies the value of data to

the AL register and the value of port to the DX register. Register names are preceded by %% in inline assembly,
because % is used to refer to the supplied operands. %i stands for the i th operand; so, if you want to refer to

data and port inside the example inline assembly snippet, you may respectively use %0 and %1.

To obtain a clearer picture of inline assembly translation, let's look at the assembly code generated by the
compiler corresponding to the preceding inline assembly snippet by supplying the -s command-line argument to
GCC. Look at the comment against each generated code line for explanations:

 movw $956, -2(%ebp) # Value of data in stack set to 0x3BC

 movb $-85, -3(%ebp) # Value of port in stack set to 0xAB

 movb -3(%ebp), %al # movb 0xAB, %al

 movw -2(%ebp), %dx # movw 0x3BC, %dx

#APP # Marker to note start of inline assembly
 outb %al, %dx # Write to parallel port

#NO_APP # Marker to note end of inline assembly

You may use inline assembly from user mode programs, too. Here is an application written using inline
assembly that invokes the syslog() system call to read the last 128 bytes from the kernel printk() ring
buffer:

Code View:
#define READ_COMMAND 3 /* First argument to
 syslog() system call */

#define MSG_LENGTH 128 /* Third argument to syslog() */

int

main(int argc, char *argv[])

{
 int syslog_command = READ_COMMAND;

 int bytes_to_read = MSG_LENGTH;

 int retval;
 char buffer[MSG_LENGTH]; /* Second argument to syslog() */

 asm volatile(
 "movl %1, %%ebx\n" /* READ_COMMAND */

 "movl %2, %%ecx\n" /* buffer */

 "movl %3, %%edx\n" /* bytes_to_read */

 "movl $103, %%eax\n" /* __NR_syslog */

 "int $128\n" /* Generate System Call */
 "movl %%eax, %0" /* retval */

 :"=r" (retval)

 :"m"(syslog_command),"r"(buffer),"m"(bytes_to_read)
 :"%eax","%ebx","%ecx","%edx");

 if (retval > 0) printf("%s\n", buffer);
}

As you learned in Chapter 4, "Laying the Groundwork," the int $128 (or int 0x80) instruction generates a
software interrupt that traps into system calls. Because system calls result in transition from user mode to
kernel mode, the function arguments are not passed in user or kernel stacks, but in CPU registers. The system
call number (include/asm-your-arch/unistd.h has the full list) is stored in the EAX register. For the syslog()

system call, this number is 103. If you look at the man page for syslog(), you will see that it takes three
arguments: a command, the address of a buffer to hold returned data, and the length of the buffer. These are
passed in registers EBX, ECX and EDX, respectively. The return value is transferred from EAX to retval. The
inline assembly invocation effectively translates to this:

retval = syslog(syslog_command, buffer, bytes_to_read);

If you compile and run the code, you will see output like this, fetched from the kernel ring buffer:

0:0:0:0: Attached scsi removable disk sda
<5>sd 0:0:0:0: Attached scsi generic sg0 type 0

<7>usb-storage: device scan complete
...

The kernel system call trap in arch/x86/kernel/entry_32.S saves all register contents to stack, so the real
system calls see their arguments on stack, even though user-space code passes them in CPU registers. To
ensure that system call routines expect arguments on stack, they are all tagged with the GCC attribute,
asmlinkage. Note that asmlinkage has nothing to do with the asm (or __asm__) that is used to declare inline
assembly.

Let's end this section by illustrating an example of inline assembly modification to a Linux bootloader for a
PowerPC-based board. Assume that the flash memory on the board does not support BackGround Operation
(BGO). This means that the bootloader code cannot write to flash while executing from flash, which is needed,
for example, if the bootloader needs to update a kernel image that is residing in another part of the flash. One
solution is to modify the bootloader so that the boot code used to write and erase the flash gets executed
entirely from Instruction Cache (I-cache) with the data segment residing in Data Cache (D-cache). The sample

macro written here in GCC inline assembly does the job of pretouching the necessary bootloader instructions
onto I-cache. You need a working knowledge of PowerPC assembly to understand this code snippet:

Code View:
/* instr_length is the number of instructions to touch
 into I-cache. _load_i$_copy and _end_i$_copy are

 program labels */

#define load_into_icache_copy(instr_length) \
asm volatile("lis %%r3, 0x1@h\n \

 ori %%r3, %%r3, 0x1@l\n \

 mticcr %%r3\n \

 isync\n \

 \n \
 lis %%r6, _end_i$_copy@h\n \

 ori %%r6, %%r6, _end_i$_copy@l\n \

 icbt %%r0, %%r6\n \
 lis %%r4, %0@h\n \

 ori %%r4, %%r4, %0@l\n \

 mtctr %%r4\n \
 _load_i$_copy: \

 addis %%r6, %%r6, 32@ha\n \

 addi %%r6, %%r6, 32@l\n \
 icbt %%r0, %%r6\n \

 bdnz _load_i$_copy\n \
 _end_i$_copy: \

 nop\n" \
 : \

 : "i"(instr_length) \
 :"%r6","%r4","%r0","r8","r9");

Debugging

To debug the real mode kernel, you cannot use debuggers such as the Kernel Debugger (kdb) or the Kernel
GNU Debugger (kgdb), which we discussed in Chapter 21, "Debugging Device Drivers." A quick way to debug
kernel assembly snippets is by using the DOS debug tool after converting your code to Intel-style syntax. But
debug was created in the 16-bit era, so you can't, for instance, step through code that initializes the EAX

register. You can find 32-bit debug-type freeware tools available for download on the Internet. JTAG debuggers,
also discussed in Chapter 21, are a kind of panacea because a single tool can be used to debug the BIOS,
bootloader, Linux real mode code, and kernel-BIOS interactions.

Appendix B. Linux and the BIOS

Parts of the x86 kernel, such as the video frame buffer driver (vesafb) and Advanced Power

Management (APM), explicitly use BIOS services to accomplish certain functions. Other sections of
the kernel, such as the serial driver, implicitly depend on the BIOS to initialize I/O base addresses
and interrupt levels. Real mode kernel code makes extensive use of BIOS calls during boot to
perform tasks such as assembling the system memory map.[1] Because some device drivers
depend directly or indirectly on the BIOS, let's learn how to interact with it.

[1] On BIOS-less embedded architectures, similar responsibilities (for example, waking the kernel from suspend on ARM Linux) rest with the

bootloader.

Real Mode Calls

Many parts of the kernel glean information from the BIOS in real mode and use the collected information during
normal operation in protected mode.

The steps needed to accomplish this are as follows:

1. Real mode kernel code invokes BIOS services and populates returned information in the first physical
memory page, called the zero page. This is done by the source files in the arch/x86/boot/ directory. The
full layout of the zero page can be found in Documentation/i386/zero-page.txt.

2. After the kernel switches to protected mode, but before it clears the zero page, the obtained data is saved
in kernel data structures. This is done in arch/x86/kernel/setup_32.c.

3. The protected mode kernel makes suitable use of the saved information during normal operation.

As an example, let's find out how the kernel assembles the system memory map from the BIOS. Listing B.1 is a
snippet from arch/x86/boot/memory.c in the 2.6.23.1 source tree that invokes the BIOS int 0x15 service to

obtain the system memory map.

Listing B.1. Obtaining the System Memory Map (arch/x86/boot/memory.c)

static int detect_memory_e820(void)

{

 int count = 0;

 u32 next = 0;

 u32 size, id;

 u8 err;

 /* The boot_params structure contains the zero page */

 struct e820entry *desc = boot_params.e820_map;

 do {

 size = sizeof(struct e820entry);

 asm("int $0x15; setc %0"

 : "=d" (err), "+b" (next), "=a" (id), "+c" (size),

 "=m" (*desc)

 : "D" (desc), "d" (SMAP), "a" (0xe820));

 /* ... */

 count++;

 desc++;

 } while (next && count < E820MAX);

 return boot_params.e820_entries = count;

}

In the listing, 0xe820 is the function number specified in the AX register before invoking int 0x15 to procure the
memory map. If you look at the BIOS call definition for int 0x15, function 0xe820 (the full list is available at

http://lrs.fmi.uni-passau.de/support/doc/interrupt-57/INT.HTM), you will see that the BIOS writes the current
element of the memory map in a buffer pointed to by the DI register. In Listing B.1, DI points to the offset in

the zero page where the memory map is to be stored (boot_params.e820_map). The code then loops until all
elements in the memory map are collected. The number of elements is computed and stored at offset
boot_params.e820_entries in the zero page. When execution successfully exits the loop, the memory map is
available in the zero page in the form of struct e820map, defined in include/asm-x86/e820.h:

struct e820entry {

 _u64 addr; /* start of memory segment */
 _u64 size; /* size of memory segment */

 _u32 type; /* type of memory segment */
} _attribute_((packed));

struct e820map {

 _u32 nr_map;

 struct e820entry map[E820MAX];

};

The kernel switches to protected mode later in arch/x86/boot/pm.c. When in protected mode, the kernel saves
the collected memory map via copy_e820_map(), defined in arch/x86/kernel/e820_32.c. This is shown in Listing

B.2. For simplicity, the listing scissors out error checks and folds the add_memory_region() routine.

Listing B.2. Copying the Memory Map (arch/x86/kernel/e820_32.c)

http://lrs.fmi.uni-passau.de/support/doc/interrupt-57/INT.HTM

Code View:
struct e820map e820;

static int __init

copy_e820_map(struct e820entry *biosmap, int nr_map)

{

 int x;

 /* ... */

 do {

 /* Copy memory map information collected from

 the BIOS into local variables */

 unsigned long long start = biosmap->addr;

 unsigned long long size = biosmap->size;

 unsigned long long end = start + size;

 unsigned long type = biosmap->type;

 /* Sanitize start and size */

 /* ... */

 /* Populate the kernel data structure, e820 */

 x = e820.nr_map;

 e820.map[x].addr = start;

 e820.map[x].size = size;

 e820.map[x].type = type;

 e820.nr_map++;

 } while (biosmap++,--nr_map); /*Do for all elements in map*/

 /* ... */

}

Look at arch/x86/mm/init_32.c to see how the e820 structure populated in Listing B.2 is used later on in the
boot process.

The Old i386 Boot Code

Starting with the 2.6.23 kernel, the i386 boot assembly code has been largely rewritten in C. Prior
to 2.6.23, the code in Listing B.1 lived in arch/i386/boot/setup.S rather than in
arch/x86/boot/memory.c. Also, the switch to protected mode now occurs in arch/x86/boot/pm.c
rather than setup.S.

To take another example, the kernel makes use of the BIOS int 0x10 service to obtain video mode parameters

while it's in real mode (arch/x86/boot/video*.c). The VESA frame buffer driver (drivers/video/vesafb.c) relies on
these parameters to turn on graphics mode at boot time.

As an exercise, use a similar approach to obtain BIOS Power-On Self Test (POST) error codes from the real
mode kernel (via int 0x15, function 0x2100) and display them during normal operation via the /proc
filesystem.

Bootloaders also make use of BIOS services in real mode. If you browse through the sources of LILO, GRUB, or
SYSLINUX, you will see a liberal sprinkling of int 0x13 calls to read the kernel image from the boot device.

Appendix B. Linux and the BIOS

Parts of the x86 kernel, such as the video frame buffer driver (vesafb) and Advanced Power

Management (APM), explicitly use BIOS services to accomplish certain functions. Other sections of
the kernel, such as the serial driver, implicitly depend on the BIOS to initialize I/O base addresses
and interrupt levels. Real mode kernel code makes extensive use of BIOS calls during boot to
perform tasks such as assembling the system memory map.[1] Because some device drivers
depend directly or indirectly on the BIOS, let's learn how to interact with it.

[1] On BIOS-less embedded architectures, similar responsibilities (for example, waking the kernel from suspend on ARM Linux) rest with the

bootloader.

Real Mode Calls

Many parts of the kernel glean information from the BIOS in real mode and use the collected information during
normal operation in protected mode.

The steps needed to accomplish this are as follows:

1. Real mode kernel code invokes BIOS services and populates returned information in the first physical
memory page, called the zero page. This is done by the source files in the arch/x86/boot/ directory. The
full layout of the zero page can be found in Documentation/i386/zero-page.txt.

2. After the kernel switches to protected mode, but before it clears the zero page, the obtained data is saved
in kernel data structures. This is done in arch/x86/kernel/setup_32.c.

3. The protected mode kernel makes suitable use of the saved information during normal operation.

As an example, let's find out how the kernel assembles the system memory map from the BIOS. Listing B.1 is a
snippet from arch/x86/boot/memory.c in the 2.6.23.1 source tree that invokes the BIOS int 0x15 service to

obtain the system memory map.

Listing B.1. Obtaining the System Memory Map (arch/x86/boot/memory.c)

static int detect_memory_e820(void)

{

 int count = 0;

 u32 next = 0;

 u32 size, id;

 u8 err;

 /* The boot_params structure contains the zero page */

 struct e820entry *desc = boot_params.e820_map;

 do {

 size = sizeof(struct e820entry);

 asm("int $0x15; setc %0"

 : "=d" (err), "+b" (next), "=a" (id), "+c" (size),

 "=m" (*desc)

 : "D" (desc), "d" (SMAP), "a" (0xe820));

 /* ... */

 count++;

 desc++;

 } while (next && count < E820MAX);

 return boot_params.e820_entries = count;

}

In the listing, 0xe820 is the function number specified in the AX register before invoking int 0x15 to procure the
memory map. If you look at the BIOS call definition for int 0x15, function 0xe820 (the full list is available at

http://lrs.fmi.uni-passau.de/support/doc/interrupt-57/INT.HTM), you will see that the BIOS writes the current
element of the memory map in a buffer pointed to by the DI register. In Listing B.1, DI points to the offset in

the zero page where the memory map is to be stored (boot_params.e820_map). The code then loops until all
elements in the memory map are collected. The number of elements is computed and stored at offset
boot_params.e820_entries in the zero page. When execution successfully exits the loop, the memory map is
available in the zero page in the form of struct e820map, defined in include/asm-x86/e820.h:

struct e820entry {

 _u64 addr; /* start of memory segment */
 _u64 size; /* size of memory segment */

 _u32 type; /* type of memory segment */
} _attribute_((packed));

struct e820map {

 _u32 nr_map;

 struct e820entry map[E820MAX];

};

The kernel switches to protected mode later in arch/x86/boot/pm.c. When in protected mode, the kernel saves
the collected memory map via copy_e820_map(), defined in arch/x86/kernel/e820_32.c. This is shown in Listing

B.2. For simplicity, the listing scissors out error checks and folds the add_memory_region() routine.

Listing B.2. Copying the Memory Map (arch/x86/kernel/e820_32.c)

http://lrs.fmi.uni-passau.de/support/doc/interrupt-57/INT.HTM

Code View:
struct e820map e820;

static int __init

copy_e820_map(struct e820entry *biosmap, int nr_map)

{

 int x;

 /* ... */

 do {

 /* Copy memory map information collected from

 the BIOS into local variables */

 unsigned long long start = biosmap->addr;

 unsigned long long size = biosmap->size;

 unsigned long long end = start + size;

 unsigned long type = biosmap->type;

 /* Sanitize start and size */

 /* ... */

 /* Populate the kernel data structure, e820 */

 x = e820.nr_map;

 e820.map[x].addr = start;

 e820.map[x].size = size;

 e820.map[x].type = type;

 e820.nr_map++;

 } while (biosmap++,--nr_map); /*Do for all elements in map*/

 /* ... */

}

Look at arch/x86/mm/init_32.c to see how the e820 structure populated in Listing B.2 is used later on in the
boot process.

The Old i386 Boot Code

Starting with the 2.6.23 kernel, the i386 boot assembly code has been largely rewritten in C. Prior
to 2.6.23, the code in Listing B.1 lived in arch/i386/boot/setup.S rather than in
arch/x86/boot/memory.c. Also, the switch to protected mode now occurs in arch/x86/boot/pm.c
rather than setup.S.

To take another example, the kernel makes use of the BIOS int 0x10 service to obtain video mode parameters

while it's in real mode (arch/x86/boot/video*.c). The VESA frame buffer driver (drivers/video/vesafb.c) relies on
these parameters to turn on graphics mode at boot time.

As an exercise, use a similar approach to obtain BIOS Power-On Self Test (POST) error codes from the real
mode kernel (via int 0x15, function 0x2100) and display them during normal operation via the /proc
filesystem.

Bootloaders also make use of BIOS services in real mode. If you browse through the sources of LILO, GRUB, or
SYSLINUX, you will see a liberal sprinkling of int 0x13 calls to read the kernel image from the boot device.

Protected Mode Calls

To see how the kernel makes protected mode BIOS calls, let's look at the APM implementation.

APM is a BIOS interface specification, which is now almost obsolete (see the section "Power Management" in
Chapter 4, "Laying the Groundwork"). Power management policies are defined in the BIOS, and a kernel thread
called kapmd polls it every second to figure out the course of action. The polling is done using protected mode
BIOS calls. To do this, kapmd needs to know the protected mode entry segment address and offset. These are
obtained from the real mode kernel during boot using the int 0x15, function 0x5303 BIOS service.

The actual protected mode BIOS call is invoked using inline assembly from apm_bios_call_simple_asm(),

defined in include/asm-x86/mach-default/apm.h:

__asm__ __volatile__(APM_DO_ZERO_SEGS

 "pushl %%edi\n\t"
 "pushl %%ebp\n\t"

 "lcall *%%cs:apm_bios_entry\n\t"
 "setc %%bl\n\t"

 "popl %%ebp\n\t"
 "popl %%edi\n\t"

 APM_DO_POP_SEGS
 : "=a" (*eax), "=b" (error), "=c" (cx), "=d" (dx),
 "=S" (si)

 : "a" (func), "b" (ebx_in), "c" (ecx_in)
 : "memory", "cc");

APM_DO_ZERO_SEGS zeros out segment registers. apm_bios_entry contains the protected mode entry address.
The input constraint "a"(func) copies the desired BIOS function number to the EAX register before invocation.

For example, function number APM_FUNC_GET_EVENT (0x530b) elicits an APM event from the BIOS, and function
number APM_FUNC_IDLE (0x5305) notifies the BIOS that the processor is idle. Results are returned by the BIOS

in registers EAX, EBX, ECX, and EDX. As per the previous output operand constraints, these are propagated to the
caller in variables *eax, error, cx, and dx, respectively. In the assembly body, registers are saved onto the

kernel stack before the BIOS call and restored afterward to prevent the BIOS from trampling on them.

BIOS and Legacy Drivers

The BIOS provides a degree of hardware abstraction to some Linux drivers. Let's take the PC serial port driver
(discussed in Chapter 6, "Serial Drivers") as an example. The BIOS probes the Super I/O chipset and assigns
I/O base addresses and IRQs to the respective serial (and Infrared) ports. The serial driver needs to be told
about the resources assigned by the BIOS either via hard-coded values in a header file (include/asm-
x86/serial.h) or via user-space commands. As an exercise, dig into the data sheet of your Super I/O chipset and
add support in the serial driver to probe for the resource values set by the BIOS.

To take another example, even if you disable USB support in the kernel, you can use USB keyboards and mice
on PC systems with help from the BIOS. The BIOS turns on an emulation mode in the South Bridge that routes
USB keyboard and mouse input from the USB controller to the keyboard controller. This tricks the operating
system into thinking that you are using a legacy keyboard or mouse.

The kernel used to rely on the BIOS to walk the PCI bus and configure detected devices. This is now obsolete,
but take a look at arch/x86/pci/pcbios.c to see how PCI BIOS can be accessed from the kernel. Chapter 10,
"Peripheral Component Interconnect," discussed PCI drivers.

Appendix C. Seq Files

Monitoring and trending data points offered by procfs might help diagnose device driver problems
when the cause of a symptom looks fuzzy. But sometimes, especially when the amount of data is
large, the corresponding procfs read() implementations become complex. The seq file interface is

a kernel helper mechanism designed to simplify such implementations. Seq files render procfs
operations cleaner and easier.

Let's gradually introduce complexities to a procfs read() routine and see how the seq file interface

transforms the labored routine into a graceful one. We'll also update one of the few remaining 2.6
drivers that does not yet leverage seq files.

The Seq File Advantage

Let's discover the advantages offered by seq files with the help of an example. As is common with many device
drivers, assume that you have a linked list of data structures and that each node in the list contains a string
field (called info). The example code in Listing C.1 uses a procfs file named /proc/readme to export these
strings to user space. When a user reads this file, the procfs read() method, readme_proc(), gets invoked. This

routine traverses the linked list and appends the info field of each node to the filesystem buffer passed down to
it.

Listing C.1. Reading via Procfs

Code View:
/* Private Data structure */

struct _mydrv_struct {

 /* ... */

 struct list_head list; /* Link to the next node */

 char info[10]; /* Info to pass via the procfs file */

 /* ... */

};

static LIST_HEAD(mydrv_list); /* List Head */

/* Initialization */

static int __init

mydrv_init(void)

{

 int i;

 static struct proc_dir_entry *entry = NULL ;

 struct _mydrv_struct *mydrv_new;

 /* ... */

 /* Create /proc/readme */

 entry = create_proc_entry("readme", S_IWUSR, NULL);

 /* Attach it to readme_proc() */

 if (entry) {

 entry->read_proc = readme_proc;

 }

 /* Handcraft mydrv_list for testing purpose.

 In the real world, device driver logic

 maintains the list and populates the 'info' field */

 for (i=0;i<100;i++) {

 mydrv_new = kmalloc(sizeof(mydrv_struct), GFP_ATOMIC);

 sprintf(mydrv_new->info, "Node No: %d\n", i);

 list_add_tail(&mydrv_new->list, &mydrv_list);

 }

 return 0;

}

/* The procfs read entry point */

static int

readme_proc(char *page, char **start, off_t offset,

 int count, int *eof, void *data)

{

 int i = 0;

 off_t thischunk_len = 0;

 struct _mydrv_struct *p;

 /* Traverse the list and copy info into the supplied buffer */

 list_for_each_entry(p, &mydrv_list, list) {

 thischunk_len += sprintf(page+thischunk_len, p->info);

 }

 eof = 1; / Indicate completion */

 return thischunk_len;

}

Boot the kernel with these changes and peek inside /proc/readme:

bash> cat /proc/readme

Node No: 0

Node No: 1
...
Node No: 99

When procfs read() methods are invoked, they are supplied one page of memory that they can use to pass
information to user space. As you can see in Listing C.1, the first argument passed to readme_proc() is a

pointer to this page-sized buffer. The second argument, start, is used to aid the implementation of procfs files

larger than a page. The use of this parameter will get clear when we look at the example in Listing C.2. The next
two arguments respectively specify the offset from where the read operation is requested and the number of
bytes to be read. The eof argument is used to tell the caller whether there is more data to be read. If *eof is

not set before returning, the procfs read entry point is called again for more data. In Listing C.1, if you
comment out the line that sets *eof, readme_proc() gets called again with the offset argument set to 1190

(which is the number of ASCII bytes contained in the strings, Node No: 0 to Node No: 99). readme_proc()

returns the number of bytes copied to the supplied buffer.

The size of data generated by the procfs read routine in Listing C.1 falls within the one-page limit. However, if
you increase the number of nodes in the linked list from 100 to 500 in mydrv_init(), the amount of data

generated while reading /proc/readme crosses a page and triggers the following output:

bash> cat /proc/readme

Node No: 0

Node No: 1

...

Node No: 322
proc_file_read: Apparent buffer overflow!

As you can see, an overflow occurs after one page (4,096 in this case) worth of ASCII characters have been
produced.

To handle such large procfs files, you need to refashion the code in Listing C.1 using the start parameter

alluded to earlier. This makes the function somewhat complicated and is shown in Listing C.2. The semantics of
this modified implementation is as follows:

readme_proc() is called multiple times, each invocation yielding a maximum of count bytes starting at
offset. The count requested during each call is less than the size of a page.

During each invocation, the kernel increments offset by the number of bytes returned by the previous

invocation.

readme_proc() signals eof only if the amount of data produced is less than or equal to the requested
count plus the current offset. If eof is not set, the function is called again with offset advanced by the

number of bytes returned previously.

After each invocation, only those bytes starting from *start are collected and returned to the caller.

Print the values of *start, offset, count, and page, and look at the output generated during each invocation to

better understand the operation sequence.

With this hack, your procfs file can supply large amounts of data to user space without size limitations:

bash> cat /proc/readme

Node No: 0

Node No: 1
...

Node No: 499

Listing C.2. Large Procfs Reads

Code View:
static int

readme_proc(char *page, char **start, off_t offset,

 int count, int *eof, void *data)

{

 int i = 0;

 off_t thischunk_start = 0;

 off_t thischunk_len = 0;

 struct _mydrv_struct *p;

 /* Loop thru the list collecting device info */

 list_for_each_entry(p, &mydrv_list, list) {

 thischunk_len += sprintf(page+thischunk_len, p->info);

 /* Advance thischunk_start only to the extent that the next

 * read will not result in total bytes more than (offset+count)

 */

 if (thischunk_start + thischunk_len < offset) {

 thischunk_start += thischunk_len;

 thischunk_len = 0;

 } else if (thischunk_start + thischunk_len > offset+count) {

 break;

 } else {

 continue;

 }

 }

 /* Actual start */

 *start = page + (offset - thischunk_start);

 /* Calculate number of written bytes */

 thischunk_len -= (offset - thischunk_start);

 if (thischunk_len > count) {

 thischunk_len = count;

 } else {

 *eof = 1;

 }

 return thischunk_len;

}

The seq file interface comes to the rescue when you are faced with the prospect of awkwardly implementing
large procfs files as in Listing C.2. As the name implies, the seq file interface views the contents of procfs files as
a sequence of objects. Programming interfaces are provided to iterate through this object sequence. Your code
has to supply the following iterator methods expected by the seq interface:

start(), which is called first by the seq interface. This initializes the position within the iterator sequence

and returns the first iterator object of interest.

1.

next(), which increments the iterator position and returns a pointer to the next iterator. This function is

agnostic to the internal structure of the iterator and considers it an opaque object.

2.

3.

2.

show(), which interprets the iterator passed to it and generates output strings to be displayed when a

user reads the corresponding procfs file. This method makes use of helpers such as seq_printf(),

seq_putc(), and seq_puts() to format the output.

3.

stop(), which is called at the end for cleanup.4.

The seq file interface automatically invokes these iterator methods to produce output in response to user
operations on related procfs files. You no longer need to worry about page-sized buffers and signaling the end of
data.

Let's rewrite Listing C.2 making use of seq files. This is done in Listing C.3 by viewing the linked list as a
sequence of nodes. The basic iterator object is the node, and each invocation of the next() method returns the

next node in the list.

Listing C.3. Using Seq Files to Simplify Listing C.2

Code View:
#include <linux/seq_file.h>

/* start() method */

static void *

mydrv_seq_start(struct seq_file *seq, loff_t *pos)

{

 struct _mydrv_struct *p;

 loff_t off = 0;

 /* The iterator at the requested offset */

 list_for_each_entry(p, &mydrv_list, list) {

 if (*pos == off++) return p;

 }

 return NULL;

}

/* next() method */

static void *

mydrv_seq_next(struct seq_file *seq, void *v, loff_t *pos)

{

 /* 'v' is a pointer to the iterator returned by start() or

 by the previous invocation of next() */

 struct list_head *n = ((struct _mydrv_struct *)v)->list.next;

 ++*pos; /* Advance position */

 /* Return the next iterator, which is the next node in the list */

 return(n != &mydrv_list) ?

 list_entry(n, struct _mydrv_struct, list) : NULL;

}

/* show() method */

static int

mydrv_seq_show(struct seq_file *seq, void *v)

{

 const struct _mydrv_struct *p = v;

 /* Interpret the iterator, 'v' */

 seq_printf(seq, p->info);

 return 0;

}

/* stop() method */

static void

mydrv_seq_stop(struct seq_file *seq, void *v)

{

 /* No cleanup needed in this example */

}

/* Define iterator operations */

static struct seq_operations mydrv_seq_ops = {

 .start = mydrv_seq_start,

 .next = mydrv_seq_next,

 .stop = mydrv_seq_stop,

 .show = mydrv_seq_show,

};

static int

mydrv_seq_open(struct inode *inode, struct file *file)

{

 /* Register the operators */

 return seq_open(file, &mydrv_seq_ops);

}

static struct file_operations mydrv_proc_fops = {

 .owner = THIS_MODULE,

 .open = mydrv_seq_open, /* User supplied */

 .read = seq_read, /* Built-in helper function */

 .llseek = seq_lseek, /* Built-in helper function */

 .release = seq_release, /* Built-in helper funciton */

};

static int __init

mydrv_init(void)

{

 /* ... */

 /* Replace the assignment to entry->read_proc in Listing C.1,

 with a more fundamental assignment to entry->proc_fops. So

 instead of doing "entry->read_proc = readme_proc;", do the

 following: */

 entry->proc_fops = &mydrv_proc_fops;

 /* ... */

}

Appendix C. Seq Files

Monitoring and trending data points offered by procfs might help diagnose device driver problems
when the cause of a symptom looks fuzzy. But sometimes, especially when the amount of data is
large, the corresponding procfs read() implementations become complex. The seq file interface is

a kernel helper mechanism designed to simplify such implementations. Seq files render procfs
operations cleaner and easier.

Let's gradually introduce complexities to a procfs read() routine and see how the seq file interface

transforms the labored routine into a graceful one. We'll also update one of the few remaining 2.6
drivers that does not yet leverage seq files.

The Seq File Advantage

Let's discover the advantages offered by seq files with the help of an example. As is common with many device
drivers, assume that you have a linked list of data structures and that each node in the list contains a string
field (called info). The example code in Listing C.1 uses a procfs file named /proc/readme to export these
strings to user space. When a user reads this file, the procfs read() method, readme_proc(), gets invoked. This

routine traverses the linked list and appends the info field of each node to the filesystem buffer passed down to
it.

Listing C.1. Reading via Procfs

Code View:
/* Private Data structure */

struct _mydrv_struct {

 /* ... */

 struct list_head list; /* Link to the next node */

 char info[10]; /* Info to pass via the procfs file */

 /* ... */

};

static LIST_HEAD(mydrv_list); /* List Head */

/* Initialization */

static int __init

mydrv_init(void)

{

 int i;

 static struct proc_dir_entry *entry = NULL ;

 struct _mydrv_struct *mydrv_new;

 /* ... */

 /* Create /proc/readme */

 entry = create_proc_entry("readme", S_IWUSR, NULL);

 /* Attach it to readme_proc() */

 if (entry) {

 entry->read_proc = readme_proc;

 }

 /* Handcraft mydrv_list for testing purpose.

 In the real world, device driver logic

 maintains the list and populates the 'info' field */

 for (i=0;i<100;i++) {

 mydrv_new = kmalloc(sizeof(mydrv_struct), GFP_ATOMIC);

 sprintf(mydrv_new->info, "Node No: %d\n", i);

 list_add_tail(&mydrv_new->list, &mydrv_list);

 }

 return 0;

}

/* The procfs read entry point */

static int

readme_proc(char *page, char **start, off_t offset,

 int count, int *eof, void *data)

{

 int i = 0;

 off_t thischunk_len = 0;

 struct _mydrv_struct *p;

 /* Traverse the list and copy info into the supplied buffer */

 list_for_each_entry(p, &mydrv_list, list) {

 thischunk_len += sprintf(page+thischunk_len, p->info);

 }

 eof = 1; / Indicate completion */

 return thischunk_len;

}

Boot the kernel with these changes and peek inside /proc/readme:

bash> cat /proc/readme

Node No: 0

Node No: 1
...
Node No: 99

When procfs read() methods are invoked, they are supplied one page of memory that they can use to pass
information to user space. As you can see in Listing C.1, the first argument passed to readme_proc() is a

pointer to this page-sized buffer. The second argument, start, is used to aid the implementation of procfs files

larger than a page. The use of this parameter will get clear when we look at the example in Listing C.2. The next
two arguments respectively specify the offset from where the read operation is requested and the number of
bytes to be read. The eof argument is used to tell the caller whether there is more data to be read. If *eof is

not set before returning, the procfs read entry point is called again for more data. In Listing C.1, if you
comment out the line that sets *eof, readme_proc() gets called again with the offset argument set to 1190

(which is the number of ASCII bytes contained in the strings, Node No: 0 to Node No: 99). readme_proc()

returns the number of bytes copied to the supplied buffer.

The size of data generated by the procfs read routine in Listing C.1 falls within the one-page limit. However, if
you increase the number of nodes in the linked list from 100 to 500 in mydrv_init(), the amount of data

generated while reading /proc/readme crosses a page and triggers the following output:

bash> cat /proc/readme

Node No: 0

Node No: 1

...

Node No: 322
proc_file_read: Apparent buffer overflow!

As you can see, an overflow occurs after one page (4,096 in this case) worth of ASCII characters have been
produced.

To handle such large procfs files, you need to refashion the code in Listing C.1 using the start parameter

alluded to earlier. This makes the function somewhat complicated and is shown in Listing C.2. The semantics of
this modified implementation is as follows:

readme_proc() is called multiple times, each invocation yielding a maximum of count bytes starting at
offset. The count requested during each call is less than the size of a page.

During each invocation, the kernel increments offset by the number of bytes returned by the previous

invocation.

readme_proc() signals eof only if the amount of data produced is less than or equal to the requested
count plus the current offset. If eof is not set, the function is called again with offset advanced by the

number of bytes returned previously.

After each invocation, only those bytes starting from *start are collected and returned to the caller.

Print the values of *start, offset, count, and page, and look at the output generated during each invocation to

better understand the operation sequence.

With this hack, your procfs file can supply large amounts of data to user space without size limitations:

bash> cat /proc/readme

Node No: 0

Node No: 1
...

Node No: 499

Listing C.2. Large Procfs Reads

Code View:
static int

readme_proc(char *page, char **start, off_t offset,

 int count, int *eof, void *data)

{

 int i = 0;

 off_t thischunk_start = 0;

 off_t thischunk_len = 0;

 struct _mydrv_struct *p;

 /* Loop thru the list collecting device info */

 list_for_each_entry(p, &mydrv_list, list) {

 thischunk_len += sprintf(page+thischunk_len, p->info);

 /* Advance thischunk_start only to the extent that the next

 * read will not result in total bytes more than (offset+count)

 */

 if (thischunk_start + thischunk_len < offset) {

 thischunk_start += thischunk_len;

 thischunk_len = 0;

 } else if (thischunk_start + thischunk_len > offset+count) {

 break;

 } else {

 continue;

 }

 }

 /* Actual start */

 *start = page + (offset - thischunk_start);

 /* Calculate number of written bytes */

 thischunk_len -= (offset - thischunk_start);

 if (thischunk_len > count) {

 thischunk_len = count;

 } else {

 *eof = 1;

 }

 return thischunk_len;

}

The seq file interface comes to the rescue when you are faced with the prospect of awkwardly implementing
large procfs files as in Listing C.2. As the name implies, the seq file interface views the contents of procfs files as
a sequence of objects. Programming interfaces are provided to iterate through this object sequence. Your code
has to supply the following iterator methods expected by the seq interface:

start(), which is called first by the seq interface. This initializes the position within the iterator sequence

and returns the first iterator object of interest.

1.

next(), which increments the iterator position and returns a pointer to the next iterator. This function is

agnostic to the internal structure of the iterator and considers it an opaque object.

2.

3.

2.

show(), which interprets the iterator passed to it and generates output strings to be displayed when a

user reads the corresponding procfs file. This method makes use of helpers such as seq_printf(),

seq_putc(), and seq_puts() to format the output.

3.

stop(), which is called at the end for cleanup.4.

The seq file interface automatically invokes these iterator methods to produce output in response to user
operations on related procfs files. You no longer need to worry about page-sized buffers and signaling the end of
data.

Let's rewrite Listing C.2 making use of seq files. This is done in Listing C.3 by viewing the linked list as a
sequence of nodes. The basic iterator object is the node, and each invocation of the next() method returns the

next node in the list.

Listing C.3. Using Seq Files to Simplify Listing C.2

Code View:
#include <linux/seq_file.h>

/* start() method */

static void *

mydrv_seq_start(struct seq_file *seq, loff_t *pos)

{

 struct _mydrv_struct *p;

 loff_t off = 0;

 /* The iterator at the requested offset */

 list_for_each_entry(p, &mydrv_list, list) {

 if (*pos == off++) return p;

 }

 return NULL;

}

/* next() method */

static void *

mydrv_seq_next(struct seq_file *seq, void *v, loff_t *pos)

{

 /* 'v' is a pointer to the iterator returned by start() or

 by the previous invocation of next() */

 struct list_head *n = ((struct _mydrv_struct *)v)->list.next;

 ++*pos; /* Advance position */

 /* Return the next iterator, which is the next node in the list */

 return(n != &mydrv_list) ?

 list_entry(n, struct _mydrv_struct, list) : NULL;

}

/* show() method */

static int

mydrv_seq_show(struct seq_file *seq, void *v)

{

 const struct _mydrv_struct *p = v;

 /* Interpret the iterator, 'v' */

 seq_printf(seq, p->info);

 return 0;

}

/* stop() method */

static void

mydrv_seq_stop(struct seq_file *seq, void *v)

{

 /* No cleanup needed in this example */

}

/* Define iterator operations */

static struct seq_operations mydrv_seq_ops = {

 .start = mydrv_seq_start,

 .next = mydrv_seq_next,

 .stop = mydrv_seq_stop,

 .show = mydrv_seq_show,

};

static int

mydrv_seq_open(struct inode *inode, struct file *file)

{

 /* Register the operators */

 return seq_open(file, &mydrv_seq_ops);

}

static struct file_operations mydrv_proc_fops = {

 .owner = THIS_MODULE,

 .open = mydrv_seq_open, /* User supplied */

 .read = seq_read, /* Built-in helper function */

 .llseek = seq_lseek, /* Built-in helper function */

 .release = seq_release, /* Built-in helper funciton */

};

static int __init

mydrv_init(void)

{

 /* ... */

 /* Replace the assignment to entry->read_proc in Listing C.1,

 with a more fundamental assignment to entry->proc_fops. So

 instead of doing "entry->read_proc = readme_proc;", do the

 following: */

 entry->proc_fops = &mydrv_proc_fops;

 /* ... */

}

Updating the NVRAM Driver

The seq file interface has been around since the latter versions of the 2.4 kernel, but its use has become
widespread only with 2.6. Let's update the NVRAM driver (drivers/char/nvram.c), one of the few remaining
drivers that hasn't switched over to use seq files. (As usual, + and - show the differences from the original

source file.) To do this, you may use an extra-simple flavor of seq files that uses only the show() iterator

method. Use single_open() to register this method.

Listing C.4 contains the updated NVRAM driver. Because the seq interface won't sleep between calls to iterator
methods, you may hold locks inside the methods.

Listing C.4. Update the NVRAM Driver Using Seq Files

Code View:
+static struct file_operations nvram_proc_fops = {

+ .owner = THIS_MODULE,

+ .open = nvram_seq_open,

+ .read = seq_read,

+ .llseek = seq_lseek,

+ .release = single_release,

+};

-static struct file_operations nvram_fops = {

- .owner = THIS_MODULE,

- .llseek = nvram_llseek,

- .read = nvram_read,

- .write = nvram_write,

- .ioctl = nvram_ioctl,

- .open = nvram_open,

- .release = nvram_release,

-};

+static int nvram_seq_open(struct inode *inode, struct file *file)

+{

+ return single_open(file, nvram_show, NULL);

+}

+static int nvram_show(struct seq_file *seq, void *v)

+{

+ unsigned char contents[NVRAM_BYTES];

+ int i;

+

+ spin_lock_irq(&rtc_lock);

+ for (i = 0; i < NVRAM_BYTES; ++i)

+ contents[i] = __nvram_read_byte(i);

+ spin_unlock_irq(&rtc_lock);

+

+ mach_proc_infos(seq, contents);

+ return 0;

+}

static int __init

nvram_init(void)

{

+ ent = create_proc_entry("driver/nvram", 0, NULL);

+ if (!ent) {

+ printk(KERN_ERR "nvram: can't create /proc/driver/nvram\n");

+ ret = -ENOMEM;

+ goto outmisc;

+ }

+ ent->proc_fops = &nvram_proc_fops;

- if (!create_proc_read_entry("driver/nvram", 0, NULL,

- nvram_read_proc, NULL)) {

- printk(KERN_ERR "nvram: can't create /proc/driver/nvram\n");

- ret = -ENOMEM;

- goto outmisc;

- }

 /* ... */

}

-#define PRINT_PROC(fmt,args...) \

-/* ... */

-static int

-nvram_read_proc(char *buffer, char **start, off_t offset,

- int size, int *eof, void *data)

-{

- /* ... */

-}

In addition to the modifications in Listing C.4, change all references to PRINT_PROC() in the original driver to
seq_printf(). The original driver and the one in Listing C.4 produce the same output if you read from

/proc/driver/nvram.

Looking at the Sources

Look at Documentation/filesystems/proc.txt for more information about procfs. The fs/proc/ directory contains
code that implements the procfs core. The seq file interface lives in fs/seq_file.c. Users of procfs and seq files
are sprinkled all over the kernel sources.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

$ (dollar sign)
% (percent sign)
1-wire protocol
4G networking
7-bit addressing
802.11 stack
855GME EDAC driver
8250.c driver
16550-type UART

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

AAL (ATM Adaptation Layer)
AC'97
ac97_bus module
accelerated methods
accelerometers
accessing
 char drivers
 EEPROM device
 I/O regions
 memory regions from user space
 PCI regions
 configuration space
 I/O and memory regions
 registers
access point names (APNs)
Acclerated Graphics Port (AGP)
ACPI (Advanced Configuration and Power Interface) 2nd
 acpid daemon
 AML (ACPI Machine Language Interpreter)
 devices
 drivers
 kacpid
 spaces
 user-space tools
acpid daemon
acpitool command
activation
 net_device structure
 NICs (network interface cards)
active queues
ad-hoc mode (WLAN)
ADC (Analog-to-Digital Converter) 2nd
add_disk() function 2nd
add_memory_region() function
add_mtd_partitions() function
add-symbol-file command
add_timer() function 2nd
add_wait_queue() function 2nd
addresses
 ARP (Address Resolution Protocol)
 bus addresses
 endpoint addresses
 LBA (logical block addressing)
 logical addresses
 MAC (Media Access Control) addresses
 PCI
 slave addresses
 USB (universal serial bus)
 virtual addresses
Address Resolution Protocol (ARP)
adjust checksum command (ioctl)
adjust_cmos_crc() function
Advanced Configuration and Power Interface [See ACPI (Advanced Configuration and Power Interface).]
Advanced Host Controller Interface (AHCI)
Advanced Linux Sound Architecture [See ALSA (Advanced Linux Sound Architecture).]

Advanced Power Management (APM) 2nd [See also BIOS (basic input/output system).]
Advanced Technology Attachment (ATA)
AF_INET protocol family
AF_NETLINK protocol family
AF_UNIX protocol family
Affix
AGP (Acclerated Graphics Port)
AHCI (Advanced Host Controller Interface)
AIO (Asynchronous I/O)
aio_read() function
aio_write() function
alloc_chrdev_region() function 2nd 3rd
alloc_disk() function 2nd
alloc_etherdev() function 2nd
alloc_ieee80211() function 2nd
alloc_irdadev() function 2nd
alloc_netdev() function 2nd
allocating memory
allow_signal() function 2nd
ALSA (Advanced Linux Sound Architecture)
 ALSA driver for MP3 player
 ALSA programming
alsa-devel mailing list
alsa-lib library
alsa-utils package
alsactl command
alsamixer command
amateur radio
amd_flash_info structure
amixer command
AML (ACPI Machine Language Interpreter)
Analog-to-Digital Converter (ADC) 2nd
anticipatory I/O scheduler 2nd
aplay command
APM (Advanced Power Management) 2nd [See also BIOS (basic input/output system).]
apm_bios_call_simple_asm() function
APM_DO_ZERO_SEGS
APM_FUNC_GET_EVENT
APM_FUNC_IDLE
APNs (access point names)
applying patches
arch directory
 arch/x86/boot/ directory
 arch/x86/boot/memory.c file
 arch/x86/kernel/e820_32.c file
ARM bootloaders
ARP (Address Resolution Protocol)
asked_to_die() function
asm construct
asmlinkage attribute
assembly
 boot sequence
 debugging
 GNU Assembler (GAS)
 i386 boot assembly code
 inline assembly
 Microsoft Macro Assembler (MASM)
 Netwide Assembler (NASM)
assigning IRQs (interrupt requests)
asynchronous DMA
Asynchronous I/O (AIO)
asynchronous interrupts
asynchronous transfer mode (ATM)
ATA (Advanced Technology Attachment)

ATAGs
ATAPI (ATA Packet Interface)
ATM (asynchronous transfer mode)
ATM Adaptation Layer (AAL)
atomic_dec() function
atomic_dec_and_test() function
atomic_inc() function
atomic_inc_and_test() function
atomic_notifier_chain_register() function 2nd
ATOMIC_NOTIFIER_HEAD() macro 2nd
atomic operators
Attribute memory (PCMCIA)
audio codecs
audio drivers
 ALSA (Advanced Linux Sound Architecture)
 ALSA driver for MP3 player
 ALSA programming
 audio architecture
 audio codecs
 Bluetooth
 data structures
 debugging
 embedded drivers
 kernel programming interfaces, table of
 MP3 player example
 ALSA driver code listing
 ALSA programming
 codec_write_reg() function
 MP3 decoding complexity
 mycard_audio_probe() function
 mycard_audio_remove() functions
 mycard_hw_params() function
 mycard_pb_trigger() function
 mycard_playback_open() function
 overview
 register layout of audio hardware
 snd_card_free() function
 snd_card_new() function
 snd_card_proc_new() function
 snd_card_register() function
 snd_ctl_add() function
 snd_ctl_new1() function
 snd_device_new() function
 snd_kcontrol structure
 snd_pcm_hardware structure
 snd_pcm_lib_malloc_pages() function
 snd_pcm_lib_preallocate_pages_for_all() function
 snd_pcm_new() function
 snd_pcm_ops structure
 snd_pcm_set_ops() function
 user programs
 OSS (Open Sound System)
 overview
 sound directory
 sound mixing (fn)
 sources
audio players [See MP3 player example.]
autoloading modules
AX.25 protocol

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

BackGround Operation (BGO)
backlight_device_register()
barriers (memory)
BCD (Binary Coded Decimal)
BCD2BIN() macro
BCSP (BlueCore Serial Protocol)
bdflush kernel thread
benchmarking
BGO (BackGround Operation)
BH (bottom half) flavors
Binary Coded Decimal (BCD)
Binutils
bio_for_each_segment() function 2nd
bio structure 2nd
bio_vec structure
BIOS (basic input/output system)
 BIOS-provided physical RAM map
 legacy drivers
 protected mode calls
 real mode calls
 updating
bit-banging drivers
blk_cleanup_queue() function
blk_fs_request() function
blk_init_queue() function 2nd
blk_queue_hardsect_size() function 2nd
blk_queue_make_request() function 2nd
blk_queue_max_sectors() function 2nd
blk_rq_map_sg() function 2nd
BLOBs (BootLoader Objects)
block device emulation
block directory
block drivers
 block_device_operations structure
 block I/O layer
 data structures 2nd
 debugging
 DMA data transfer
 entry points
 interrupt handlers
 I/O schedulers
 kernel programming interfaces, table of
 myblkdev storage controller
 block device operations
 disk access
 initialization
 overview
 register layout
 sources
 storage technologies
 ATAPI (ATA Packet Interface)
 IDE (Integrated Drive Electronics)
 libATA
 MMC (MultiMediaCard)
 RAID (redundant array of inexpensive disks)

 SATA (Serial ATA)
 SCSI (Small Computer System Interface)
 SD (Secure Digital) cards
 summary of
block I/O layer
blocking_notifier_call_chain() function 2nd
blocking_notifier_chain_register() function
BLOCKING_NOTIFIER_HEAD() macro 2nd
blocks
BlueCore Serial Protocol (BCSP)
Bluetooth 2nd
 audio
 Bluetooth Host Control Interface
 Bluetooth Network Encapsulation Protocol (BNEP)
 Bluetooth Special Interest Group (SIG)
 BlueZ
 CF cards
 RFCOMM
 USB adapters
 debugging
 keyboards
 mice
 networking
 profiles
 USB
bluetooth.ko
Bluetooth Host Control Interface
Bluetooth Network Encapsulation Protocol (BNEP)
Bluetooth Special Interest Group (SIG)
BlueZ
 CF cards
 RFCOMM
 USB adapters
bluez-utils package
BNEP (Bluetooth Network Encapsulation Protocol)
bnep.ko
board rework
BogoMIPS
BootLoader Objects (BLOBs)
bootloaders
 definition
 embedded bootloaders
 BLOB (BootLoader Object)
 bootstrapping
 GRUB
 LILO (Linux Loader)
 overview
 RedBoot
 SYSLINUX
 table of
 Redboot bootloader
boot logo (console drivers)
boot process 2nd [See also bootloaders.]
 BIOS-provided physical RAM map
 delay-loop calibration
 EXT3 filesystem
 HLT instruction
 I/O scheduler
 init process
 initrd memory
 kernel command line
 Linux boot sequence
 low memory/high memory
 PCI resource configuration

 registered protocol families
 start_kernel() function
bootstrapping
bottom half (BH) flavors
BREAKPOINT macro
breakpoints
brownouts
buffers
 DMA 2nd
 NIC buffer management
 socket buffers
BUG() function
build scripts
building kernels
built-in kernel threads
bulk endpoints
bulk URBs
bus addresses
bus-device-driver programming interface
bus_register() function
buses
 bus addresses
 I2C bus transactions
 LPC (Low Pin Count) bus
 SMBus 2nd
 SPI (Serial Peripheral Interface) bus
 USB [See USB (universal serial bus).]
 user space I2C/SMBus driver
 w1 bus
BusyBox

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

cache
 cache misses, counting
 coherency [See DMA (Direct Memory Access).]
calibrate_delay() function
calibrating touch controllers
call_usermodehelper() function 2nd
Cambridge Silicon Radio (CSR)
CAN (controller area network)
capacity of disks, obtaining via SCSI Generic
CardBus 2nd
Card Information Structure (CIS)
cardmgr daemon
Card Services 2nd
Carrier Grade Linux (CGL)
cathode ray tube (CRT)
cdev_add() function 2nd 3rd
cdev_del() function
cdev_init() function 2nd
cdev structure 2nd
CDMA (code division multiple access) 2nd
cdrecord
cdrtools
CELF (Consumer Electronics Linux Forum)
cell phone devices
 claiming/freeing memory
 console drivers
 CPLD (Complex Programmable Logic Device)
 overview
 platform drivers
 SoC (System-on-Chip)
 USB_UART driver
 USB_UART ports
 USB_UART register layout
cellular networking
 CDMA
 GPRS
CEs (correctable errors)
CF (Compact Flash) [See also PCMCIA (Personal Computer Memory Card International Association).]
 BlueZ
 debugging
 definition
 embedded drivers
 storage
cfb_fillrect()
CFI (Common Flash Interface)
cfi_private structure
cfi_probe_chip() function
CFQ (Complete Fair Queuing) 2nd
CFS (Completely Fair Scheduler)
CGL (Carrier Grade Linux)
change markers
changing
 line disciplines
 MTU size
character drivers [See char drivers.]

char device emulation
char drivers
 accessing
 char device emulation
 CMOS driver
 I/O Control
 initialization
 internal file pointer, setting with cmos_llseek()
 opening
 overview
 reading/writing data
 register layout
 releasing
 code flow
 common problems
 data structures
 misc drivers
 overview
 parallel port communication
 parallel port LED board
 controlling with sysfs
 led.c driver
 pseudo char drivers
 RTC subsystem
 sensing data availability
 fasync() function
 overview
 select()/poll() mechanism
 sources
 UART drivers
 watchdog timer
check_bugs() function
checklist for new devices
checksums
chip drivers [See NOR chip drivers.]
Chip Select (CS)
choosing
 peripherals
 processors
Cirrus Logic EP7211 controller
CIS (Card Information Structure)
cisparse_t structure 2nd
cistpl.h file
cistpl_cftable_entry_t structure 2nd
class_create() function 2nd
class_destroy() function 2nd
class_device_add_attrs() function
class_device_create() function 2nd
class_device_create_file() function
class_device_destroy() function 2nd
class_device_register() function
class drivers
 Bluetooth
 HIDs (human interface devices)
 mass storage
 overview
 USB-Serial
classes
 device classes
 input class
 structure
clean markers
clear_bit() function
Clear To Send (CTS)

clients
 client controllers
 EEPROM device example
 PCMCIA client drivers, registering
clock_gettime() function
CLOCK_INPUT_REGISTER
clock_settime() function
close() function
CLUT (Color Look Up Table)
CLut224
CMOS_BANK0_DATA_PORT register
CMOS_BANK0_INDEX_PORT register
CMOS_BANK1_DATA_PORT register
CMOS_BANK1_INDEX_PORT register
cmos_dev structure
CMOS drivers
 I/O Control
 initialization
 internal file pointer, setting with cmos_llseek()
 opening
 overview
 reading/writing data
 register layout
 releasing
cmos_fops structure
cmos_init() function
cmos_ioctl() function
cmos_llseek() function
cmos_open() function
cmos_read() function
cmos_release() function
cmos_write() function
code division multiple access (CDMA) 2nd
code portability
codec_write_reg() function
coding styles
coldplug
collect_data() function
color modes
command-line utilities [See specific utilities.]
command-set 0001
command-set 0002
command-set 0020
COMMAND_REGISTER
commands [See specific commands.]
Common Flash Interface (CFI)
Common memory (PCMCIA)
Common UNIX Printing System (CUPS)
Compact Flash [See CF (Compact Flash).]
compact middleware
compilation
 GCC compiler
 line disciplines
complete() function 2nd
complete_all() function
complete_and_exit() function 2nd
Complete Fair Queuing (CFQ) 2nd
Completely Fair Scheduler (CFS)
completion interface
completion structure
Complex Programmable Logic Devices (CPLDs) 2nd
concurrency
 atomic operators
 CVS (Concurrent Versioning System) 2nd

 debugging
 NICs (network interface cards)
 overview
 reader-writer locks
 spinlocks and mutexes
Concurrent Versioning System (CVS) 2nd
CONFIG_4KSTACKS configuration option
CONFIG_DEBUG_BUGVERBOSE configuration option
CONFIG_DEBUG_HIMEM configuration option
CONFIG_DEBUG_PAGE_ALLOC configuration option
CONFIG_DEBUG_SLAB configuration option
CONFIG_DEBUG_SPINLOCK configuration option
CONFIG_DEBUG_STACK_USAGE configuration option
CONFIG_DEBUG_STACKOVERFLOW configuration option
CONFIG_DETECT_SOFTLOCKUP configuration option
CONFIG_IKCONFIG_PROC configuration option
CONFIG_MAGIC_SYSRQ configuration option
CONFIG_MYPROJECT_FASTBOOT marker
CONFIG_MYPROJECT marker
CONFIG_PCMCIA_DEBUG() macro
config_port() function
CONFIG_PREEMPT_RT patch-set
CONFIG_PREEMPT configuration option
CONFIG_PRINTK_TIME configuration option
CONFIG_RTC_CLASS configuration option
CONFIG_SYSCTL configuration option
configuration
 kernel hacking configuration options
 MTD
 NAND chip drivers
 net_device structure
 NICs
 PCI resources
 Wireless Extensions
configuration space (PCI), accessing
connectivity of embedded drivers
conservative governor
consistency of checksums
consistent DMA access methods
console drivers
 boot logo
 cell phones
consoles
Consumer Electronics Linux Forum (CELF)
container_of() function 2nd 3rd
contexts, interrupt
contrast and backlight
CONTROL_REGISTER 2nd
controller area network (CAN)
controllers
 CAN (controller area network)
 CS8900 controller
 DRAM controllers
 ECC-aware memory controller
 EHCI controller
 host controllers
 NAND flash controllers
 OTG (On-The-Go) controllers
 USB device controllers
 USB host controllers
coord.c application
copy_e820_map() function
copy_from_user() function 2nd
copy_to_user() function

copying system memory maps
copyleft (GNU)
correctable errors (CEs)
counters
 preemption counters
 TSC (Time Stamp Counter)
CPLDs (Complex Programmable Logic Devices) 2nd
cpqarray driver
cpufreq_register_governor() function
CPU frequency (cpufreq) driver subsystem
CPU frequency notification
cpuspeed daemon
crash command
crash dumps
create_singlethread_workqueue() function
create_workqueue() function
CRT (cathode ray tube)
crypto directory
CS (Chip Select)
CS8900 controller
cs89x0_probe1() function
cscope command
CSR (Cambridge Silicon Radio)
ctags command
CTS (Clear To Send)
CUPS (Common UNIX Printing System)
CVS (Concurrent Versioning System) 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

D-cache (Data Cache)
daemonize() function 2nd
daemons
 acpid
 cardmgr
 cpuspeed
 iscsid
 oprofiled
 pppd
 trace
DATA_REGISTER
data availability, sensing
 fasync() function
 overview
 select()/poll() mechanism
Data Cache (D-cache)
data field (sk_buff structure)
data flow, Linux-PCMCIA subsystem
data mixing (fn)
data structures [See specific structures.]
data transfer
 DMA data transfer
 net_device structure
 NICs (network interface cards)
 PCI
 DMA descriptors and buffers
 receiving and transmitting data
 register layout of network functions
 telemetry card example
 USB
DDWG (Digital Display Working Group)
deadline I/O scheduler 2nd
dead state (threads)
debugfs
debuggers [See kernel debuggers.]
debugging [See also ECC (error correcting code) reporting.]
 audio drivers
 block drivers
 Bluetooth
 breakpoints
 concurrency
 crash dumps
 diagnostic tools
 embedded Linux
 board rework
 debuggers
 I2C
 input drivers
 JTAG debuggers
 kdump
 example
 kexec with kdump
 setup
 sources
 kernel debuggers

 downloads
 entering
 gdb (GNU debugger)
 JTAG debuggers
 kdb (kernel debugger)
 kgdb (kernel GNU debugger)
 overview
 kernel hacking configuration options
 kexec
 invoking
 preparation
 sources
 with kdump
 kprobes
 example
 fault-handlers
 inserting inside kernel functions
 jprobes
 kretprobes
 limitations
 post-handlers
 pre-handlers
 sources
 Linux assembly
 LTP (Linux Test Project)
 MTD (Memory Technology Devices)
 overview 2nd 3rd
 PCI
 PCMCIA
 profiling
 gprof
 OProfile
 overview
 RAS (reliability, availability, serviceability)
 test equipment
 tracing
 UDB (universal serial bus)
 UML (User Mode Linux)
 watchpoints
debug tool
DECLARE_COMPLETION() macro
DECLARE_MUTEX() function
DECLARE_WAITQUEUE() macro
DEFINE_MUTEX() function
DEFINE_TIMER() function
DEFINE_TIMER() macro
del_gendisk() function
del_timer() function
delay-loop calibration
delays
 long delays
 short delays
delivery
 build scripts
 change markers
 checksum consistency
 code portability
 coding styles
 version control
depmod utility
descriptors (USB)
detect_memory_e820() function
dev_alloc_skb() function 2nd
/dev directory

 /dev names, adding to usbfs
 /dev/full driver
 /dev/kmem driver
 /dev/mem driver
 /dev/null char device
 /dev/port driver
 /dev/random driver
 /dev/urandom driver 2nd
 /dev/zero driver
dev_kfree_skb() function
dev_t structure
devfs
device checklist
device classes
device controllers
device_driver structure
device_register() function
devices [See also specific devices.]
 ACPI (Advanced Configuration and Power Interface) devices
 interrupt handling [See interrupt handling.]
 Linux device model
 device classes
 hotplug/coldplug
 kobjects
 microcode download
 module autoload
 overview
 sysfs
 udev 2nd
 memory barriers
 power management
diagnostic tools
dialup networking (DUN)
die_chain structure
die notifications 2nd
diff command
Digital Display Working Group (DDWG)
Digital Visual Interface (DVI)
direct-to-home (DTH) interface
Direct Memory Access [See DMA (Direct Memory Access).]
directories [See also specific directories.]
disable_irq() function 2nd
disable_irq_nosync() function 2nd
disabling IRQs (interrupt requests)
disconnecting telemetry drivers
Disk-On-Modules (DOMs)
disk capacity, obtaining via SCSI Generic
disk mirroring
display architecture
displaying images with mmap()
display parameters
distributions
dma_addr_t structure
DMA_ADDRESS_REGISTER
DMA (Direct Memory Access) [See also Ethernet-Modem card example.]
 buffers
 consistent DMA access methods
 definition
 descriptors and buffers
 IOMMU (I/O memory management unit)
 masters
 navigation systems
 scatter-gather
 streaming DMA access methods

 synchronous versus asynchronous
dma_map_single() function
DMA_RX_REGISTER
dma_set_mask() function
DMA_SIZE_REGISTER
DMA_TX_REGISTER
DMA data transfer
dmix (fn)
do_gettimeofday() function 2nd
do_ida_intr() function
do_IRQ() function
do_map_probe() function
documentation
 Documentation directory
 procfs
 seq files
dollar sign ($)
domain-specific electronics
DOMs (Disk-On-Modules)
dongles, Infrared
doorbells
DOS debug tool
down() function
down_read() function
down_write() function
DRAM controllers
DRDs (dual-role devices)
driver_register() function
drivers directory
Driver Services
ds (driver services) module
DTH (direct-to-home) interface
dual-role devices (DRDs)
dump_port() function
DUN (dialup networking)
dv1394 driver
DVI (Digital Visual Interface)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

e820.c file
e820.h file
e1000 PCI-X Gigabit Ethernet driver
ECC (error correcting code) reporting 2nd
 correctable errors (CEs)
 ECC-aware memory controller
 ECC-related registers on DRAM controller
 edac_mc module
 embedded drivers
 multibit errors (MBEs)
 single-bit errors (SBEs)
 /sys/devices/system/edac/ directory
 uncorrectable errors (UEs)
ECs (embedded controllers)
EDAC (Error Detection and Correction) 2nd
 correctable errors (CEs)
 ECC-aware memory controller
 ECC-related registers on DRAM controller
 edac_mc module
 embedded drivers
 error-handling aids
 multibit errors (MBEs)
 single-bit errors (SBEs)
 /sys/devices/system/edac/ directory
 uncorrectable errors (UEs)
edac_mc module
edge-sensitive devices
eep_attach() function
eep_probe() function
eep_read() function
EEPROM device example
 accessing
 adapter capabilities, checking
 clients, attaching
 i2c_del_driver() function
 initializing
 ioctl() function
 llseek() method
 memory banks
 opening
 overview
 probing
 RFID (Radio Frequency Identification) transmitters
EHCI (Enhanced Host Controller Interface) 2nd
EISA (Extended Industry Standard Architecture)
elv_next_request() function 2nd
embedded bootloaders
 BLOB (BootLoader Object)
 bootstrapping
 GRUB
 LILO (Linux Loader)
 overview
 RedBoot
 SYSLINUX
 table of

embedded controllers (ECs)
embedded drivers
 audio
 brownouts
 buttons and wheels
 connectivity
 CPLDs (Complex Programmable Logic Devices)
 domain-specific electronics
 ECC capabilities
 flash memory
 FPGAs (Field Programmable Gate Arrays)
 overview
 PCMCIA/CF 2nd
 PWM (pulse-width modulator) units
 RTC
 SD/MMC
 touch screens
 UARTs
 udev
 USB
 video
embedded Linux
 challenges
 component selection
 debugging
 board rework
 debuggers
 embedded bootloaders
 BLOB (BootLoader Object)
 bootstrapping
 GRUB
 LILO (Linux Loader)
 overview
 RedBoot
 SYSLINUX
 table of
 embedded drivers
 audio
 brownouts
 buttons and wheels
 connectivity
 CPLDs (Complex Programmable Logic Devices)
 domain-specific electronics
 ECC capabilities
 flash memory
 FPGAs (Field Programmable Gate Arrays)
 overview
 PCMCIA/CF
 PWM (pulse-width modulator) units
 RTC
 SD/MMC
 touch screens
 UARTs
 USB
 video
 hardware block diagram
 kernel porting
 memory layout
 overview
 root filesystem
 compact middleware
 NFS-mounted root
 overview
 test infrastructure

 tool chains
 USB (universal serial bus)
emulation
 block device emulation
 char device emulation
enable_irq() function 2nd
enabling IRQs (interrupt requests)
end field (sk_buff structure)
end_request() function
endpoint addresses
endpoints (USB)
Enhanced Host Controller Interface (EHCI) 2nd
enumeration
EP7211 controller
epoll() function
erase_info_user structure
erase_info structure
error correcting codes (ECCs) [See ECC (error correcting code) reporting.]
Error Detection And Correction [See EDAC (Error Detection and Correction).]
/etc/inittab file
/etc/rc.sysinit
etags command
eth1394 driver
Ethernet-Modem card example
 data transfer
 DMA descriptors and buffers
 receiving and transmitting data
 register layout of network functions
 modem functions
 probing
 registering
 MODULE_DEVICE_TABLE() macro
 network functions
 probing
 registering
 PCI_DEVICE() macro
 pci_device_id structures
Ethernet NIC driver
ethtool
ethtool_ops structure 2nd
evbug module
Evdev interface
events
 input event drivers
 Evdev interface
 overview
 virtual mouse device example
 writing
 LTT events
 notifier event handlers
events/n threads
evolution of Linux
eXecute In Place (XIP)
EXIT_DEAD state
EXIT_ZOMBIE state
expired queues
ExpressCards 2nd
EXT3 filesystem
EXT4 filesystem
eXtended Graphics Array (XGA)
Extended Industry Standard Architecture (EISA)
external watchdogs

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

fasync() function
fasync_helper() function 2nd
fault-handlers (kprobes)
fb_blank() method
fb_check_var() method
fb_fillrect()
fb_var_screeninfo structure
FCC (Federal Communications Commission)
fcntl() function
Federal Communications Commission (FCC)
Fibre Channel
Field Programmable Gate Arrays (FPGAs)
FIFO (first-in first-out) memory
file_operations structure 2nd 3rd
file structure
filesystems
 debugfs
 EXT3
 EXT4
 JFFS (Journaling Flash File System)
 NFS (Network File System)
 procfs [See procfs.]
 rootfs
 compact middleware
 NFS-mounted root
 obtaining
 overview
 sysfs
 usbfs virtual filesystem
 VFS (Virtual File System) 2nd
 YAFFS (Yet Another Flash File System)
File Translation Layer (FTL)
Finite State Machine (FSM)
FireWire
Firmware Hub (FWH)
first-in first-out (FIFO) memory
flash_eraseall command
flash memory [See also MTD (Memory Technology Devices).]
 CFI-compliant flash, querying
 definition
 embedded drivers
 NAND
 NOR
 sectors
floppy storage
flow control (NICs)
flush_buffer() function
flushing data
forums
FPGAs (Field Programmable Gate Arrays)
frame buffer API
frame buffer drivers
 accelerated methods
 color modes
 contrast and backlight

 data structures
 DMA
 parameters
 screen blanking
free_irq() function 2nd
free_netdev() function
freeing
 IRQs (interrupt requests)
 memory
Freescale MC13783 Power Management and Audio Component (PMAC)
Freescale MPC8540
Free Software Foundation
frequency scaling
Front Side Bus (FSB)
fs directory
FSM (Finite State Machine)
fsync() function
FTDI driver
FTL (File Translation Layer)
full char device
full-speed USB
function controllers
functions [See specific functions.]
FWH (Firmware Hub)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

gadget drivers
garbage collector (GC)
GAS (GNU Assembler)
GC (garbage collector)
GCC compiler
GCC Inline Assembly HOWTO
gdb (GNU debugger)
gendisk structure 2nd
general-purpose mouse (gpm)
General Object Exchange Profile (GOEP)
General Packet Radio Service (GPRS) 2nd
General Purpose I/O (GPIO)
generating
 patches
 preprocessed source code
GET_DEVICE_ID command
get_random_bytes() function
get_stats() method
get_wireless_stats() function
getitimer() function
gettimeofday() function
Glibc libraries
Global System for Mobile Communication (GSM) 2nd
glow_show_led() function 2nd
GMCH (Graphics and Memory Controller Hub)
GNU
 copyleft
 GAS (GNU Assembler)
 gdb (GNU debugger)
 LGPL (Lesser General Public License)
 GPL (GNU Public License)
GOEP (General Object Exchange Profile)
governors
GPIO (General Purpose I/O)
GPL (GNU Public License)
gpm (general-purpose mouse)
gprof
GPRS (General Packet Radio Service) 2nd
Graphics and Memory Controller Hub (GMCH)
GRUB
GSM (Global System for Mobile Communication) 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

HA (High Availability) project
HAL (Hardware Access Layer)
halt (HLT) instruction
ham radio
handle_IRQ_event() function
handling interrupts [See interrupt handling.]
hard-specific modules (HDMs)
hard_start_xmit() function
hard_start_xmit method
Hard Drive Active Protection System (HDAPS)
Hardware Access Layer (HAL)
hardware block diagrams
 embedded system
 PC-compatible system
hardware RAID
hash lists
HCI (Host Control Interface) 2nd
hci_uart.ko
HD (High Definition) Audio
HDAPS (Hard Drive Active Protection System)
HDLC (High-level Data Link Control)
HDMI (High-Definition Multimedia Interface)
HDMs (hard-specific modules)
hdparm utility
HDTV (High-Definition Television)
head field (sk_buff structure)
helper interfaces
 completion interface
 error-handling aids
 hash lists
 kthread helpers
 linked lists
 creating
 data structures, initializing
 functions
 work submission
 worker thread
 notifier chains
 overview
 work queues
hidp driver
HIDs (human interface devices) 2nd 3rd 4th
High-Definition Multimedia Interface (HDMI)
High-Definition Television (HDTV)
High-level Data Link Control (HDLC)
high-speed interconnects
 InfiniBand
 RapidIO
 Fibre Channel
 iSCSI (Internet SCSI)
 USB
High Availability (HA) project
High Definition (HD) Audio
high memory
history of Linux

hlist_head structure 2nd
hlist_nodes structure
hlists (hash lists)
HLT instruction
HNP (Host Negotiation Protocol)
host adapters
Host Control Interface (HCI) 2nd
Host Negotiation Protocol (HNP)
hotplug
hubs, root
human interface devices (HIDs) 2nd 3rd 4th
hwclock command
HZ 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

I-cache (Instruction Cache)
I/O Control
 CMOS driver
 touch controller
I/O memory management unit (IOMMU)
I/O regions
 accessing
 dumping bytes from
I/O schedulers 2nd
I2C [See also SMBus.]
 1-wire protocol
 bus transactions
 compared to USB
 core
 debugging
 definition
 EEPROM device example
 accessing
 adapter capabilities, checking
 clients, attaching
 i2c_del_driver() function
 initializing
 ioctl() function
 llseek() method
 memory banks
 opening
 overview
 probing
 RFID (Radio Frequency Identification) transmitters
 i2c-dev
 LM-Sensors
 overview
 RTC (Real Time Clock)
 sources
 SPI (Serial Peripheral Interface) bus
 summary of data structures
 summary of kernel programming interfaces
 user mode I2C
i2c-dev module 2nd
i2c_add_adapter() function
i2c_add_driver() function 2nd
i2c_attach_client() function
i2c_check_functionality() function 2nd
i2c_client_address_data structure 2nd
i2c_client structure
i2c_del_adapter() function
i2c_del_driver() function 2nd
i2c_detach_client() function
i2c_driver structure
i2c_get_functionality() function 2nd
i2c_msg structure
i2c_probe() function
i2c_smbus_read_block_data() function
i2c_smbus_read_byte() function
i2c_smbus_read_byte_data() function 2nd

i2c_smbus_read_word_data() function
i2c_smbus_write_block_data() function
i2c_smbus_write_byte() function
i2c_smbus_write_byte_data() function
i2c_smbus_write_quick() function
i2c_smbus_write_word_data() function 2nd
i2c_transfer() function 2nd
I2O (Intelligent Input/Output)
I2O SIG (I2O Special Interest Group)
I2S (Inter-IC Sound) bus
i386 boot assembly code
I855_EAP_REGISTER register
I855_ERRSTS_REGISTER register
IDE (Integrated Drive Electronics)
IEEE 1394
images
 displaying with mmap()
 initramfs
imx.c driver
in[b|w|l|sn|sl]() function
in_interrupt() function
inb() function 2nd 3rd
include/asm-x86/e820.h file
include/pcmcia/cistpl.h file
include directory
Industries Standard Architecture (ISA)
InfiniBand
Infrared 2nd 3rd
 data structures
 dongles
 IrCOMM
 IrDA sockets
 kernel programming interfaces
 Linux-IrDA
 LIRC
 networking
 sources
 Super I/O chip
infrastructure mode (WLAN)
init() function
 char drivers
 CMOS driver
 EEPROM device example
init_completion() function 2nd
init directory
INIT_LIST_HEAD() function
init_MUTEX() function
init_timer() function 2nd
initialization
 CMOS driver
 EEPROM device example
 myblkdev storage controller
 telemetry configuration register
 telemetry driver
initiators (iSCSI)
init process
initramfs root filesystem
initrd memory
inittab file
inl() function 2nd
inline assembly
input_allocate_device() function
input_dev structure
input_event() function

input_event structure
input_handler structure 2nd
input_register_device() function 2nd 3rd 4th
input_register_handler() function
input_report_abs() function 2nd
input_report_key() function
input_report_rel() function
input_sync() function 2nd
input_unregister_device() function
input class
input drivers
 debugging
 input device drivers
 accelerometers
 Bluetooth keyboards
 Bluetooth mice
 output events
 PC keyboards
 PS/2 mouse
 roller mouse device example
 serio
 touch controllers
 touchpads
 trackpoints
 USB keyboards
 USB mice
 input event drivers
 Evdev interface
 overview
 virtual mouse device example
 writing
 input subsystem
 sources
 summary of data structures
input subsystem
insmod command
Instruction Cache (I-cache)
int 0x15 service 2nd
Integrated Drive Electronics (IDE)
Intelligent Input/Output (I2O)
Inter-IC Sound (I2S) bus
Inter-Integrated Circuit [See I2C.]
internal file pointer, setting with cmos_llseek()
Internet address notification
Internet Protocol (IP)
Internet SCSI (iSCSI)
interrupt contexts 2nd
interrupt handling
 asynchronous interrupts
 block drivers
 interrupt contexts
 IRQs (interrupt requests)
 assigning
 definition
 enabling/disabling
 freeing
 requesting
 overview
 roller wheel device example
 edge sensitivity
 free_irq() function
 request_irq() function
 roller interrupt handler
 softirqs

 tasklets
 wave forms generated by
 softirqs
 synchronous interrupts
 tasklets
interruptible state (threads)
interrupt requests [See IRQs (interrupt requests).]
interrupts
interrupt service routine (ISR)
invoking kexec
inw() function 2nd
ioctl() function 2nd 3rd 4th 5th
IOMMU (I/O memory management unit)
ioperm() function 2nd
iopl() function 2nd
ioremap() function
ioremap_nocache() function 2nd
iovec structure
IP (Internet Protocol)
ipc directory
ipx_routes_lock
IrCOMM
irda-utils package
IrDA socket (IrSock) 2nd
IrLAP (IR Link Access Protocol)
IrLMP (IR Link Management Protocol)
irq command
IRQ_HANDLED flag
IRQF_DISABLED flag
IRQF_SAMPLE_RANDOM flag
IRQF_SHARED flag
IRQF_TRIGGER_HIGH flag
IRQF_TRIGGER_RISING flag
IRQs (interrupt requests)
 assigning
 cell phone device example
 definition
 enabling/disabling
 freeing
 requesting
 roller wheel device example
IrSock (IrDA socket)
IS_ERR() function 2nd
ISA (Industries Standard Architecture)
ISA NICs
iSCSI (Internet SCSI)
iscsi_tcp.c driver
iscsid daemon
ISR (interrupt service routine)
iterator methods
 next()
 show()
 start()
 stop()

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

JFFS (Journaling Flash File System)
jiffies 2nd
Journaling Flash File System (JFFS)
jprintk() function
jprobe_return() function
jprobes
JTAG (Joint Test Action Group)
 debuggers 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

kacpid thread
kallsyms_lookup_name() function
kapmd thread
kbnepd
kdb (kernel debugger)
kdump
 example
 kexec with kdump
 setup
 sources
kernel.org
kernel_thread() function 2nd
kernel debuggers
 downloads
 entering
 gdb (GNU debugger)
 JTAG debuggers
 kdb (kernel debugger)
 kgdb (kernel GNU debugger)
 overview
kernel directory
kernel hacking configuration options
kernel mode
kernel modules [See modules.]
kernel probes [See kprobes.]
kernel processes [See kernel threads.]
kernel programming interfaces [See specific functions.]
kernels
 boot process
 BIOS-provided physical RAM map
 delay-loop calibration
 EXT3 filesystem
 HLT instruction
 I/O scheduler
 init process
 initrd memory
 kernel command line
 Linux boot sequence
 low memory/high memory
 PCI resource configuration
 registered protocol families
 start_kernel() function
 building
 concurrency
 atomic operators
 debugging
 overview
 reader-writer locks
 spinlocks and mutexes
 data structures, table of
 debuggers
 downloads
 entering
 gdb (GNU debugger)
 JTAG debuggers

 kdb (kernel debugger)
 kgdb (kernel GNU debugger)
 overview
 helper interfaces
 completion interface
 error-handling aids
 hash lists
 kthread helpers
 linked lists
 notifier chains
 overview
 work queues
 interrupt contexts
 kernel.org repository
 kernel hacking configuration options
 kernel mode
 kernel programming interfaces, table of
 memory allocation
 modules
 edac_mc
 loading
 porting
 process contexts
 sources 2nd
 source tree layout
 directories 2nd
 navigating
 threads
 bdflush
 creating
 definition
 events/n threads
 kacpid
 kapmd
 kjournald
 ksoftirqd/0
 kthreadd
 kthread helpers
 kupdated
 listing active threads
 nfsd
 pccardd
 pdflush
 process states
 user mode helpers
 wait queues
 timers
 HZ
 jiffies
 long delays
 overview
 RTC (Real Time Clock)
 short delays
 TSC (Time Stamp Counter)
 uClinux
 user mode
kernel threads
 bdflush
 creating
 definition
 events/n threads
 kacpid
 kapmd
 kjournald

 ksoftirqd/0
 kthreadd
 kthread helpers
 kupdated
 listing active threads
 nfsd
 pccardd
 pdflush
 process states
 user mode helpers
 wait queues
kernel timers
 HZ
 jiffies
 long delays
 overview
 RTC (Real Time Clock)
 short delays
 TSC (Time Stamp Counter)
kerneltrap.org
kexec
 invoking
 preparation
 sources
 with kdump
kexec-tools package
keyboards
 Bluetooth keyboards
 overview
 PC keyboards
 USB keyboards
keycodes
keypads
kfree() function
kgdb (kernel GNU debugger)
kgdbwait command
khubd
kill_fasync() function 2nd
kjournald thread
kmalloc() function 2nd 3rd 4th
kmem char device
kobj_type structure 2nd
kobject_add() function
kobject_register() function 2nd
kobject_uevent() function
kobject_unregister() function 2nd
kobjects 2nd
kprobes
 example
 kprobe handlers, registering
 mydrv.c file
 patches, inserting
 fault-handlers
 inserting inside kernel functions
 jprobes
 kretprobes
 limitations
 post-handlers
 pre-handlers
 sources
kref_get() function
kref_init() function
kref_put() function
kref object

kret_tty_open() function
kretprobes
kset structure
ksoftirqd/0 kernel thread
kthread_create() function 2nd
kthread_run() function
kthread_should_stop() function 2nd
kthread_stop() function
kthreadd kernel thread
kthread helpers
ktype_led structure
kupdated kernel thread
kzalloc() function 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

L2CAP (Logical Link Control and Adaptation Protocol)
l2cap.ko
LAD (Linux Audio Developers) list
LAN Emulation (LANE)
LANs (local area networks) 2nd
laptops
large procfs reads
layered architecture (serial drivers)
LBA (logical block addressing)
LCDC (Liquid Crystal Display Controller)
LCD controllers
ldisc.read() function
ldisc.receive_buf() function
led.c driver
led_init() function
led_write() function
LED board [See parallel port LED boards.]
legacy drivers
 BIOS
 RTC driver
len field (sk_buff structure)
level-sensitive devices
LGPL (GNU Lesser General Public License)
libATA
lib directory
libraries
 alsa-lib
 Glibc
 libraw1394
libraw1394 library
libusb programming template
likely() function 2nd
LILO (Linux Loader)
line disciplines (touch controller device example)
 changing
 compiling
 connection diagram
 flushing data
 I/O Control
 open/close operations
 opening
 overview
 read paths
 unregistering
 write paths
linked lists
 creating
 data structures, initializing
 functions
 worker thread
 work submission
links (PCIe)
linux.conf.au
Linux Amateur Radio AX.25 HOWTO
Linux assembly

 boot sequence
 debugging
 GNU Assembler (GAS)
 i386 boot assembly code
 inline assembly
 Microsoft Macro Assembler (MASM)
 Netwide Assembler (NASM)
Linux Asynchronous I/O (AIO)
linux-audio-dev mailing list
Linux Audio Developers (LAD) list
Linux device model
 device classes
 hotplug/coldplug
 kobjects
 microcode download
 module autoload
 overview
 sysfs
 udev 2nd
Linux distributions
Linux history and development
linux-ide mailing list
Linux-IrDA
Linux Kernel Crash Dump (LKCD)
Linux Kernel Mailing List (LKML)
Linux Kongress
Linux Loader (LILO)
Linux-MTD JFFS HOWTO
linux-mtd mailing list
Linux-MTD subsystem [See MTD (Memory Technology Devices).]
Linux-PCMCIA subsystem [See PCMCIA (Personal Computer Memory Card International Association).]
linux-scsi mailing list
Linux Symposium
Linux Test Project (LTP) 2nd
Linux Trace Toolkit [See LTT (Linux Trace Toolkit).]
Linux Trace Toolkit Viewer (LTTV)
linux-usb-devel mailing list 2nd
Linux-USB subsystem [See USB (universal serial bus).]
Linux-video subsystem
LinuxWorld Conference and Expo
Liquid Crystal Display Controller (LCDC)
LIRC (Linux Infrared Remote Control)
list_add() function
list_add_tail() function
list_del() function 2nd
list_empty() function
list_entry() function 2nd
list_for_each_entry() function 2nd
list_for_each_entry_safe() function 2nd
list_head structure 2nd
list_replace() function
list_splice() function
lists
 hash lists
 linked lists
 creating
 data structures, initializing
 functions
 worker thread
 work submission
LKCD (Linux Kernel Crash Dump)
LKML (Linux Kernel Mailing List)
llseek() function 2nd
LM-Sensors

loading modules
loadkeys
local_irq_disable() function
local_irq_enable() function 2nd
local_irq_restore() function
local_irq_save() function
local area networks (LANs) 2nd
localtime() function
locks
lockups, soft
log command
logical addresses
logical block addressing (LBA)
Logical Link Control and Adaptation Protocol (L2CAP)
long delays
loopback devices
loops_per_jiffy variable 2nd 3rd
low-speed USB
low-voltage differential signaling (LVDS)
low memory
Low Pin Count (LPC) bus
lp.c driver
lp_write() function
LPC (Low Pin Count) bus
lseek() function
lsmod command
lspci command
lsvpd utility
LTP (Linux Test Project) 2nd
LTT (Linux Trace Toolkit)
 components
 events
 LTTng
 LTTV (Linux Trace Toolkit Viewer)
 trace dumps
LTTng
LTTV (Linux Trace Toolkit Viewer)
LVDS (low-voltage differential signaling)
lwn.net
lxr command

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

MAC (Media Access Control) addresses
macros [See specific macros.]
Madplay 2nd
mailboxes (RapidIO)
mailing lists 2nd
maintenance
 build scripts
 change markers
 checksum consistency
 code portability
 coding styles
 version control
major numbers (char drivers)
make command
MAN (metropolitan area network)
map_info structure 2nd
map drivers
 definition
 MTD partition maps, creating
 probe method
 registering
mapping memory
maps, system memory map
 copying
 obtaining
markers, clean
MASM (Microsoft Macro Assembler)
mass storage devices (USB)
Master Boot Record (MBR)
Master In Slave Out (MISO)
Master Out Slave In (MOSI)
masters (DMA)
maximum transmission unit (MTU) 2nd
mb() function
MBEs (multibit errors)
MBR (Master Boot Record)
MCA (Micro-Channel Architecture)
MCH (Memory Controller Hub)
md command
mdelay() function
media_changed() method
Media Access Control (MAC) addresses
Media Independent Interface (MII)
mem char device
MEMERASE command
MEMLOCK command
memory
 accessing from user space
 allocating
 cache misses, counting
 claiming/freeing
 CMOS (complementary metal oxide semiconductor)
 DMA (Direct Memory Access) [See also Ethernet-Modem card example.]
 buffers
 consistent DMA access methods

 definition
 IOMMU (I/O memory management unit)
 masters
 scatter-gather
 streaming DMA access methods
 synchronous versus asynchronous
 embedded Linux memory layout
 FIFO (first-in first-out) memory
 flash memory
 CFI-compliant flash, querying
 definition
 embedded drivers
 NAND
 NOR
 sectors
 high memory
 initrd memory
 low memory
 mapping
 memory barriers
 memory zones
 MTD (Memory Technology Devices)
 flash memory
 illustration of Linux-MTD subsystem
 map drivers
 MTD core
 NAND drivers
 NOR Chip drivers
 overview
 partition maps, creating
 User Modules
 pages
 system memory map
 copying
 obtaining
 zero page
 ZONE_DMA
 ZONE_HIGH
 ZONE_NORMAL
memory.c file
memory banks (EEPROM)
Memory Controller Hub (MCH)
memory_cs Card Services driver
Memory Technology Devices [See MTD (Memory Technology Devices).]
memory zones
MEMUNLOCK command
memwalkd() function
methods [See specific methods.]
metropolitan area network (MAN)
mice
 Bluetooth mice
 PS/2 mouse
 roller mouse device example
 touchpads
 trackpoints
 USB mice
 virtual mouse device example
 gpm (general-purpose mouse)
 vms.c input driver
Micro-Channel Architecture (MCA)
microcode download
microdrives
Microsoft Macro Assembler (MASM)
middleware

MII (Media Independent Interface)
million instructions per second (MIPS)
MIMO (Multiple In Multiple Out)
minicom
Mini PCI
minor numbers (char drivers)
MIPS (million instructions per second)
mirroring disks
misc_deregister() function
misc_register() function 2nd 3rd
Miscdevice structure
misc (miscellaneous) drivers [See also watchdog timer.]
MISO (Master In Slave Out)
mixers
mkinitramfs command
mkinitrd command
mktime() function
mlockall() function 2nd
-mm patch
mmap() function 2nd 3rd
mmapping
MMC (MultiMediaCard)
mm directory
mod_timer() function 2nd
modem functions
 probing
 registering
modes
 kernel mode
 protected mode
 real mode
 user mode
modinfo command
modprobe command
MODULE_DEVICE_TABLE() macro 2nd 3rd
modules
 autoloading
 edac_mc
 loading
Molnar, Ingo
Morton, Andrew
MOSI (Master In Slave Out)
most significant bit (MSB)
mouse_poll() function
mousedev
Moving Picture Experts Group (MPEG) 2nd
MP3 player example
 ALSA driver code listing
 ALSA programming
 codec_write_reg() function
 MP3 decoding complexity
 mycard_audio_probe() function
 mycard_audio_remove() functions
 mycard_hw_params() function
 mycard_pb_prepare() function
 mycard_pb_trigger() function
 mycard_playback_open() function
 overview
 register layout of audio hardware
 snd_card_free() function
 snd_card_new() function
 snd_card_proc_new() function
 snd_card_register() function
 snd_ctl_add() function

 snd_ctl_new1() function
 snd_device_new() function
 snd_kcontrol structure
 snd_pcm_hardware structure
 snd_pcm_lib_malloc_pages() function
 snd_pcm_lib_preallocate_pages_for_all() function
 snd_pcm_new() function
 snd_pcm_ops structure
 snd_pcm_set_ops() function
 user programs
MPC8540 (Freescale)
MPEG (Moving Picture Experts Group) 2nd
MPLS (Multiprotocol Label Switching)
MPoA (Multi Protocol over ATM)
MSB (most significant bit)
msleep() function
msync() function
MTD (Memory Technology Devices)
 configuration
 data structures
 debugging
 flash memory
 FWH (Firmware Hub)
 illustration of Linux-MTD subsystem
 kernel programming interfaces
 map drivers
 definition
 MTD partition maps, creating
 overview
 probe method
 registering
 MTD core
 NAND chip drivers
 block size
 configuring
 definition
 layout
 NAND flash controllers
 OOB (out-of-band) information
 page size
 spare area
 NOR chip drivers
 definition
 querying CFI-compliant flash
 partition maps, creating
 sources
 User Modules
 block device emulation
 char device emulation
 definition
 JFFS (Journaling Flash File System)
 MTD-utils
 overview
 YAFFS (Yet Another Flash File System)
 XIP (eXecute In Place)
mtd_info structure
mtd_partition structure 2nd
MTD-utils
mtdblock driver
mtdchar driver
MTU (maximum transmission unit) 2nd
multibit errors (MBEs)
MultiMediaCard (MMC)
multimeters

Multiple In Multiple Out (MIMO)
Multiprotocol Label Switching (MPLS)
Multi Protocol over ATM (MPoA)
munmap() function
mutex_init() function
mutex_lock() function
mutex_unlock() function
mutexes 2nd
mutual exclusion (mutexes)
my_dev_event_handler() function
my_device_xmit() function
my_die_event_handler() function
my_noti_chain structure
my_release() function
myblkdev_init() function
myblkdev_ioctl() function
myblkdev_request() function
myblkdev storage controller
 block device operations
 disk access
 initialization
 overview
 register layout
mycard_audio_probe() function
mycard_audio_remove() function
mycard_change_mtu() function
mycard_get_eeprom() function
mycard_get_stats() function
mycard_hw_params() function
mycard_pb_prepare() function
mycard_pb_trigger() function
mycard_pb_vol_info() function
mycard_playback_open() function
mydrv.c file
mydrv_dev structure
mydrv_init() function
mydrv_worker() function
mydrv_workitem structure
mydrv_wq structure
myevent_id structure
myevent_waitqueue structure
myrtc_attach() function
myrtc_gettime() function

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

N_TCH line discipline 2nd
n_touch_chars_in_buffer() function
n_touch_open() function
n_touch_receive_buf() function
n_touch_receive_room() function
n_touch_write() function
n_touch_write_wakeup() function
nand_ecclayout structure 2nd
nand_flash_ids[] table
NAND chip drivers
 block size
 configuring
 definition
 layout
 NAND flash controllers
 OOB (out-of-band) information
 page size
 spare area
NAND File Translation Layer (NFTL)
NAND flash controllers
NAND flash memory
NAND storage
nanosleep() function
NAPI (New API) 2nd
NASM (Netwide Assembler)
navigation
 frame buffer drivers
 accelerated methods
 color modes
 contrast and backlight
 data structures
 DMA
 parameters
 screen blanking
 source tree layout
NCP (Network Control Protocol)
ndelay() function
net_device_stats structure 2nd
net_device method
net device notification
net_device structure
 activation
 bus-specific methods
 configuration
 data transfer
 overview
 statistics
 watchdog timeout
net directory
netdev_chain structure
netif_device_attach() function
netif_device_detach() function
netif_queue_stopped() function 2nd
netif_receive_skb() function
netif_rx() function 2nd 3rd

netif_rx_complete() function 2nd
netif_rx_schedule() function
netif_rx_schedule_prep() function
netif_start_queue() function 2nd
netif_stop_queue() function 2nd
netif_wake_queue() function 2nd
Netlink sockets
netperf
Netrom
Netwide Assembler (NASM)
Network Control Protocol (NCP)
Network File System (NFS)
network interface cards [See NICs (network interface cards).]
networks
 Bluetooth 2nd 3rd
 Infrared
 LANs (local area networks)
 network functions
 probing
 registering
 NICs (network interface cards) [See NICs (network interface cards).]
 throughput
 driver performance
 overview
 protocol performance
New API (NAPI)
new device checklist
next() function
NFS (Network File System) 2nd
nfs_unlock_request() function
nfsd kernel thread
NFTL (NAND File Translation Layer)
nice values
NICs (network interface cards)
 activation
 ATM (asynchronous transfer mode)
 buffer management
 concurrency control
 configuration
 data structures
 data transfer
 Ethernet NIC driver
 ISA NICs
 MTU size, changing
 net device interface [See net_device structure.]
 network throughput
 driver performance
 overview
 protocol performance
 overview
 protocol layers
 flow control
 receive path
 transmit path
 socket buffers
 sources
 statistics
 summary of kernel programming interfaces
 watchdog timeout
Noop 2nd
NOR chip drivers
 definition
 querying CFI-compliant flash
NOR flash memory

North Bridge
notebooks
notifications
 CPU frequency notification
 die notification
 Internet address notification
 net device notification
 notifier chains
notifier_block structure
notifier chains
null sink
NVRAM drivers, updating with seq files

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

O(1) scheduler
OBEX (OBject EXchange)
objdump command
OBject EXchange (OBEX)
objects, kobjects
obtaining system memory map
OEMs (original equipment manufacturers)
off-the-shelf (OTS) modules
OHCI (Open Host Controller Interface)
ohci1394 driver
On-The-Go (OTG) controllers
ondemand governor
OOB (out-of-band) information
opcontrol
open() method
 block drivers
 CMOS driver
 EEPROM driver
 net_device structure
open_softirq() function
Open Host Controller Interface (OHCI)
opening
 CMOS driver
 EEPROM driver
 touch controllers
Open Sound System (OSS)
Open Source Development Lab (OSDL)
Open Systems Interconnect (OSI)
operators, atomic
opreport
OProfile 2nd
 cache misses, counting
 opcontrol
 opreport
oprofiled daemon
original equipment manufacturers (OEMs)
OS-specific modules (OSMs)
oscilloscopes
OSDL (Open Source Development Lab)
OSI (Open System Connect)
OSMs (OS-specific modules)
OSS (Open Sound System)
OTG (On-The-Go) controllers
out-of-band (OOB) information
outb() function 2nd 3rd
outl() function 2nd
outsl() function
outsn() function
output events (input device drivers)
outw() function 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

packages
 alsa-utils
 kexec-tools
 MTD-utils
 pcmcia-cs
 pcmciautils
 sysfsutils
pages (memory)
PAN (personal area network)
Parallel ATA (PATA)
parallel port communication
parallel port LED boards
 controlling from user space
 controlling with sysfs
 led.c driver
parallel printer drivers
Pardevice structure
parport
parport_claim_or_block() function
parport_read_data() function
parport_register_device() function 2nd
parport_register_driver() function 2nd
parport_release() function
parport_unregister_device() function
parport_unregister_driver() function
parport_write_data() function
partitions
 MTD partition maps, creating
 swap space
PATA (Parallel ATA)
patches
 applying
 CONFIG_PREEMPT_RT patch-set
 creating
 definition
 kernel.org repository
patch utility
PC-compatible system hardware block diagram
PCBs (printed circuit boards)
pccardctl command
pccardd thread
PC Cards
PC keyboards
PCI (Peripheral Component Interconnect)
 accessing PCI regions
 configuration space
 I/O and memory regions
 addressing and identification
 CardBus 2nd
 compared to USB
 data structures
 debugging
 definition
 DMA (Direct Memory Access)
 buffers

 consistent DMA access methods
 definition
 descriptors and buffers
 IOMMU (I/O memory management unit)
 masters
 scatter-gather
 streaming DMA access methods
 synchronous versus asynchronous
 Ethernet-Modem card example
 data transfer
 modem functions, probing
 modem functions, registering
 MODULE_DEVICE_TABLE() macro
 network functions, probing
 network functions, registering
 PCI_DEVICE() macro
 pci_device_id structures
 Express Cards
 kernel programming interfaces
 Mini PCI
 PCI-based solutions
 PCI Express
 PCI Express Mini Card
 PCI Extended (PCI-X)
 PCI inside South Bridge system
 resources, configuring
 serial communication
 sources
pci_alloc_consistent() function 2nd
PCI_DEVICE() macro 2nd
pci_device_id structure 2nd 3rd
pci_dev structure 2nd
pci_disable_device() function
pci_dma_sync_sg() function
pci_dma_sync_single() function
pci_driver structure
pci_enable_device() function
PCI Express 2nd
PCI Express Mini Card
PCI Extended (PCI-X)
pci_free_consistent() function
pci_iomap() function 2nd
pci_map_page() function
pci_map_sg() function 2nd
pci_map_single() function 2nd
pci_read_config_byte() function 2nd
pci_read_config_dword() function 2nd
pci_read_config_word() function 2nd
pci_register_driver() function 2nd
pci_request_region() function 2nd
pci_resource_end() function 2nd
pci_resource_flags() function 2nd
pci_resource_len() function 2nd
pci_resource_start() function 2nd
pci_set_dma_mask() function
pci_set_master() function
pci_unmap_sg() function
pci_unmap_single() function
pci_unregister_driver() function
pci_write_config_byte() function 2nd
pci_write_config_dword() function 2nd
pci_write_config_word() function 2nd
PCI-X (PCI Extended)
PCIe (PCI Express)

PCM (pulse code modulation)
PCMCIA (Personal Computer Memory Card International Association)
 Attribute memory
 CardBus devices
 Card Services
 CIS (Card Information Structure)
 client drivers, registering
 Common memory
 data-flow path between components
 data structures
 cisparse_t
 cistpl_cftable_entry_t
 pcmcia_device
 pcmcia_device_id
 pcmcia_driver structure
 summary of
 tuple_t
 debugging
 definition
 device IDs and hotplug methods
 Driver Services
 driver services module (ds)
 embedded drivers
 ExpressCards
 kernel programming interfaces
 Linux-PCMCIA subsystem interaction
 mailing list
 on embedded systems
 on laptops
 pcmciautils package
 serial PCMCIA
 sources
 storage
 udev
pcmcia-cs package
pcmcia_device_id structure 2nd
PCMCIA_DEVICE_MANF_CARD() macro
pcmcia_device structure 2nd
pcmcia_driver structure 2nd
pcmcia_get_first_tuple() function
pcmcia_get_tuple_data() function
pcmcia_parse_tuple() function
pcmcia_register_driver() function 2nd
pcmcia_request_irq() function
pcmcia_unregister_driver() function
pcmciautils package
pcspkr_event() function
pda_mtd_probe() function
pdflush kernel thread
Pentium TSC (Time Stamp Counter)
percent sign (%)
performance
 network throughput
 driver performance
 overview
 protocol performance
 performance governor
Peripheral Component Interconnect [See PCI (Peripheral Component Interconnect).]
peripherals
 choosing
 peripheral controllers
permanent virtual circuits (PVCs)
personal area network (PAN)
personal identification numbers (PINs)

PHY (physical layer) transceivers
PIBS bootloader
Pico-IrDA
PINs (personal identification numbers)
PIO (programmed I/O)
pipes 2nd
placement plots
platform_add_devices() function 2nd
platform_device_register() function
platform_device_register_simple() function 2nd 3rd
platform_device_unregister() function 2nd
platform_device register() function
platform_device structure 2nd
platform_driver_register() function 2nd
platform_driver_unregister() function
platform_driver structure 2nd
platform drivers
Plug-and-Play (PnP)
PMAC (Power Management and Audio Component)
PnP (Plug-and-Play)
PoE (Power over Ethernet)
point-of-sale (POS)
Point-to-Point Protocol (PPP) 2nd
pointers
poll() method 2nd 3rd
poll_table structure 2nd
poll_wait() function 2nd
polling in char drivers
populating URBs
port_data_in() function
port_data_out() function
portability of code
port char device
porting kernels
ports
 kgdb ports
 parallel port communication
 parallel port LED board
 controlling with sysfs
 led.c driver
 serial ports
 USB_UART ports
POS (point-of-sale)
post-handlers (kprobes)
power management
Power Management and Audio Component (PMAC)
Power over Ethernet (PoE)
PowerPC bootloaders
powersave governor
ppdev driver 2nd
PPP (Point-to-Point Protocol) 2nd
pppd daemon
pre-handlers (kprobes)
preempt_disable() function
preempt_enable() function
preemption counters
preprocessed source code, generating
printed circuit boards (PCBs)
printk() function 2nd 3rd
probe() function 2nd 3rd 4th
probes [See kprobes.]
probing
 EEPROM driver
 kprobes [See kprobes.]

 network functions
 telemetry card example
processes
 contexts
 init
 kernel processes [See kernel threads.]
 states
 zombie processes
process filesystem [See procfs.]
processors, choosing
process scheduling (user mode drivers)
 CFS (Completely Fair Scheduler)
 O(1) scheduler
 original scheduler
 overview
procfs
 documentation
 reading with
 example
 large procfs reads
 seq files
profiling
 Bluetooth
 gprof
 OProfile
 cache misses, counting
 opcontrol
 opreport
 overview
programmed I/O (PIO)
protected mode 2nd
PS/2 mouse
ps command
pseudo char drivers
pseudo terminals (PTYs)
psmouse_protocol structure 2nd
psmouse structure
PTR_ERR() function
ptrace utility
pty.c driver
PTYs (pseudo terminals)
public domain software
pulse code modulation (PCM)
pulse-width modulator (PWM) units
PVCs (permanent virtual circuits)
PWM (pulse-width modulator) units

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

QoS (quality of service)
Qtronix infrared keyboard driver
quality of service (QoS)
Quarter VGA (QVGA)
queries, CFI-compliant flash
queues
 active queues
 expired queues
 overview
 run queues
 work queues 2nd 3rd
QVGA (Quarter VGA)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

race conditions
radio
 amateur radio
 RF (Radio Frequency) chips
 RFCOMM (Radio Frequency Communication)
 RFID (Radio Frequency Identification) transmitters
RAID (redundant array of inexpensive disks)
raise_softirq() function 2nd
random char device
random number generator
RapidIO
 Fibre Channel
 iSCSI (Internet SCSI)
RAS (reliability, availability, serviceability)
rc.sysinit file
RCU (Read-Copy Update)
RDMA (Remote DMA)
rdtsc() function
read() method
READ_CAPACITY command
Read-Copy Update (RCU)
read_lock() function
read_lock_irqrestore() function 2nd
read_lock_irqsave() function 2nd
read_seqbegin() function
read_seqlock() function
read_seqretry() function
read_sequnlock() function
read_unlock() function
reader-writer locks
reading data
 CMOS driver
 with procfs
 example
 large procfs reads
 seq files
readme_proc() function
 arguments
 example
 large procfs reads
 large proc reads
 seq files
read paths
readv() function
real mode 2nd
real time (-rt) patch 2nd
Real Time Clock (RTC) 2nd
Real Time Transport Protocol (RTP)
receive_buf() function
receive path (NICs)
receptacles (USB)
RedBoot 2nd
redundant array of inexpensive disks (RAID)
reference designators
register_blkdev() function 2nd

register_chrdev() function
register_die_notifier() function
register_inetaddr_notifier() function
register_jprobes() function
register_kretprobes() function
register_netdev() function 2nd
register_netdevice_notifier() function
registered protocol families
registering
 jprobe handlers
 kprobe handlers
 map drivers
 modem functions
 network functions
 PCMCIA client drivers
 platform drivers
 return probe handlers
 UART drivers
 user mode helpers
register layout
 audio hardware
 char drivers
 myblkdev storage controller
 USB_UART
release() method 2nd
release_firmware() function
release_region() function 2nd
reliability, availability, serviceability (RAS)
Remote DMA (RDMA)
remove() function
remove_wait_queue() function 2nd
reporting (ECC) [See ECC (error correcting code) reporting.]
request() method
request_firmware() function 2nd
request_irq() function 2nd 3rd 4th
request_mem_region() function 2nd
request_queue structure 2nd
request_region() function 2nd 3rd
requests, interrupt [See IRQs (interrupt requests).]
request structure 2nd
Request To Send (RTS)
response times (user mode drivers)
resume() function
return probes (kretprobes)
RF (Radio Frequency) chips
RFCOMM (Radio Frequency Communication) 2nd
RFID (Radio Frequency Identification) transmitters
rjcomm.ko
rmb() function
rmmod command
roller_analyze() function
roller_capture() function
roller_interrupt() function
roller mouse device example
roller_mouse_init() function
roller wheel device example
 edge sensitivity
 free_irq() function
 overview
 request_irq() function
 roller interrupt handler
 softirqs
 tasklets
 wave forms generated by

rootfs
 compact middleware
 NFS-mounted root
 obtaining
 overview
root hubs
Rose
rq_for_each_bio() function 2nd
RS-485
rs_open() function
–rt (real time) patch 2nd
RTC (Real Time Clock) 2nd 3rd 4th
rtc.c driver
rtc_class_ops structure 2nd
rtc_device_register() function 2nd
rtc_device_unregister() function 2nd
rtc_interrupt() function
RTP (Real Time Transport Protocol)
RTS (Request To Send)
run_umode_handler() function
runltp script
running state (threads)
run queues
rwlock_t structure

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

SAMPLING_RATE_REGISTER
SANs (storage area networks)
SAP (SIM Access Profile)
SAS (Serial Attached SCSI)
SATA (Serial ATA)
SBEs (single-bit errors)
SBP2 (Serial Bus Protocol 2)
scatter-gather
Scatterlist structure
sched_getparam() function
sched_param structure
sched_setscheduler() function 2nd
schedule() function
schedule_timeout() function 2nd 3rd
schedulers, I/O
scheduling processes [See process scheduling.]
SCIs (system control interrupts)
SCLK (Serial CLocK) 2nd
SCO (Synchronous Connection Oriented)
sco.ko
screen blanking
scripts
 build scripts
 runltp
 scripts directory
 sensors-detect
SCSI (Small Computer System Interface) 2nd
scsi_add_host() function
SCSI Generic (sg)
SD (Secure Digital) cards
SD/MMC
SDA (Serial Data)
SDP (Service Discovery Protocol)
SECTOR_COUNT_REGISTER
SECTOR_NUMBER_REGISTER
sectors 2nd
Secure Digital (SD) cards
security directory
SEEK_CUR command
SEEK_END command
SEEK_SET command
seek operation (CMOS driver)
seek times
select() method
Self-Monitoring, Analysis, and Reporting Technology (SMART)
semaphore structure 2nd
sensing data availability (char drivers)
 fasync() function
 overview
 select()/poll() mechanism
sensors-detect script
seq files
 advantages
 documentation
 large procfs reads

 NVRAM drivers, updating
 overview
seqlocks
sequence locks
serial_cs Card Services driver
serial8250_register_port() function
Serial ATA (SATA)
Serial Attached SCSI (SAS)
Serial Bus Protocol 2 (SBP2)
Serial CLocK (SCLK) 2nd
serial communication
Serial Data (SDA)
serial drivers
 cell phone device example
 claiming/freeing memory
 CPLD (Complex Programmable Logic Device)
 overview
 platform drivers
 SoC (System-on-Chip)
 USB_UART driver
 USB_UART ports
 USB_UART register layout
 data structures
 layered architecture
 line disciplines (touch controller device example)
 changing
 compiling
 connection diagram
 flushing data
 I/O Control
 open/close operations
 opening
 overview
 read paths
 unregistering
 write paths
 overview
 sources
 summary of kernel programming interfaces
 TTY drivers
 UART drivers
 registering
 uart_driver structure
 uart_ops structure
 uart_port structure
Serial Line Internet Protocol (SLIP)
serial PCMCIA
Serial Peripheral Interface (SPI) 2nd
serial ports
serio
serio_register_port() function
serport
Service Discovery Protocol (SDP)
service set identifiers (SSIDs)
Session Initiation Protocol (SIP)
set_bit() function
set_capacity() function 2nd
set_current_state() function 2nd
set_termios() function
set-top box (STB)
setitimer() function
sg (SCSI Generic)
SG_IO command
sg_io_hdr_t structure 2nd

sg3_utils package
short delays
showkey utility
SIG (Bluetooth Special Interest Group)
sigaction() function
signal_pending() function 2nd
SIGs (Special Interest Groups)
silk screens
SIM Access Profile (SAP)
simple_map_init() function
simple_map_write() function
simulating mouse movements
single-bit errors (SBEs)
single_open() function
SIP (Session Initiation Protocol)
sk_buff structure 2nd 3rd
skb_clone() function 2nd
skb_put() function 2nd
skb_release_data() function
skb_reserve() function 2nd
skbuff_clone() function
slave addresses
slaves
SLIP (Serial Line Internet Protocol)
SLOF bootloader
Small Computer System Interface (SCSI) 2nd
SMART (Self-Monitoring, Analysis, and Reporting Technology)
SMBus [See also I2C.]
 data access functions
 definition
 overview
SMIs (system management interrupts)
SMP (Symmetric Multi Processing) 2nd
snd_ac97_codec module
snd_card_free() function 2nd
snd_card_new() function 2nd
snd_card_proc_new() function 2nd
snd_card_register() function 2nd
snd_card structure
snd_ctl_add() function 2nd
snd_ctl_elem_id_set_interface() function
snd_ctl_elem_id_set_numid() function
snd_ctl_elem_info structure
snd_ctl_elem_write() function
snd_ctl_new1() function 2nd
snd_ctl_open() function
snd_device_new() function
snd_intel8x0 driver
snd_kcontrol_new structure
snd_kcontrol structure
snd_pcm_hardware structure
snd_pcm_lib_malloc_pages() function 2nd
snd_pcm_lib_preallocate_pages_for_all() function 2nd
snd_pcm_new() function 2nd
snd_pcm_ops structure 2nd
snd_pcm_runtime structure
snd_pcm_set_ops() function 2nd
snd_pcm_substream structure
snd_pcm structure
SoC (System-on-Chip)
sockets
 buffers
 Netlink sockets
 UNIX-domain sockets

softdogs
softirqs
 compared to tasklets
 definition
 ksoftirqd/0 kernel thread
softlockup_tick() function
soft lockups
software RAID
sound [See audio.]
sources
 audio drivers
 block drivers
 char drivers
 input drivers
 Inter-Integrated Circuit Protocol
 kdump
 kernels
 kexec
 kprobes
 MTD 2nd
 NICs (network interface cards)
 PCI
 PCMCIA
 serial drivers
 source tree layout
 USB (universal serial bus)
 user mode drivers
source tree layout
 directories
 navigating
South Bridge system
spaces (ACPI)
spare area (NAND chip drivers)
Special Interest Groups (SIGs)
speeds (USB)
SPI (Serial Peripheral Interface) 2nd
spi_asaync() function
spi_async() function 2nd
spi_butterfly driver
spi_device structure 2nd
spi_driver structure
spi_message_add_tail() functions
spi_message_init() functions
spi_message structure
spi_register_driver() function 2nd
spi_sync() function 2nd
spi_transfer structure
spi_unregister_driver() function
spin_lock() function 2nd 3rd
spin_lock_bh() function
spin_lock_init() function
spin_lock_irqsave() function
spin_unlock() function 2nd
spin_unlock_bh() function
spin_unlock_irqsave() function
spinlock_t structure
spinlocks
SSID (service set identifier)
ssize_t aio_read() function
ssize_t aio_write() function
start() function
start_kernel() function 2nd
start_tx() function
states of kernel threads

STATUS_REGISTER 2nd
STB (set-top box)
stop() function
stopped state (threads)
storage area networks (SANs)
storage controller [See myblkdev storage controller.]
storage_probe() function
storage technologies
 ATAPI (ATA Packet Interface)
 IDE (Integrated Drive Electronics)
 libATA
 MMC (MultiMediaCard)
 PCMCIA/CF
 RAID (redundant array of inexpensive disks)
 SATA (Serial ATA)
 SCSI (Small Computer System Interface)
 SD (Secure Digital) cards
 summary of
strace utility
streaming DMA access methods
struct e820map
structures [See specific structures.]
submit_work() function
submitting
 URBs for data transfer
 work to be executed later
subversion
Super I/O chips
Super Video Graphics Array (SVGA)
suspend() function
SVCs (switched virtual circuits)
SVGA (Super Video Graphics Array)
SVGAlib
swap space
switched virtual circuits (SVCs)
Symmetric Multi Processing (SMP) 2nd
synaptics_init() function
synaptics_process_byte() functions
synchronization
 completion functions
 kthread helpers
 SCO (Synchronous Connection Oriented)
 synchronous DMA
 synchronous interrupts
/sys/devices/system/edac/ directory
sysdiag utility
sysfs 2nd
sysfs_create_dir() function
sysfs_create_file() function
sysfs_create_group() function
sysfs_remove_group() function
sysfsutils package
SYSLINUX
syslog() function
System-on-Chip (SoC)
system control interrupts (SCIs)
System Management Bus [See SMBus.]
system management interrupts (SMIs)
system memory map
 copying
 obtaining
SystemTap

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

tables, nand_flash_ids[]
tail field (sk_buff structure)
TASK_INTERRUPTIBLE state
TASK_RUNNING state
TASK_STOPPED state
TASK_TRACED state
TASK_UNINTERRUPTIBLE state
tasklet_disable() function 2nd
tasklet_disable_nosync() function 2nd
tasklet_enable() function 2nd
tasklet_init() function 2nd
tasklet_schedule() function 2nd
tasklet_struct structure
tasklets
tele_device_t structure
tele_disconnect() function
tele_open() function
tele_probe() function
tele_read() function
tele_write() function
tele_write_callback() function
telemetry card example
 data transfer
 driver initialization
 pci_device_id structure
 probing and disconnecting
 register access
 register space
templates, libusb programming template
test_and_set_bit() function
test_bit() function
testing
 LTP (Linux Test Project)
 test equipment
 test infrastructure
TFT (Thin Film Transistor)
TFTP embedded devices
Thin Film Transistor (TFT)
threads [See kernel threads.]
throughput
 driver performance
 overview
 protocol performance
Thttpd
time() function
time_after() function
time_after_eq() function
time_before() function
time_before_eq() function
timer_func() functions
timer_list structure
timer_pending() function 2nd
timers
 HZ
 jiffies

 long delays
 overview
 RTC (Real Time Clock)
 short delays
 TSC (Time Stamp Counter)
 watchdog timer
Time Stamp Counter (TSC) 2nd
timeval structure
TinyTP (Tiny Transport Protocol)
TinyX
tool chains
Torvalds, Linus
touch controller
 compiling
 connection diagram
 flushing data
 I/O Control
 open/close operations
 opening
 read paths
 write paths
touchpads
touch screens
trace daemon
traced state (threads)
tracereader
tracevisualizer
tracing
 LTT (Linux Trace Toolkit)
 components
 events
 LTTng
 LTTV (Linux Trace Toolkit Viewer)
 trace dumps
 overview
trackpoints
transactions (I2C)
transceivers (USB)
transfer [See data transfer.]
Transistor-Transistor Logic (TTL)
transmit paths (NICs)
trojan_function() function
TROUBLED_DS environmental variable
TSC (Time Stamp Counter) 2nd
tsdev driver
TTL (Transistor-Transistor Logic)
tty.c driver
tty_buffer structure 2nd
tty_bufhead structure 2nd
tty_driver structure 2nd
TTY drivers
tty_flip_buffer_push() function 2nd
tty_flip_buffer structure
tty_insert_flip_char() function 2nd 3rd
tty_ldisc structure 2nd
tty_open() function
tty_register_device() function
tty_register_driver() function 2nd
tty_register_ldisc() function
tty_struct structure 2nd
tty_unregister_driver() function
tty_unregister_ldisc() function
TUN/TAP device driver
TUN network driver

tuple_t structure 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

U-Boot
uart_add_one_port() function 2nd 3rd
uart_driver structure 2nd
UART (Universal Asynchronous Receiver Transmitter) drivers 2nd
 cell phone device example
 claiming/freeing memory
 CPLD (Complex Programmable Logic Device)
 overview
 platform drivers
 SoC (System-on-Chip)
 USB_UART driver
 USB_UART ports
 USB_UART register layout
 registering
 RS-485
 uart_driver structure
 uart_ops structure
 uart_port structure
uart_ops structure 2nd
uart_port structure 2nd
uart_register_driver() function 2nd 3rd
uart_unregister_driver() function
UCEs (uncorrectable errors)
uClibc
uClinux
UDB
 class drivers
 debugging
udelay() function 2nd
udev
 on embedded devices
 PCMCIA
udevmonitor
udevsend
UHCI (Universal Host Controller Interface)
UIO (Userspace IO)
uIP
UML (User Mode Linux)
uncorrectable errors (UCEs)
uninterruptible state (threads)
Universal Asynchronous Receiver Transmitter [See UART (Universal Asynchronous Receiver Transmitter)
drivers.]
Universal Host Controller Interface (UHCI)
universal serial bus [See USB (universal serial bus).]
UNIX-domain sockets
unlikely() function 2nd
unregister_blkdev() function
unregister_chrdev_region() function
unregister_netdev() function
unregister_netdevice_notifier() function
up() function
up_read() function
up_write() function
updating
 BIOS

 NVRAM drivers
urandom char device
URBs (USB Request Blocks)
urb structure 2nd
USB (universal serial bus)
 addressing
 Bluetooth 2nd
 bus speeds
 class drivers
 HIDs (human interface devices)
 mass storage
 overview
 USB-Serial
 compared to I2C and PCI
 data structures
 descriptors
 pipes
 tables of
 URBs (USB Request Blocks)
 usb_device structure
 embedded drivers
 on embedded systems
 endpoints
 enumeration
 gadget drivers
 host controllers
 illustration of Linux-USB subsystem
 kernel programming interfaces, table of
 Linux-USB subsystem architecture
 mice
 OTG controllers
 overview
 receptacles
 sources
 telemetry card example
 data transfer
 driver initialization
 pci_device_id structure
 probing and disconnecting
 register access
 register space
 transceivers
 transfer types
 URBs (USB Request Blocks)
 usbfs virtual filesystem
 USB Gadget project
 USB-Serial
usb-serial.c driver
usb_[control|interrupt|bulk]_msg() function
usb_[rcv|snd][ctrl|int|bulk|isoc]pipe() function 2nd
usb_alloc_urb() function 2nd
usb_buffer_alloc() function
usb_buffer_free() function
usb_bulk_msg() function
usb_bus structure
usb_close() function
usb_config_descriptor structure 2nd
usb_control_msg() function 2nd 3rd
usb_ctrlrequest structure
usb_deregister() function
usb_deregister_dev() function
usb_dev_handle structure
USB_DEVICE() macro
usb_device_descriptor structure 2nd

usb_device_id structure
usb_device structure 2nd 3rd
usb_driver structure
usb_endpoint_descriptor structure 2nd
usb_fill_bulk_urb() function 2nd
usb_fill_control_urb() function 2nd 3rd
usb_fill_int_urb() function 2nd
usb_find_buses() function
usb_find_devices() function
usb_find_interface() function
usb_free_urb() function 2nd
usb_gadget_driver structure 2nd
usb_gadget_register_driver() function 2nd
usb_get_intfdata() function 2nd
usb_init() function
usb_interface_descriptor structure 2nd
usb_open() function
usb_register() function 2nd
usb_register_dev() function
usb_serial_deregister() function
usb_serial_driver structure
usb_serial_register() function 2nd
usb_set_intfdata() function 2nd
usb_submit_urb() function 2nd
usb_tele_init() function
USB_UART
USB_UART driver
 code listing
 register layout
USB_UART ports
usb_uart_probe() function
usb_uart_rxint() function
usb_uart_start_tx() function
usb_unlink_urb() function 2nd
usbfs virtual filesystem 2nd
USB Gadget project
usbhid driver
usbhid USB client driver
USB keyboards
usbmon command
USB Request Blocks (URBs)
usbserial drivers
user mode drivers
 data structures
 I/O regions
 accessing
 dumping bytes from
 memory regions, accessing
 parallel port LED boards, controlling
 process scheduling
 CFS (Completely Fair Scheduler)
 O(1) scheduler
 original scheduler
 overview
 response times
 sg (SCSI Generic)
 sources
 UIO (Userspace IO)
 usbfs virtual filesystem
 user mode I2C
 user space library functions
 when to use
user mode helpers
User Mode Linux (UML)

User Modules
 block device emulation
 char device emulation
 definition
 JFFS (Journaling Flash File System)
 MTD-utils
 overview
 YAFFS (Yet Another Flash File System)
user space drivers [See user mode drivers.]
userspace governor
Userspace IO (UIO)
user space library functions
usr directory
UU_READ_DATA_REGISTER
UU_STATUS_REGISTER
UU_WRITE_DATA_REGISTER

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

V2IP (Video-and-Voice over IP)
variables
 loops_per_jiffy 2nd 3rd
 xtime
VCI (virtual circuit identifier)
verify checksum command (ioctl)
version control
Very high speed integrated circuit Hardware Description Language (VHDL)
vesafb (video frame buffer driver)
VFS (Virtual File System) 2nd
vfs_readdir() function
VGA (Video Graphics Array)
VHDL (Very high speed integrated circuit Hardware Description Language
video
 cabling standards
 controllers
 embedded drivers
 VGA (Video Graphics Array)
 video frame buffer driver [See vesafb (video frame buffer driver).]
Video-and-Voice over IP (V2IP)
video1394 driver
virtual addresses
virtual circuit identifier (VCI)
Virtual File System (VFS) 2nd
virtual mouse device example
 gpm (general-purpose mouse)
 simulating mouse movements
 vms.c input driver
Virtual Network Computing (VNC)
virtual path identifier (VPI)
virtual terminals (VTs)
Vital Product Data (VPD)
vmalloc() function 2nd
vmlinux kernel image
vms.c application
vms_init() function
VNC (Virtual Network Computing)
VoIP (Voice over Internet Protocol)
VOLUME_REGISTER
VPD (Vital Product Data)
VPI (virtual path identifier)
vt.c driver
VTs (virtual terminals)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

w1 bus
w1_family_ops structure
w1_family structure
wait_event_timeout() function 2nd
wait_for_completion() function 2nd
wait_queue_t structure
wait queues [See queues.]
wake_up_interruptible() function 2nd 3rd
wall time
watchdog timeout
watchdog timer
watchpoints
wd33c93_init() function
wear leveling
WiFi 2nd 3rd
WiMax
wireless
 trade-offs for
 WiFi 2nd 3rd
 Wireless Extensions
wmb() function 2nd
work, submitting to be executed later
work_struct structure 2nd
worker thread
workqueue_struct structure
work queues 2nd 3rd
write() method
write_lock() function
write_lock_irqrestore() function 2nd
write_lock_irqsave() function 2nd
write_seqlock() function
write_sequnlock() function
write_unlock() function
write_vms() function
write_wakeup() function
writev() function
writing
 CMOS driver
 input event drivers

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

x86 bootloaders
xf86SIGIO() function
Xf86WaitForInput() function
XGA (eXtended Graphics Array)
XIP (eXecute In Place)
xtime variable
X Windows

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

YAFFS (Yet Another Flash File System)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

zero-page.txt file
zero char device
zero page
Zigbee
zombie processes
zombie state (threads)
ZONE_DMA
ZONE_HIGH
ZONE_NORMAL

	Essential Linux Device Drivers - Graphically Rich Book
	Table of Contents
	Copyright
	Prentice Hall Open Source Software Development Series
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 1. Introduction
	Evolution
	The GNU Copyleft
	Kernel.org
	Mailing Lists and Forums
	Linux Distributions
	Looking at the Sources
	Building the Kernel
	Loadable Modules
	Before Starting

	Chapter 2. A Peek Inside the Kernel
	Booting Up
	Kernel Mode and User Mode
	Process Context and Interrupt Context
	Kernel Timers
	Concurrency in the Kernel
	Process Filesystem
	Allocating Memory
	Looking at the Sources

	Chapter 3. Kernel Facilities
	Kernel Threads
	Helper Interfaces
	Looking at the Sources

	Chapter 4. Laying the Groundwork
	Introducing Devices and Drivers
	Interrupt Handling
	The Linux Device Model
	Memory Barriers
	Power Management
	Looking at the Sources

	Chapter 5. Character Drivers
	Char Driver Basics
	Device Example: System CMOS
	Sensing Data Availability
	Talking to the Parallel Port
	RTC Subsystem
	Pseudo Char Drivers
	Misc Drivers
	Character Caveats
	Looking at the Sources

	Chapter 6. Serial Drivers
	Layered Architecture
	UART Drivers
	TTY Drivers
	Line Disciplines
	Looking at the Sources

	Chapter 7. Input Drivers
	Input Event Drivers
	Input Device Drivers
	Debugging
	Looking at the Sources

	Chapter 8. The Inter-Integrated Circuit Protocol
	What's I2C/SMBus?
	I2C Core
	Bus Transactions
	Device Example: EEPROM
	Device Example: Real Time Clock
	I2C-dev
	Hardware Monitoring Using LM-Sensors
	The Serial Peripheral Interface Bus
	The 1-Wire Bus
	Debugging
	Looking at the Sources

	Chapter 9. PCMCIA and Compact Flash
	What's PCMCIA/CF?
	Linux-PCMCIA Subsystem
	Host Controller Drivers
	PCMCIA Core
	Driver Services
	Client Drivers
	Tying the Pieces Together
	PCMCIA Storage
	Serial PCMCIA
	Debugging
	Looking at the Sources

	Chapter 10. Peripheral Component Interconnect
	The PCI Family
	Addressing and Identification
	Accessing PCI Regions
	Direct Memory Access
	Device Example: Ethernet-Modem Card
	Debugging
	Looking at the Sources

	Chapter 11. Universal Serial Bus
	USB Architecture
	Linux-USB Subsystem
	Driver Data Structures
	Enumeration
	Device Example: Telemetry Card
	Class Drivers
	Gadget Drivers
	Debugging
	Looking at the Sources

	Chapter 12. Video Drivers
	Display Architecture
	Linux-Video Subsystem
	Display Parameters
	The Frame Buffer API
	Frame Buffer Drivers
	Console Drivers
	Debugging
	Looking at the Sources

	Chapter 13. Audio Drivers
	Audio Architecture
	Linux-Sound Subsystem
	Device Example: MP3 Player
	Debugging
	Looking at the Sources

	Chapter 14. Block Drivers
	Storage Technologies
	Linux Block I/O Layer
	I/O Schedulers
	Block Driver Data Structures and Methods
	Device Example: Simple Storage Controller
	Advanced Topics
	Debugging
	Looking at the Sources

	Chapter 15. Network Interface Cards
	Driver Data Structures
	Talking with Protocol Layers
	Buffer Management and Concurrency Control
	Device Example: Ethernet NIC
	ISA Network Drivers
	Asynchronous Transfer Mode
	Network Throughput
	Looking at the Sources

	Chapter 16. Linux Without Wires
	Bluetooth
	Infrared
	WiFi
	Cellular Networking
	Current Trends

	Chapter 17. Memory Technology Devices
	What's Flash Memory?
	Linux-MTD Subsystem
	Map Drivers
	NOR Chip Drivers
	NAND Chip Drivers
	User Modules
	MTD-Utils
	Configuring MTD
	eXecute In Place
	The Firmware Hub
	Debugging
	Looking at the Sources

	Chapter 18. Embedding Linux
	Challenges
	Component Selection
	Tool Chains
	Embedded Bootloaders
	Memory Layout
	Kernel Porting
	Embedded Drivers
	The Root Filesystem
	Test Infrastructure
	Debugging

	Chapter 19. Drivers in User Space
	Process Scheduling and Response Times
	Accessing I/O Regions
	Accessing Memory Regions
	User Mode SCSI
	User Mode USB
	User Mode I2C
	UIO
	Looking at the Sources

	Chapter 20. More Devices and Drivers
	ECC Reporting
	Frequency Scaling
	Embedded Controllers
	ACPI
	ISA and MCA
	FireWire
	Intelligent Input/Output
	Amateur Radio
	Voice over IP
	High-Speed Interconnects

	Chapter 21. Debugging Device Drivers
	Kernel Debuggers
	Kernel Probes
	Kexec and Kdump
	Profiling
	Tracing
	Linux Test Project
	User Mode Linux
	Diagnostic Tools
	Kernel Hacking Config Options
	Test Equipment

	Chapter 22. Maintenance and Delivery
	Coding Style
	Change Markers
	Version Control
	Consistent Checksums
	Build Scripts
	Portable Code

	Chapter 23. Shutting Down
	Checklist
	What Next?

	Appendix A. Linux Assembly
	Debugging

	Appendix B. Linux and the BIOS
	Real Mode Calls
	Protected Mode Calls
	BIOS and Legacy Drivers

	Appendix C. Seq Files
	The Seq File Advantage
	Updating the NVRAM Driver
	Looking at the Sources

	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

